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Abstract. In many image processing applications, the discrete values of an image can be embedded in a continuous function. 
This type of representation can be useful for interpolation, geometrica! transformations or special features extraction. Given 
a rectangular M x N discrete image (or sub-image), it is shown how to compute a continuous polynomial function that 
guarantees an exact fit at the considered pixei locations. The polynomials coefficients can be expressed as a linear one-to-one 
separable transform of the pixels. The transform matrices can be computed using a fast recursive algorithm which enables 
efficient inversion of a Vandermonde matrix. It is also shown that the least square polynomial approximation with M' x N'  
coefficients, in the separable formulation, involves the inversion of two M' x M' and N' x N'  Hankel matrices. 

Zu~mmenf~ung. In mehreren Anwendungen der Bildverarbeitung krnnen digitale Bildgrauwerten als Teile ununter- 
brochenen Funktionen behandelt werden. Diese Darstellung gilt auch fiir Interpolation, geometrische Transformationen oder 
Ermittlung yon speziellen Formen. In diesem Artikei handelt es sich um die Verrechnung einer ununterbrochenen Polynom 
Funktion Ffir ein gegebenes rechteckiges digitales Biid, die eine genaue Interpolation in bestimmten Punkten ermfglicht. Die 
Polynomial Koeffizienten k~innen mit einer iinearen trennbaren Punkttransformation ermittelt werden. Die Transformation- 
matrizen sind mit einem schnellen rekursiven AIgorithmus erreichbar, mit dem eine Vandermondematrize einfach umgekehrt 
wird. Es wird auch gezeigt, dass die polynomiale Approximation der kleinsten Quadraten mit M' x N' Koeflizienten, im 
Fall eines rechtwinkligen Bild, zwei M'  x M' and N' x N'  Hankel Matrizen Umkehrungen ernrtigt. 

R ~ m r .  Dans beaucoup d'applications du traitement des images, on peut considrrer les valeurs discrrtes d'une image 
numrrique comme faisant pattie d'une fonction continue. Ce type de reprrsentation peut 8tre utile pour l'interpolation, pour 
effectuer des transformations gromrtriques ou extraire des proprirtrs locales. I~tant donnre une image (ou sous-image) 
rectangulaire de dimension M x N donnre sous forme numrrique, on montre comment on peut trouver un polynSme 
garantissant une interpolation exacte des points de l'image. Les coefficients du polynrme sont obtenus au moyen d'une 
transformation linraire bijective srparable des points de l'image. Les matrices de cette transformation peuvent ~tre calculres 
en utiisant un algorithme rrcursif rapide qui permet rinversion efficace des matrices de Vandermonde. Dans un deuxirme 
temps, on expose comment trouver la meilleure approximation polynSmiale au sens des moindres carrrs avec M ' x  N' 
coefficients darts le cas d'une image rectangulaire, ce qui permet une formulation srparable du problrme. Le rrsuitat comprend 
notamment l'inversion de deux matrices carrres de Hankel de rang respectivement M' et N'. 

Keywords. Interpolation, inversion, least square approximation, polynomial approximation, separability, Vandermonde 
matrix. 

1. Introduction 

In the great majority of picture processing appli- 
cations nowadays, the original picture to be 
manipulated is represented by a set of discrete 

values with the sample points uniformly spaced.' 
It is customary to represent the scene as a function 
g(k, l) defined on the nodes of a square lattice. 
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This consensus in favor of 'digitizing' pictures has 
come about because of the power of the digital 
computer. The complicated algorithms it can 
execute are impractical or impossible with typical 
analog imaging devices, say a video chain. In 
recent years, a wide variety of filter procedure have 
been developed for performing numerical manipu- 
lations on pictures. Such procedures have been 
suggested for picture interpolation, smoothing, 
compression, enhancement, texture simulation, 
contour and feature detection. A picture filter may 
be regarded as a transformation from one picture 
to another. In the great majority of these transfor- 
mations, the numerical procedure is the digital 
analog of an operation on a continuous function 
that the quantized sample points are intended to 
approximate. 

It has been pointed out, already in 1958, by 
Schreiber et al. [5] and most recently by Kocher 
[4] or Haralick [2, 3] that the discrete values can 
be embedded in a continuous function g(x,y) 
defined on the unit square surrounding every pixel. 
Such operations as interpolation, projection, and 
aitine transformation take on a consistent interpre- 
tation and the numerical computations entailed by 
an operation may be simplified. A local continuous 
image representation may also be used to extract 
edges or local texture properties. 

In general, very little can be said about the nature 
of the continuous function g(x, y). If the original 
object is something like a photograph or X-ray 
image; that is derived from an optical system, we 
can only specify that the function is bounded and 
nonnegative. Nonetheless, because the picture and 
its transforms are intended to be looked at by a 
human observer, the picture can be considered as 
having been bandpass filtered, with no information 
loss experienced so far as the observer is concerned, 
as long as the observer does not approach the 
image too closely. 

Thus, we explicitly assume that the information 
in the picture is bounded by certain psychological 
properties of the human observer. It should be 
recalled that visual discrimination falls off rapidly 
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for linear dimensional frequencies above about ten 
cycles per degree of visual angle. Accoringly, it is 
safe to assume g(x,y) is continuous elsewhere 
(within the unit square). We are guaranteed by 
Weierstrass' theorem to find a uniform approxima- 
tion by polynomials. An even stronger condition 
can be assumed: that g(x, y) is analytic in the 
interval of interest. In this case, we can approxi- 
mate as closely as we please with a power series 
(see, for example, [1]). 

We shall show that bidimensional polynomial 
coefficients allow an exact representation (Section 
3) or an approximation (Section 5) to a rectangular 
array. We shall show that, by considering rec- 
tangular regions, it is possible to use Separability 
of the polynomial representation to reduce compu- 
tation in both interpolation and least square 
approximation. 

A polynomial representation has, at the least, 
the following advantages: 

(1) The correspondence between array values 
and the polynomial coefficients allows the discrete 
set of values to be described by an analytical con- 
tinuous function. Further, this function has a very 
simple expression. Therefore, operations such as 
affine transformations can easily be defined and 
computation can be simplified. The polynomial 
form is also much better adapted to perform mathe- 
matical operations such as derivation, integration, 
or gradient evaluation than are more elaborate 
analytic forms, let alone computing discrete 
approximations to these intrinsically continuous 
mathematical constructs. 

(2) Polynomials fit the geometrical forms of 
images harmoniously. Slowly varying surfaces in 
images are well represented by polynomials. The 
subjective quality of polynomials is pleasant to the 
human eye. More particularly, one avoids the 
oscillatory effects that are so frequently present in 
Fourier representations or any other periodic func- 
tion transforms. In these instances, the investigator 
may be obliged to use a very large set of coefficients 
to eliminate the oscillatory artefact in the trans- 
formed picture. 

Signal Processing 
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2. One-dimensional interpolation theorem 

The interpolation theorem in one dimension 
establishes that given N distinct points ki (i = 
1, 2 , . . . ,  N and k~ ~ kj), there is a unique poly- 
nomial 

N 

p ( x ) =  ~ a~x'-' (1) 
i = l  

satisfying the N equations 

N 

g(kj)  = E a,kj -~ (2) 
i = 1  

with j =  1 , 2 , . . . ,  N. 
Let us define g = [ g (k0  .. • g(N)] T as the vector 

of  the function values at the N points of  interest 
and a = [al . . .  aN] r the vector of the polynomial 
coefficient values. Using this formulation, the sys- 
tem of equations characterized by equation (2) can 
be rewritten as 

g =  V ( k l , . . . ,  kN) • a, (3) 

where V is the N x N matrix defined by 

1 V(k l  . . . .  , kN) = 
1 kN k 2 " ' "  k ~ - l J  

(4) 
We will refer to a matrix of  this form as the Vander- 
monde matrix and designate it by V. The poly- 
nomial coefficient vector a may be computed from 
g by inverting the matrix V, 

a =  V ( k , , . . . ,  k N )  -~ . g. (5) 

Equation (4) or (5) defines a one-to-one linear 
mapping between the space of function values and 
the space of  polynomial coefficients. The evalu- 
ation of  the polynomial coefficients can simply be 
performed by applying a linear transform defined 
by the matrix V -~ to the vector of  function values g. 

3. Two-dimensional interpolation-conditions 
for separability 

In two dimensions, it is in general not true that, 
given P distinct points, there will be a linear com- 
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bination of  P polynomial terms of the form xiy j 
that can take on the P preassigned values g(k, ,  lj). 
However, in picture processing, the number of 
points and their locations in the picture are almost 
always under the control of the experimentor. In 
particular, arbitrary values may be chosen for the 
highest power of x (say M - 1 )  and the highest 
power of  y (say N -  1) and we define two sets of 
abscissas k, and ordinates lj, respectively: 

horizontal: K ={k~, k2 , . . .  , k~}, 
(6) 

vertical: L = { I~, 12 , . . . ,  IN}. 

As in the one-dimensional case, it will be shown 
that given M x N distinct points defined by K * L 
(ki ~ kj and l; ~/ j ;  the symbol "*"  represents the 

cartesian product of two sets), there is a unique 
bidimensional polynomial 

M N 
P(x,  y)  = ~ E ai, j x i - ly  j-l,  (7) 

i = l j = l  

satisfying the M x N equations 

M N 

g(k,  I) = ~ ~. a~.jk'-~l j-~ 
i = 1  j = l  

with (k, l) e K * L. (8) 

Of particular interest is the fact that the trans- 
form matrix for the family is separable. Separabil- 
ity very substantially decreases the number of  com- 
putations needed to solve for the polynomial 
coefficients. In order to prove separability, we 
introduce the following matrix notation: 

[ g ( k b l l )  g(kl , /2)  " ' "  g(k~ , lN)  1 
G =  g(k2,1~) g(k2.,12) ' ' '  g(k2.,IN) 

g(kM, ll) g(k~,12)  "--  g(kM, IN)J 
(9) 

is the M × N matrix of  the grey values of the pixels 
defined by K * L and 

I a i , l  a l , 2  • . . al, N] 

kaM,1 aM,2 " " " aM, N_I 
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is the M x N matrix of the bidimensional poly- 
nomial coefficients. To ensure separability, we need 
to show that the M x N coefficients are given by 
equation (8). It can be written as the following 
matrix equation: 

G = Bk" A .  BT. (11 )  

N 

Iv, l :  11 (i,-/j). (16) 
j=l,i>j 

Clearly, these quantities are nonzero when ki ~ k s 
and ii ~ 1 s, Vi, j which is sufficient to prove that the 
inverse of each matrix Vk or Vt exists and that the 
solution for A is unique (interpolation theorem). 

The M x M transformation matrix Bk operates on 
the rows while the N x N transformation matrix 
Bj operates on the columns. The explicit form of 
the equation satisfying the required condition is 

• " • g ( k l , / N ) ]  
[ g ( k l ,  ll) g(k2,g(kl' 12) ' • • g(k2.,. IN) / 

I 
g (k ! ,  ll) 12) 

Lg(k~4,11) g(kM, 12) " ' "  g(kM, IN)J 

i k, k 2 = k2 k2 2 

kM k 2 

• . .  k~-'] 

• . .  k ~ - l J  

V a 1 , 1  a l , 2  • . . a l ,N]  

io , I 
k aM,1 aM,2 " " " aM, N.] 

[ 1 1 " ' ' 1 ]  

• ll 12 • • • l ~  
• . o 

ll~-I l i - I  . . .  ,~-1 

(12) 

Using the notation introduced in the previous sec- 
tion, equation (12) can be rewritten as 

G = V ( k , , . . . ,  kM)" A .  V ( l l , . . .  , lN) T, (13) 

so that 

A =  V ( k l ,  . . . ,  kM) -l  " G .  (V(ll . . . .  , IN)T) -1. 
(14) 

The matrices Vk= V ( k l , . . . , k M )  and V~ = 
V( i l , . . . ,  IN) are in the Vandermonde form; that 
is, the determinants [Vkl and Iv, I are simply 

M 

Ivkl= 11 (k,-ks), (15) 
j = l , i > j  

4.  A f a s t  a l g o r i t h m  f o r  e v a l u a t i n g  the  t r a n s f o r m  

m a t r i x  c o e f f i c i e n t s  

The polynomial coefficients may be obtained 
from the picture array G by applying a separable 
linear transform defined by equation (14). The 
computation of the transform coefficients requires 
the inversion of the two Vandermonde matrices Irk 
and V~. Such an inversion can be obtained as shown 
in [6], using the Gaussian elimination method. It 
will be shown next that the inverse of these matrices 
can be computed recursively in a much faster way. 

The proposed algorithm takes into account the 
particular structure of these matrices and will pro- 
duce the inverse of all lower order Vandermonde 
matrices as a byproduct. 

4.1. Order recursion for  fas t  Vandermonde 
matrix inversion 

We shall consider the following Vandermonde 
matrix V: 

V = V(Xl, . . . ,  xN) 

[ 1 xl Xl 

= . (17) 
1 xN x~ . . .  x ~ - ' ]  

The determinant of V is given by 

N 

Ivl  = II  ( x , - x j ) .  (18) 
j = l . i > j  

Let us call U. the inverse of the submatrix V, = 
V ( X l , . . . ,  x . )  with n ~< N. We also define a~j to 
be the elements of a matrix A. 

By using Lagrange's interpolation formula, one 
can find (see Aooendix A) the exoression for U,. 
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The elements u~] ) are given by 

U(i,~) = .~(n)l ,,,(n) 'e,i , " i  , (19) 

where ~0~ ) and al  ") are expressed by the following 
recursive relations. 

Recursion starts with 

~o~,~ = 1, 
(20) 

Of~ l)  = 1 .  

al ") can be computed using the simple recursive 
relation 

the direct (or Kronecker) product 

v .  = Vr ® (V')  ~ 

v , , (k , , I , )  v,,(k~,12) ' ' '  
v,,(k2, l,) Vr,(k2, 12) " ' "  

Otln)=log{n-l)(xi--Xn) i f n #  i, 
(otl n-l) if n = i. (21) 

To evaluate ~o~. ) we use the following recursive 
equations: 

I , ^ ( n ) -  , ~ .  , ~ ( n - - l )  
wi,1 - ",~%1 (j  = 1), 
~d,; ) -  .~(.-,) . . . ~ ( . - ,  

- -  "~ i , j --1 - -"~ 'nhvi . j  (22) 
( j - - 2 , . . . ,  n - l ) ,  

. . ( . - , ) _ ,  
- ~-t . - ,  - • (j = n), 

I ~o(,"1 ) ( j  = 1), I Xl ~ ~ 1 ) 
~(n)  ~ ( n - 1 )  - -  

w.,j ~',o-, Xlq~{."71) (23) 
( j = 2 , . . . ,  n - l ) ,  

/ _(n) . ~ , . , .  1 (j  = n). 

The inverse of matrix V is obtained by evaluat- 
ing expression (19) for n = N. 

4.2. Convolutional formulation 

We have shown in Section 3 that the polynomial 
coefficients can be computed from a separable 
linear tranform given by equation (14). The 
expression for a given coefficient a,s as a function 
of  the input picture array is 

a,~ = Vrr • G" v',  (24) 

where the vector v, is formed from the M elements 
of row r of  matrix Vk~(k~, k 2 , . . . ,  kin) and v' is 
formed from the N elements of row s of matrix 
V-[~( l l , /2 , . . . , IN) .  The separable mask corre- 
sponding to this coefficient can be formed from 
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v,s(kM, l,) v,~(kM, lz) 

v~( kl , IN) ] 
yr,(k!, IN) ]. 

• . .  v . ( k M ,  I , , ) J  

(25) 

Using this notation, the coefficients a,s are 
obtained from the summation of all the term by 
term products between the bidimensional mask V,, 
and the array G: 

M N 

a,s = ~. ~, g(k~, lj)v,s(kl, lj). (26) 
i=1  j ~ l  

5. Least square approximation 

In the foregoing sections, we have derived poly- 
nomial expressions that fit exactly with some set 
of M x N grey level values assigned to M x N 
coordinate locations in a picture. More commonly, 
those involved in picture processing will be inter- 
ested in determining a polynomial which is a best 
approximation in the least square sense to the 
complete set of picture point grey level values. We 
show below how the same set of bidimensional 
polynomial expressions can serve this purpose. As 
before, the separability of the dimensions sim- 
plifies computation• 

5.1. Separable least square approximation 

Let K = {kl, k 2 , . . . ,  kM} and L = {i1,/z, • • . ,  l~v} 
define a set of coordinate points K * L  on which 
the grey level values are to be approximated by a 
p x q  polynomial with p = M ' - I ~ < M  and q =  
N ' -  1 ~< N. Let G denote the picture array of the 
estimated values: 

C,= V' (k l ,  k 2 , . . . ,  kM) 

• A' .  V'(l~, 12 . . . .  , I N ) T •  (27) 
Vol. 10, No. 4, June 1986 
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The matrix V'(k~, k 2 , . . . ,  kM) (respectively 

V ' ( l l , / 2 , . . . , l N ) )  is of  dimension M x M '  (re- 
spectively N x N')  and is obtained in taking 
the first M '  (respectively N')  columns of 

V( k~, k2,. . . , kM) (respectively V'(/1,/2,- - - , /N)) ;  
A' is the M'  x N '  matrix of  polynomial coefficients. 
The estimation error is given by 

G - C , =  G -  V' (k , ,  k2,. .. , k~ )  

• A ' .  V ' ( I , ,  1 2 , . . . ,  IN) T. ( 2 8 )  

The optimal set of coefficients A' that minimizes 
the square mean error is given by (see Appendix B) 

A '=  (V~, T. V~,)-'. V~, T. G .  V[. (V[ T. V[)- ' .  

(29) 

The matrices that appear on the left- and right- 
hand sides can be seen as pseudo-inverses. If we 
define 

V ~ = ( V g .  V~)- ' .  Vg  

and 

vt = (v~  ~ .  v~)- '  • v g ,  

then equation (29) can be rewritten in a similar 
form to equation (14) of Section 3: 

A' = Vk" 17,. ( V  t) r. (30) 

Remark: The separable approach to solve the 
least square approximation problems can be gen- 
eralized to any linear transformation. 

5.2. Properties 

- If M '  = M and N '  = N, the V~, and V[ are square 
matrices and equation (30) simply becomes the 
interpolation formula for separable expressions, 

i.e., 

A :  V ~  - 1 "  G "  ( v ~ T )  - 1 .  (31) 

- In the case of  least square approximation by 
polynomials, the matrices V~, T. V~, and V~ "r. V~ 
are Hankel matrices of  the general form 

~'i ~'2 • • • ~i.+ (32) • . * 

i /"i+1 " " " b '2i . ]  
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This matrix is completely specified by 2 i+1  
independefit terms. Let us define the two products 

of matrices respectively by Hk and Hr. In the case 
of Hk, its elements are equal to 

M 

~'i = ~. kj. (33) 
j = l  

If p = M ' - I  is the highest power of k in the 
polynomial expression, i is at most equal to 2p. In 
the case of  Ht, the elements are computed in the 
same way with k replaced by l, M by N, M'  by 
N' ,  and p by q. 

Therefore, we see that when separability applies, 
the computation of the best least square approxi- 
mation is simply obtained by the inversion of two 
Hankel matrices of respective sizes M ' x  M'  and 
N '  x N '  and by four matrix multiplications (M'  = 
p + 1; N '  = q + 1). The five matrices involved in the 
multiplication are of sizes M ' x M ' ,  M ' x M ,  
M x N, N x N' ,  and N '  x N'.  If  separability is not 
used and if the same characteristic polynomial 
coefficients were selected to establish the approxi- 
mation, the computation would require the inver- 
sion of one symmetric matrix of size ( M ' N ' ) x  
( M ' N ' )  and two matrix-vector multiplications. The 
matrix-vector multiplications consists in a 
( M ' N ' )  x ( M N )  matrix with a MN-sized vector 
and in an ( M ' N ' )  x ( M ' N ' )  matrix with an M ' N '  

vector. As far as the approximation is elaborated 
on rectangular regions, separability provides a 
great gain in computation time. 

6 .  C o n c l u s i o n  

A method to obtain an exact or simplified least 
square representation of  an image by a set of 
polynomial coefficients has been presented. The 
coefficients are computed using a separable linear 
transformation. Fast algorithms have been derived 
for the computation of  the transform matrices in 
the case of  an exact fit or a least square approxima- 
tion. This technique may be seen as a particular 
case of  transform processing when using poly- 
nomial functions• Nevertheless, it has the advan- 
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tage to be directly related to a simple continuous 
image representation in terms of power series. This 
type of description may be useful in many image 
processing applications• It is, for example, 
especially suited to compute geometrical transfor- 
mations. 

We are continuing to study the potential of 
the polynomial representation in picture coding 
applications. We would also point out that local 
polynomial image representation appears to be 
particularly suited for feature extraction and may 
be adaptable to such operations as edge detection 
or the measurement and classification of texture 
properties. 

Appendix A. Inverse Vandermonde matrix 

We shall consider the following Vandermonde 
matrix V: 

V = V ( X l , . . . ,  xN) 

[i 2 X1 X 1 

X N X 2 • . .  x -lj 

(A.1) 

The determinant of V is given by 

N 

Ivl: H (x,-xj), (A.2) 
j =  l , i > j  

Let us call U the inverse of the matrix V. We also 
define a,,j to be the elements of a matrix A. 

Let us consider the interpolation polynomial 
PN-I(X) defined as 

N 
pN-~(x) = Y~ a~x j- l .  (A.3) 

j=l 

The elements of U, u~j, can easily be computed 
using Lagrange's interpolation formula: 

N 

pN-I(X) = E g(x,)s~ N-'), (A.4) 
i=1 

where g (x,) represent the values of the interpolated 
function at x = x ,  and S~N-1)(X) are polynomials 
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of order N -  1 of the form 

N x - ~ -  ~ 
s~N--1)  = 1~ p( . .N)yj- -1  - - , . ,  . .  • ( A . 5 )  

i=lj , , i  xi - xj j=l 

We shall associate a matrix C (N) to the elements 
c(N) q • 

The polynomials S~N-l)(X) have the following 
property: 

s~N-1)(Xj) = 8i.j = if i •j, (A.6) 

where 8~j is the Kronecker's symbol. 
Let a represent the vector of coefficients of the 

interpolating polynomial. Using equation (5), we 
have 

N 

aj = ~ uj,g(x,). (A.7) 
i = l  

Now introducing this expression in equation (A.3), 
and comparing it with relation (A.6), we have 

u i, = ~(N) (A.8) t . i , j  • 

Therefore, the elements of the inverse Vander- 
monde matrix are simply obtained by transposing 
the matrix C ~N). 

Let us now find the recursive relations which 
allow to calculate rqY) For this purpose, we define w I,J " 

the following ratios: 

c ( N ) _  ^ ( N ) / ^  ( N )  ij - ,ei ,  j / ~ i  , (A.9) 

where 
N 

a~/v)= I] (x , -xj ) .  (A.10) 
j = l , j ~ l  

This denominator is the same for each element of 
a given row of C ~N). It can recursively be com- 
puted using the following expression: 

alN)=~a~t~- t ) (x l - -XN) if N #  i, 
[ a l  N-l) if N =  i. (A.11) 

To find the expression of the numerator ~(N), one 
has to consider the two following cases. 

Case 1 (first N - 1  rows of CcN)). Using 
equation (A.5), we have 

y. ,p!~,~xj_ , ( x - x j )  ~,~ 
~J = ( x ~ - x ~ )  a ,  . j = l  j = l , j ~ i  
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Using (A.11) we obtain 
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N 

j = l  

= ~ (X--X~) ~"-D(X,  -- XN) 
j=~.j,, (X,-- Xj) 

~ - '  (x-x~) ~ " - ' ( x - x , , )  
= II (x,-x~) j ~ l , j # i  

N--1 

= ( x - x ~ )  E . (N- ,~j- ,  
j=t 

N - 1  

= H (x-xj)(x-xN) 
j = l , j # i  

(j = 1), 
(A.13) 

( j = 2 , . . . ,  N - - l ) ,  

( j  = N).  

N - - I  
. ~ ( N - l ) v j - l ¢ ~  ~ 

= E "/"i,j .a, ~-----'NJ. (A.12) 
j = l  

By comparing the terms corresponding to the same 
powers of x, the following recursix, e relations are 

obtained: 
( N ) _  v. ( N - l )  

^(N)_ ,^(N-D .,. ~^(N-D 
~id -- ~ U - 1  --~tq~d 

. ^ ( N )  _ . . ( N - - l ) _  | 
¥" i, N - -  ~ i~ N - 1  ~ ~t 

C a s e  2 (last line of C(N)). Using equation (A.5), 

we find that 

V i # N  

N 
^ ( N ) ~ j - - I  

~., W N,  j -~ 
j = l  

N - - 1  

= H (x-xj) 
j - - l  

N - 1  

= H (x-x~)(x-x,) 
j ~ l , j ~ i  

N - 1  
= ~ , . j  x j ( x - x , ) .  (A.14) (re-l) - i  

By comparing the terms corresponding to the same 
powers of x, the following recursive relations are 
deduced Vi=  1 , 2 , . . . ,  N - 1 .  

.^(N)_ x'^(N-1) 1 ; -  1), t y N ,  l - - - -  ittb,/,1 \ J - -  
. ^ ( N )  - -  . ^ ( N - l )  v . ~ ( N - - 1 )  WNO -- ~ iO- I  -- m'ei,  j (A.15) 

( j = 2 , 3  . . . . .  N - l ) ,  

~0~N.~ = 1 (j  = N). 
Signal Processing 

Appendix B. Bidimensional least square 
approximation 

Let the approximation of G with M ' x N '  

coefficients be given by 

¢~ = V~. A.  V~ T, (B.1) 

where Vk and V~ are M'  x M and N'  x N matrices 
respectively with M ' <  M and N ' <  N. We want 
to find the matrix A* that minimizes the square 

mean error of the approximation 

e ~-- I G -  t~l 2 = t r [ ( G -  ¢~)r. (G - ¢~)] 

M N 
= ~ y. [(&j_g~j)2]. (B.2) 

i = l j = l  

Minimization of this quantity is obtained when 

~ 2  =0. (a.3) 
OA A~A* 

TO compute the optimum A*, we establish here 
the following rules of gradient matrices: 

¢3 = ]l T (i) ~ [tr(B. A. C)] • C T, 

0 AT . (ii) ~ [ t r ( B .  C . A .  BT)] 

= 2 C ' A "  S T °  S .  

The gradient of e2 with respect to A can be written 
as 

0e 2 0 
0"-A" = 0-A ( t r [ ( G -  V~,. A.  v~T) T 

• ( G -  V~. A.  V~X)]) 

= ~ ( t r [ G  T. G -  V~. A r .  Vg 
OA 

• G - G  + . V ~ ' A ' V }  T 

+ v~. A +. Vg .  VL. A" V~+]). 

Recalling that, for any matrix A and B, 

(iii) tr[AB] --- tr [BA], 

(iv) tr[B] = tr[BT], 

(v) tr[A + a ]  = tr[A] +.tr[B], 

(B.4) 
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expression (B.4) can be manipulated as follows: References 

e2=tr[G T. G ] - 2 t r [ G  T. V~. A. V~ T] 
[1] 

+tr[V~. A T. V~ T. V~. A.  v[T]. (B.5) 
[2] 

Applying (i) and (ii), it follows that 

0 e 2 - - 2 V ~  T. G. V~ [3] 
OA 

+ 2( V~ T. V~). A- ( VI T. V~). (B.6) [4] 

The gradient will be zero for the particular value 

A*=(V~ T. V~)-'. V~ T. G. V~. (V~ ~. V~)-', [51 
(B.7) 

as long as matrices V[ T. V~ and V~ T. V~ are non- 
singular. Notice that if V~, and V~ are square [6] 
matrices, that is, when M ' =  M and N'= N, this 
form reduces to the interpolation formula (14). In 
such a case, the error of approximation turns out 
to be zero (exact fit). 
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