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Achievement of an optimal improvement in signal-to-noise ratio from image averaging techniques depends crucially on the 

assumption that all members of the set of images to be averaged are fundamentally alike. In HREM of biological 

macromolecules, this assumption may be invalid for such reasons as variations in viewing geometry, non-uniformity of 

staining, or structural perturbations caused by specimen preparation procedures or radiation damage. Inclusion of data that 

are compromized by these or other factors will degrade the information content of the averaged image. Here we present an 

algorithm which provides an objective quantitative method for the identification and elimination of anomalous members of a 

set of pre-aligned images. Based on a statistical criterion of mutual consistency, the algorithm forms an ordered list in which 

the individual images are ranked from most to least reliable. On specification of the noise statistics - in the formulation given 

here, of stationary white noise - an acceptability threshold in this ordered list is imposed. The derivation and implementation 

of this algorithm are presented, its properties discussed, and its application illustrated using both real and model electron 

micrograph data. 

1. Introduction 

The use of image averaging to improve signal- 
to-noise ratios of electron micrographs has pro- 
liferated greatly in recent years, particularly as 
applied to structural investigations of biological 
macro-molecules [l-3]. Initially confined to trans- 
lational or rotational averaging in real space of 
crystalline or rotationally symmetric specimens, or 
to (formally equivalent) Fourier space filtering, 
the scope of image averaging has been consider- 

ably extended by the introduction of correlation 
alignment techniques to rectify poorly ordered 
lattices [4-61, or to bring images of free-standing 
particles into registration [7-91. The improvement 
in signal-to-noise to be realized by averaging de- 
pends crucially on the premise that the images to 
be combined are intrinsically the same, apart from 
their content of random additive noise. In prac- 
tice, however, this assumption may break down: 
(i) there may be intrinsic heterogeneity among the 
particles analyzed; 
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(ii) some particles may have adsorbed in different 
orientations relative to the plane of the support 
film; 

(iii) the particles may have undergone systemati- 
cally different modes of negative staining (e.g. 
depth of stain, degree of infiltration, amount of 

coincident positive staining); 

(iv) some particles may have undergone major 
distortions upon adsorption to the substrate or 

when they were dehydrated; 
(v) the correlation alignment procedures may have 
failed, in some cases, to achieve correct registra- 
tion. 

In such circumstances, inclusion of the incon- 
sistent data in the average will not be beneficial, 
particularly when the goal is to exhibit detail 
corresponding to the highest resolution at which 
the data set is potentially meaningful. In applica- 
tions of correlation averaging, it is common prac- 
tice for images suspected of being anomalous to 
be weeded out at the discretion of the investigator, 
prior to forming the average. This procedure has 
the drawback of being somewhat arbitrary, and is 
neither quantitative nor objective. In this paper, 
we present an algorithm that systematically screens 
a set of pre-aligned images for anomalous mem- 
bers. 

1.1. Algorithm design: generul considerations 

In the absence of any absolute reference to 
serve as a basis for discriminating between accep- 
table and anomalous images, this decision must be 
based on a criterion of mutual consistency. This 
approach led us to the definition of the 
maximum-likelihood ordering principle described 
in the appendix. Its implementation requires that 
a parametric form of the statistical distribution of 
the noise be specified. This design principle has 
been applied to the case of independent additive 
Gaussian noise, resulting in the algorithm pre- 
sented in this paper. 

Starting with N pre-aligned images, the 
algorithm searches for the set of (N - 1) images 
that have the minimum variance; the image lying 
outside this set is thereby eliminated. This proce- 
dure is then reiterated on the subset of (N - 1) 
images to identify the second most deviant mem- 
ber, and so on, ultimately yielding a fully ordered 

data set. Having produced this ordering, a prob- 
abilistic estimate is then computed so as to decide 
whether an image should be accepted or rejected 
for averaging purposes. This estimate depends on 
the statistics of the noise and allows a cut-off 
point in the ordered set to be defined. As imple- 
mented here, the algorithm is based on a statistical 
model of equal variance and independently dis- 
tributed Gaussian noise. However, it may be 
adapted for situations in which other noise distri- 
butions may be more appropriate (for example: 

Poisson noise). A more detailed account of both 
phases of the algorithm is presented in section 2, 
and further information concerning their deriva- 

tion and implementation is given in the appendix. 
Section 3 presents some examples of its applica- 
tions. 

2. Description of the algorithm 

In the following text, the initial images are 
represented by a set of N vectors. x1,. . ., x,~. 
defining N data points in a space of dimension M, 
where M is the number of pixels in each image. 

2.1. Data ordering 

From the initial data set. the algorithm forms 
an ordered list according to a declining level of 

consistency: x(i), . . , xc yl. This ordering is per- 

formed iteratively by removing, at each step, the 
observation least consistent with the remainder of 
the set. Let n denote the number of remaining 
images at any step of iteration, and, for conveni- 
ence. let us rename them as x,, . , x,,. Two slightly 
different procedures may be adopted for choosing 
the observation to be removed (denoted by xc,,,). 
depending on the strategy used for computing the 
mean. These are called exclusive or inclusive 

estimation. 
(i) Exclusive center estimation: When the esti- 

mate of the mean does not include the image that 
is currently considered, the observation by the 
algorithm is defined by: 

XC,,) = x,: 
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where (( ... (( * represents the square norm of a 

vector and where m,_,,, is the mean computed by 

excluding xk : 

The algorithm therefore selects the (n - 1) points 
with minimum variance. The decision is based on 

the computation of the Euclidean distance be- 
tween a data point and the current mean estimate. 
As shown in appendix A.3, these equations define 
the maximum-likelihood solution in the case of 
independently distributed and equal variance 
Gaussian noise. It follows that the (n - 1) points 
selected by the algorithm are those that are “best 
explained” by the Gaussian model in the sense 
that their estimated joint likelihood (or probabil- 
ity) is the maximum possible. Moreover, the quan- 
tity m,,_,,? provides the best current maximum- 
likelihood estimate of the distribution’s mean. 

(ii) Inclusive center estimation: A simpler pro- 
cedure is obtained when the mean includes all 
currently remaining observations. The correspond- 
ing rule, obtained by substituting m,_,.k by m, in 
eq. (1) is now equivalent to the simpler equation: 

XC,) = x,: 

II x, - m, II* = ky” n(llxk-7M,,I12)~ (3) . , 
where m, is current sample mean defined by: 

(4) 

In this case, selection of the (n - 1) points with 
minimum variance is equivalent to choosing the 
(n - 1) points least distant from the central point 

mm9 which, according to eq. (3), is exactly the same 
as removing the most distant point. 

The exclusive alternative is conceptually more 
attractive because it excludes the effect of the 

observation that is currently under consideration 
as possibly being anomalous. In turn, the inclusive 
version of the algorithm is computationally sim- 
pler (but not necessarily faster, as shown in ap- 
pendix A.4). For n sufficiently large, however, 
both methods should give similar results. 

2.2. Testing for consistency 

When an image is isolated by the algorithm, we 
might test the hypothesis of whether it belongs to 
the same population as the (n - 1) remaining sam- 

ples. However, this decision requires some as- 
sumptions to be made about the noise distribu- 
tion. 

For the case of additive stationary white Gaus- 
sian noise described in appendix A.3, we use the 
following test statistic: 

d(x,, m,) = a;llx, - m,/i2/02, 

where 

n/( n + 1) (exclusive option), 
a = n 

1 n/( n - 1) (inclusive option). 
(5) 

Here a2 is the (known) variance and m, the 
inclusive or exclusive estimate (based on n ob- 
servations) of the unknown mean vector ‘p. For 
randomly selected observations that are identi- 
cally Gaussian distributed with true distribution 

parameters p and 02, d(x,, m,) has a x2 distribu- 
tion with A4 degrees of freedom (the dimensional- 
ity of x,). Therefore, when d(x,, m,) is above a 
certain threshold T corresponding to a specified 

probability of false rejection *, 

P=Prob{d(x,, m,,)> T}, 

the hypothesis that x, is statistically consistent 
with the remainder of the data set should be 
rejected. The choice of the rejection threshold may 
be facilitated by using the fact that, for M suffi- 
ciently large (typically: M > 30), the quantity 

(d(x,, m,j - M)/(zM) ‘I2 has a distribution that 
is very closely approximated by a standardized 
Gaussian, with zero mean and unit variance. 

This test can also be extended for additive 
non-Gaussian stationary white noise. In such a 
case, the test statistic d(x,, m,), which is-obtained 
from the summation of M independently and 
identically distributed random variables, will tend 

* Note that because of prior ranking of the data, we are only 

testing for the worst case so that the true level of signifi- 

cance of the test is rather (I = 1 - (I- P)“, which represents 
the probability of the presence of at least one image out of n 
with a d value greater than T. 
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to be Gaussian as a consequence of the Central 
Limit Theorem [lo]. Its mean is simply 

E{+,, m,)} = M, 

and its variance, provided that n is sufficiently 
large for m, to be reasonably close to /.r, is closely 
approximated as follows: 

E{ d(x,. P)‘) 

= E( l/x, - P//~)/o~ 

=E t (x,k-~k)~ ’ /a4 
k=l i: 

= kt,E{ (x,, - d4}/u4 

+2CCE{(x,, -~k)2(x,,-~,)2}/u4 
k+l 

=M.K~M~-M, 

so that 

Var{ d(x,, mn>> 

= Var{ d(x,, P)} 

= E{d(x,, p)‘} -E{d(x,, ~)}‘=M(K- I), 

(6) 

where K is the noise distribution’s Kurtosis or 
normalized fourth moment defined as: 

K= 
E{(Xk - Pk I”} 
E{(x, -Pi)2}2 

=F, k=l...., M. (7) 

This quantity has the value 3 for Gaussian data. 
Therefore, for M sufficiently large, the normalized 
test variable which we evaluate, 

2(x,, m,) = 
d(x,, m,> -M 

(M( K - 1))“” ’ 

is Gaussian with zero mean and approximately 
unit variance. 

The set of images was first aligned both rota- 
tionally and translationally by correlation align- 
ment techniques [7,8,12]. The ranking assigned by 
the algorithm is shown in fig. 1 where the image 
labels correspond to the (arbitrary) order in which 
the images were entered into the program. The 
probabilities and cumulative variances computed 
at each step are plotted in fig. 2. The shape of the 
probability curve is distinctly sigmoidal (and such 

So far, we have considered the distribution _ qualitatively at least - has also been the case in 

parameters 0’ and K as known quantities. In the other applications which we have made to 

practice, however, this is not the case and these date). The first twenty images all have probabili- 

quantities have to be replaced by their best availa- ties > 0.75, indicating a high level of mutual 

ble estimates. Nevertheless, when n B 2 and M consistency. There is a certain latitude in imposing 

B 30, the limited variability of these quantities 
will not significantly affect the null distribution of 

test statistics defined by eqs. (5) and (8) so that 
the use of the Gaussian approximation is still 
justified. 

3. Experimental results 

A set of negatively stained capsomer images of 
Herpes Simplex Virus (HSV) [II] has been used to 
illustrate the application of our algorithm. The 

method was first applied to a set of 30 pre-aligned 
images, and the inconsistent data identified and 
rejected to form an optimally averaged image. 
This image was then used as a test object to 
further investigate the performance of the al- 
gorithm in the presence of various levels of Gaus- 
sian noise, and by otherwise simulating different 
types of artifacts. 

In each of these experiments, the images were 
ranked using both inclusive and exclusive versions 
of the OMO (Odd Men Out) algorithm. In all 
cases these produced identical results. The test for 
statistical consistency was performed using eq. (S), 
and evaluating its corresponding probability from 
the right tail of a standardized Gaussian distribu- 
tion. The estimates of the distribution’s second 
and fourth moments (a* and K) were computed 
only once from the full set of N images. 

3.1. Application to a set of experimental HSV 

capsomer images 
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Fig. 1. (a) Set of 30 experimental capsomer images of Herpes Simplex Virus Type II displayed in the order in which they were ranked 

by the OMO algorithm; (b) average image obtained by excluding the 6 last (ie. least consistent) images. 

an acceptability threshold (see section 4), but the 
last six images have probability values < 0.01 and 
thus appear to be anomalous. Accordingly these 
were rejected in forming the average image shown 
in fig. 1. Note that the presence of outlying data 
may also be inferred from the variance curve in 
fig. 2 which starts diverging near the cut-off point 
(n = 24 or 25). 

3.2. Comparison with identifying anomalous images 
as outliers in a two-factor plot obtained by corre- 
spondence analysis 

In principle, at least, a similar screening proce- 
dure could be carried out by assessing a two-fac- 
tor plot obtained by correspondence analysis of an 
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image set [13,14,16]. The expectation here would 
be that the consistent data should form a rela- 
tively compact cluster and the (randomly) anoma- 
lous images could be picked out as outliers. A 
two-dimensional plot is presented in fig. 3 that 
maps the same data set according to their two 
most prominent factors, which account for 9.0% 
and 6.7% of the total power respectively. The 
images furthest displaced from the bulk of the 
data set are Nos. 25, 23, 27, 28, 4, and 29. The 
identification of the first four as anomalous con- 
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Fig. 2. Computed probability values and normalized variance 
estimates obtained at successive iterations of the OMO al- 

eorithm (n = 30.. .1 j for the HSV caosomer imaees in fie. 1. 

Fig. 3. Factorial map of the HSV capsomer images (fig. 1) 
according to their two most significant factors obtained using 

I Y v correspondence analysis. 
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1 .oo curs with the outcome of the OMO algorithm, but 
the other two do not. Moreover, images 14 and 24 

which were rejected by OMO are not differentia- 
ble from the main cluster in fig. 3. Thus we 
conclude that while grossly inconsistent images 
may be discriminated in a 2-factor plot, this ap- 
proach is less reliable than the OMO algorithm, 
most likely because it is based on only a minor 
fraction of the information (i.e. a fraction of the 
total image power). 

3.3. Anulysis of test images affected by simulated 

noise 

To explore the functioning of the algorithm in 
terms of a fully defined model system, we used as 
reference image the averaged HSV capsomer pro- 
duced in the previous analysis and contaminated 
it with several kinds of simulated noise. 

1’::::::::::::::L I 
0.00 -! 

0 5 IO 15 20 

Sorted images 

Fig. 5. Computed probability values and normalized variance 

estimates obtained at successive iterations of the OMO al- 

gorithm (n = 20, ,l) for a set of 20 generated HSV capsomer 

images contaminated with Gaussian white noise at a signal-to- 

noise ratio of 1. 

(a) Increasing levels of Gaussian noise. A set of 
images degraded by the addition of increasing 
levels of random Gaussian noise was generated. 
These corresponded to signal-to-noise ratios in the 

range of 4.0 to 0.1. The algorithm was able to rank 
these images correctly as shown in fig. 4. For 
comparison, we estimate the signal-to-noise ratio 
of HSV capsomer images to be about 0.8 to 1.0. 

tively, in remarkably good agreement with the 
expected numbers (10, 5, 2, 1 out of 20, respec- 
tively). 

3.4. Detection of particles with adsorbed contami- 

nants 

(b) Images with uniform signal-to-noise ratios. 

To examine the behavior of the algorithm when 
confronted with a set of mutually consistent images 
with the same noise level, 20 images were gener- 
ated each based on the average HSV capsomer 
contaminated with random Gaussian noise at a 
S/N of 1.0. The algorithm output is shown in fig. 
5. The imposition of probability thresholds for 
rejection at P-values of 0.5, 0.25, 0.01 and 0.05 
leads to omission of 10, 6, 2 and 1 images, respec- 

One situation in which anomalous images might 
arise that is relatively easy to simulate computa- 

tionally is in the presence of additional stain-ex- 
cluding features on some particles. These might 
occur as a result of fortuitous binding of some 
other protein(s), or through co-adsorption to the 
electron microscope grid. To model such an event, 
we added a feature to the capsomer image that 
was ranked 11th out of 20 in the previous experi- 
ment (in order to start with a typical rather than 
an exceptionally good or bad image). This feature 
was in each case located in the same part of the 

Fig. 4. HSV capsomer image overlaid with various amounts of computer-generated Gaussian additive white noise displayed in the 

order in which they were ranked by the OMO algorithm. The corresponding signal-to-noise ratios are 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.25, 
1.0, 0.9, 0.8. 0.7, 0.6. 0.5, 0.4, 0.3. 0.2 and 0.1. 
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image, but its size was increased systematically. 
The initial image was the same as used in the 
experiment of section 3.3 (b). Upon inclusion of 
an additional stain-excluding spot of 1 pixel radius 
(covering 5 pixels, and corresponding to a diame- 
ter of 0.7 nm at the specimen), this image moved 
from 11th to 18th of 20 in the ordered list, but it 
would not yet be clearly anomalous (P = 0.183). 
Increasing its diameter to 1.0 nm (covering 9 
pixels) reduced its ranking to 20th (P = 0.028) 
and a further increase to 1.3 nm reduced the 
P-value to 0.004. The latter two cases would be 
rejected at an acceptability threshold of 0.05. The 
capacity of the algorithm to pick out images of 
particles impaired by adsorbed contaminants will, 

in general, depend on such factors as the S/N 
ratio of a particular image. the shape and staining 
characteristics of the particle, and the location of 
the contaminant, so that it is not possible to give a 
general prescription for detectability by this pro- 
cedure. Nevertheless this experiment does show 
that the OMO algorithm provides an effective tool 
for this purpose. 

3.5. Detection of misalignment of images 

Another potential source of anomalous images 
lies in the eventuality that the correlation align- 
ment procedures may fail in some cases to achieve 
sufficiently precise registration. We have ex- 
amined the sensitivity of the algorithm to sys- 
tematic translational and rotational offsets of the 
same image analyzed in the previous section. For 
a lateral translation of 0.3 nm (1 pixel), the image 
moved from 11th to last in ranking and its P-value 

was reduced from 0.45 to 0.084; an offset of 0.6 
nm further reduced this value to =C 10p4. We 
conclude that, for statistically similar data, trans- 
lational offsets of 0.5 nm or worse would be 
readily detected by the algorithm. When the image 
was rotated by 5” it moved from 11 th to last in 
ranking and a P-value of 0.033, and 6” further 
reduced this to 0.006. We conclude that in images 
of this type, errors in rotational registration of 
more than 5” would readily be detected by the 
algorithm. However, the HSV capsomer possesses 
a high degree of azimuthal symmetry making these 
images relatively insensitive to rotational misalign- 

ments. With non-annular, and in particular, with 
elongated particles, a much lower level of rota- 
tional offset should be detected by the algorithm. 

4. Discussion 

The algorithm presented here is optimal for 
screening images affected by stationary white 
Gaussian noise. In practice the noise content of 
experimental micrographs can originate from 

several different sources (cf. section 1) which 
cumulatively are unlikely to conform precisely to 
any idealized statistical distribution. However, this 
consideration should usually not present an ob- 
stacle to its applicability. First, the ranking is 
entirely based on the notion of inter-image prox- 
imity and therefore should still be useful in any 
situation where it is valid to express similarity 
between images in terms of the Euclidean distance 
between them. Second, it has been shown in sec- 

tion 2.2 that testing for consistency is still possible 
for non-Gaussian data provided that the test sta- 
tistic is suitably normalized using the fourth mo- 
ment of the noise distribution. It is only when the 
hypothesis of independent and identically dis- 
tributed noise is dubious that the probabilistic 
estimates assigned to the images should be inter- 
preted in relative rather than absolute terms. 

Selection of an appropriate probability 
threshold for acceptance in the ordered list of 
images depends on striking a judicious comprom- 
ise between (a) omitting an excessive number of 
good images, and (b) including an excessive num- 
ber of sub-standard images. With statistically ho- 
mogeneous data, the P-value of an imposed accep- 
tability threshold determines the probability of 
erroneously rejecting an acceptable image. The 
probability of failing to reject an anomalous image 
is a less well defined proposition. In practice, we 
advocate some experimentation in the range of 
0.01 > T> 0.005. It is to be expected that the 
P-value distribution will fall off rather sharply in 

this mid-range, and this has indeed been the case 
for the data sets that we have analyzed so far. 
Accordingly, the end-point average image should 
be rather stable against the inclusion or exclusion 
of the few marginal images. 
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In the illustrative example given of a set of 30 
HSV capsomer images (section 3.1) the algorithm 
judged that 20% should be omitted (see figs. 1 and 
2). The numbers of images involved in this case 

are so small that omission of the anomalous images 
did not, in fact, significantly affect the interpreta- 
ble features of the resulting average image (cf. fig. 

3 of ref. [II]). When applied to larger data sets, 
however, it is to be expected that elimination of a 
substantial fraction of anomalous images should 

result in improved statistical definition of the (rel- 
atively noise-sensitive) higher spatial frequencies 
and thus improve the resolution of the asymptoti- 
cally averaged image. 

It should be noted that, because the algorithm 
is based on a criterion of mutual consistency, it is 
essential that the initial data set should contain at 
least a substantial minority of “good” images, in 
order to ensure stable convergence towards this 

subset. Moreover, the remainder should be ran- 
domly anomalous, i.e. there should be only one 
coherent subset of images. Thus, it may be useful 
to first test for the presence of multiple classes by 
using cluster analysis or other classification meth- 
ods [14] in a factorial map computed by corre- 
spondence analysis [13,16] or some other multi- 
variate statistical mapping technique [15]. How- 
ever. as shown above (section 3.2). the present 
algorithm provides a more rigorous test for sus- 
pected anomaly than picking outliers from a two- 
dimensional factorial map. Accordingly. the al- 
gorithm should be applied to sets of images that 
include all possible candidates for membership of 
specified clusters. 

An immediate extension of the algorithm, which 
might be useful in the presence of large propor- 
tions of inconsistent data, is to compute the test 
statistic z (e.g. (8)) based on current variance 
update until some cut-off point is reached. The 
cut-off point, however, should be chosen relatively 
high (typically z > 5) to prevent this quantity from 
becoming too small (due to the variance decreas- 
ing property of the algorithm (A.3) and thus to 
underestimate the true value of u2. 

5. Conclusion 

A new algorithm (OMO) is presented which 
ensures the formation of optimal average images 
from a set of pre-aligned noisy images of ostensi- 
bly identical objects. It operates by eliminating 
those members of the image set that are anoma- 
lous and whose inclusion would degrade the aver- 
age image. The elimination criteria are objective, 
stable, and quantitative, having a rigorous statis- 
tical basis. 
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Appendix. A maximum-likelihood data ordering 
principle 

This appendix presents the mathematical prin- 
ciples on which the OMO algorithm is based. The 
first section introduces a general maximum-likeli- 
hood-based criterion for the detection of an incon- 

sistent observation. General properties related to 
the iterative application of this principle are dis- 
cussed in section A.2. These results are applied in 
section A.3 to the case of additive stationary white 
Gaussian noise, leading to the form of the OMO 
algorithm presented in the paper. Finally. several 
procedures are described which minimize the com- 
putation time. 

A. 1. General principle 

Let us consider n independent observations of 
a multivariate random variable xi,. . . , X, (e.g. X, 
would be the ith image) where all observations 
except one are known to be drawn from a popula- 
tion that is distributed according to a parametric 
probability density function p( x 1 fl) in which case 
this particular point is referred to as extraneous. 
The problem is to define a procedure that selects 
n - 1 points so as to isolate the point that is most 
likely to be extraneous. 
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If the distribution parameter B were known, the 
usual statistical approach would be to exclude the 
least likely observation or, equivalently, to choose 
the set of (n - 1) points with maximum likelihood 
(or probability) relative to the basic probability 
density function p(x ) B). However, this strategy is 
not directly applicable because 8 is unknown and 
has to estimated. An intuitively appealing ap- 
proach is to incorporate the estimation of B in the 
maximization process, so that a new rule may be 
formally expressed as: 

Remove x,: 

(A.11 

This means that we will consider all n possible 
sets of (n - 1) vectors and, for each of them, 
evaluate the parameter value that maximizes their 
joint probability density function. The set of points 
with overall maximum probability then de- 

termines, by elimination, the observation to be 
removed. This approach therefore selects the (n - 
1) observations with maximum possible likeli- 
hood, which are those that can be the “best ex- 
plained” by the probability model p( x ] 8). In a 
later step, the estimated value p(x, 10, _ , j, where 

8 n_l = enp,(x, ,..., x,_~, xrtl ,..., xn) is defined 
by the left side of eq. (A.l), may be used to test 
the hypothesis that x, is drawn from the same 
population as the other observations. Note that 
the parameter value that maximizes the joint prob- 
ability density function of a given set of points 
defines the maximum likelihood estimate of 8. 
This general estimation principle is commonly used 
in statistics because of its interesting properties 
and mathematical tractability [7]. 

A.2 Iterative ordering and properties 

With an initial set of N observations, the maxi- 
mum likelihood data selection procedure may be 
applied iteratively, and will produce an ordered 
list of vectors that we label as x(i). . . xcNj (xcNl is 
the observation removed at iteration step No. 1 
using O,+, and so forth.. . ). We employ the fol- 

lowing notation for the log-likelihood function: 

(A.2) 

and define 0, = 8,(x(,,, . . , xc,)) as the maximum 
likelihood estimate of 0 given x(i), . . , xc,): 

+(,,,..., -+,pJ = me”” { +c,,,. .., xc,,le)}9 

n=l ,...,N. (A.3) 

An immediate consequence of the maximum like- 
lihood property of the estimators 0, (i = 1,. . , N) 
is that: 

L(x (1,~...7~cm,~em)2~(~~I),...,~~,)le,), 

m, n=l,..., N, (A.41 

which also implies that 

L(X (n+l)7”‘, -+,leJ 2 ~(++i)~.~.~ kpzn), 

m>n=l,...,N, (A.51 

indicating that the estimated likelihood of the 

points that are removed between two stages m and 
n of the algorithm can only decrease. Using eq. 
(A.l), it is possible to show that the average 
likelihood of the samples that are considered by 
the algorithm can only increase as the algorithm 
proceeds: 

L(x(*,~...+7, J%)/n 2 L(+,,, . 1 +$L)h 

mzn=l,...,N. (A.6) 

Despite there being no guarantee that the al- 
gorithm is absolutely optimum, that is, for any n, 
the quantity defined by eq. (A.2) is the maximum 
likelihood that can be obtained from any combi- 
nation of n points in N, eqs. (AS) and (A.6) show 
a generally favorable tendency. There is a rein- 
forcement effect in that the current estimate of the 
average likelihood of the remaining points in- 
creases, whereas the likelihood of the observations 
that have already been removed decreases mono- 
tonically. 

Note that these properties are also valid for an 
inclusive maximum likelihood parameter estima- 
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tion where the quantities defined in eq. (A.l) 
would be computed on the basis of a unique 
parameter estimate 0,‘(x,r,, . , xc,,)). In such a 
case, however, the estimated likelihoods would 

always be smaller than - or at best equal to - 
their corresponding values obtained by exclusive 
estimation. 

A.3. Application to independent Guussian random 

uuriuhles 

If we now consider p( x ) 8) as being an M-di- 
mensional multivariate Gaussian density function 
with parameters p (mean vector) and a diagonal 
covariance matrix, given by u2 times the identity 
matrix I: p( x 18) - N(p, a21 ), the maximum 
likelihood procedure discussed here is equivalent 
to the geometrical algorithm described in section 
2. This model in which the M components of the 
random vector x are statistically independent and 
identically distributed about the mean vector I_L is 
representative of a situation in which the measure- 
ments (images) are corrupted by additive sta- 
tionary white Gaussian noise with variance 0’. 

The derivation of the optimal ordering proce- 
dure for the Gaussian model is based on the 
following results on maximum likelihood parame- 
ter estimation for this particular case. These for- 
mulae may be established by setting the partial 
derivatives of the log-likelihood function with re- 

spect to the distribution parameters to zero and 
solving these equations for ~1 and u2. 
- In the case of an unknown mean vector and a 
known variance, the maximum likelihood estima- 
tion of the mean, given n independent observa- 

tions x,, . . . , x,, is the sample mean defined by eq. 
(4), and corresponds to the maximum log-likeli- 
hood function: 

max{ L(x,,..., xn; cl)} 

=L( xi,...,x,; m,) 

= -& g jj~,--~jj~- Flog{27;0). (A.7) 
r-l 

where 1) x, - m,, )I ’ is the squared Euclidian dis- 
tance between M-dimensional vectors x, and m,,. 
- In the case of unknown mean and variance, the 
maximum likelihood estimate of the mean is still 

given by eq. (4) and the maximum likelihood 
estimate of the variance is: 

(A.8) 

and corresponds to the maximum log-likelihood 
function: 

max{ L(x,,.... x,,; p, 0)) 

=L( X1,...,-Tn; m,, sn) 

= -n( M log{2rs,} -t 1)/2. (A.91 

For both cases (known and unknown variance), it 
is then straightforward to show, by substitution of 
the maximized Gaussian likelihood functions in 
eq. (A.l), that the proposed maximum likelihood 
procedure is equivalent to the geometrical rule (1) 
based on an exclusive estimation of the mean. For 
this particular set of equations, the meaning of 
properties (AS) and (A.6) is the following. At any 
step of iteration, the observations that have al- 
ready been eliminated by the algorithm tend to be 
located further and further from the current mean 
estimate while the variance of the remaining points 
decreases with n. 

Note that these results are also indirectly appli- 
cable in the case of independent Poisson noise, 
using the non-linear transformation 4‘ = (x + 
1/4)“2 which converts a Poisson variable x with 
parameter p to a random variable y whose distri- 
bution is approximately Gaussian with mean fi 
and variance l/4, provided that p is not too small 
(typically greater than 4). 

A. 4. Efficient implementation of the OMO al- 

gorithm 

Within each iteration of the algorithm, the 
computation of the exclusive variance and mean 
estimates in eqs. (1) and (2) may be simplified by 
using the following expressions: 

m n-l.h= nmfl ( - x,>/(n - 11, (A.10) 

E llx,-m.-l,AI12 
1=l 
r#k 

= i llx,/12 -llxkl12-(~-l)llm.-,,~l12~ 
i i r=l 

(A.ll) 
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where m, is the inclusive mean estimate based on 
n data points. Thus, provided that the 1) X, 11 “s 
have been evaluated in advance and that all sums 
are updated recursively, the exclusive and inclu- 
sive versions of the algorithm can be implemented 
with approximately the same number of oper- 
ations. For an exclusive mean estimation, the 
number of operations required for an iteration is 
now proportional to nM and not n2M as it would 
be if the means and the variances were computed 
using eqs. (2) and (1) respectively. Following the 
same principle, the sample mean may be updated 
recursively as the algorithm proceeds, 

m,, = [(n + I)m,+, -x(,+1,]/? 

n=N-1 3..., 1 (A.12) 

Starting with mean mN computed from all data 
points, this allows an overall saving of a factor 
N/2 over a direct evaluation using eq. (4). In this 
last expression, xc,+,) represents the data point 
that has been removed at iteration step (n + 1). 
Note that these computational simplifications are 
applicable independently of the system of axes in 
which the data points are represented. 
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