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Fig. 13. Examples of pattern transformation for the ** 25 " pattern.

where
Wy =2y X5 + 29" Y5 + X
Up =23t x5t 2 0 Yyt Yo

This function is a two-dimensional affine transformation and it may
be almost enough for computer graphics of character patterns. Fig.
12 shows some examples of this transformation. In the figure, the
(a) pattern has a 60 X 60 pixels of initial region and is supposed
to be original. These patterns are generated by operating the fol-
lowing parameters, respectively:

® 1.0 © © 0.8 © 0.5
a): . C):

0 1.0 0 0.8 0 0.5

1.0 0

d): e): :

@ 0 1.5 © 0 1.5 ®los 10

. [cos45 —sin 45 (15 0 .. [1.0 0.5
® lsndas  cosas] ® {0 10] @D los5 10

In the figure, patterns from (a) to (¢) and (h) can also be generated
by changing their initial regions, but the rest cannot be generated
without the transformation. While pattern sizes from (a) to (d) are
changed from 30 X 30 to 90 X 90 pixels, they each keep their
form. If we consider the linewidth according to their sizes, we can
get more natural patterns. In these transformations, the parameters
except z;(i = 1 — 4) are kept constant. If division parameters a,,
ay, az and block parameters ¢, d are varied, pattern shapes also
change.

Our generatjon system has two functions, that is, generation and
registration. Even if a pattern is not encoded in the dictionary, we
can generate the pattern directly by inputting code strings of its
subpatterns and register it in the dictionary. Some applications such
as graphical pattern generation do not need the registration of all
the character patterns.

V. CONCLUDING REMARKS

We reported a coding and generating method of structural char-
acters, especially Chinese and Korean characters. In the method,
we defined three types of blocks, i.e., fundamental blocks, com-
posite blocks, and a special block called the null block. If funda-
mental blocks which correspond to strokes are well defined, this
algorithm can be applied to other structural characters. This pat-
tern encoding method is not so far from linguistic concepts of
Chinese or Korean characters, and a person who does not know
this algorithm will be able to encode a pattern or modify code strings
with a little training. Also, the generation program itself is very
compact because of the recursiveness of the algorithm. Then it can
be executed on most of the low cost microcomputers, and can be
applied to printing, education, and computer graphics.
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Sum and Difference Histograms for Texture
Classification
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Abstract—The sum and difference of two random variables with same
variances are decorrelated and define the principal axes of their asso-
ciated joint probability function. Therefore, sum and difference his-
tograms are introduced as an alternative to the usual co-occurrence
matrices used for texture analysis. Two maximum likelihood texture
classifiers are presented depending on the type of object used for tex-
ture characterization (sum and difference histograms or some associ-

Manuscript received June 10, 1983; revised May 27, 1985. Recom-
mended for acceptance by S. W. Zucker.

The author was with the Signal Processing Laboratory, Swiss Federal
Institute of Technology, Lausanne, Switzerland. He is now with the
Biomedical Engineering and Instrumentation Branch, National Institutes of
Health, Bethesda, MD 20892.

IEEE Log Number 8405366.

0162-8828/86/0100-0118$01.00 © 1986 IEEE




IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-8, NO. 1, JANUARY 1986 119

ated global measures). Experimental results indicate that sum and dif-
ference histograms used conjointly are mearly as powerful as co-
occurrence matrices for texture discrimination. The advantage of the
proposed texture analysis method over the conventional spatial gray
level dependence method is the decrease in computation time and mem-
ory storage.

Index Terms—Classification, co-occurrence matrices, image process-
ing, texture.

I. INTRODUCTION

Texture is the term used to characterize the surface of a given
object or phenomenon and is undoubtedly one of the main features
used in image processing and pattern recognition, Texture is essen-
tially a neighborhood property. Recent work by Haralick provides
a comprehensive survey of most existing structural and statistical
approaches to texture [1].

The Spatial Grey Level Dependence Method (SGLDM) [2] is
certainly one of the most powerful statistical texture analysis algo-
rithms. It is based on the estimation of the joint probability func-
tions of two picture elements in some given relative position (co-
occurrence or spatial grey level dependence matrices). The justifi-
cation for the use of this type of characterization is given by ex-
periments on human texture perception indicating that second-order
probabilities of the form measured by the co-occurrence matrices
play an important role in human texture discrimination [3]-[6]. The
spatial gray level dependence matrices are mostly used as inter-
mediate matrices and dimensionality reduction is performed in
computing features of the type described in [2]. Nevertheless, it has
been shown recently [7], [€] that this last step can be avoided and

that the co-occurrence matrices can be used directly as the input

features of an efficient texture classifier.

-During the past years, several new texture models have been in-
troduced and have been claimed to be superior to co-occurrence
matrices for texture analysis. The first is Laws’ model based on
texture energy measures, which has been described in [9]. The sec-
ond is the Gaussian Markov random field model, which has been
studied by R. Kashyap and others [10]. Although these approaches
have been found to be superior to the SGLDM, in some restricted
cases, no quick conclusions should be made: the two forementioned
methods extract statistical information that can be shown to be
completely contained in the spatial autocorrelation or covariance
function (second moments) of the underlying texture fields. As an
immediate consequence, these approaches should be less perfor-
mant than the SGLDM (which includes the feature *‘correlation’”)
when all possible pairwise configuration in the domain of interest
are considered. However, in such a case, the dimensionality of the
feature vector, when using SGLDM, would be significantly more
important than for the other methods.

The main drawback to using the SGLDM is the large memory
requirement for storing the co-occurrence matrices. One sometimes
has the paradoxical situation in which the objects (SGLD matrices)
used for texture characterization are more voluminous than the
original images from which they are derived. It is also clear that
because of their large dimensionality, the co-occurrence matrices
are very sensitive to the size of the texture samples on which they
are estimated.

The purpose of this paper is to present an alternative to usual
SGLDM which is nearly as accurate for classification and which
reduces the memory requirement. A co-occurrence matrix is re-
placed by estimates of the first order probability functions along its
principal axes, namely the sum and difference histograms. Different
texture features are introduced. In Section IV, two maximum like-
lihood or Bayesian texture classifiers are presented. The first clas-
sifier uses the different histograms directly as features and leads to
an extremely fast implementation. The second classifier is more
conventional and uses as features a set of global measures computed
from the sum and difference histograms. Finally, experiments in-

dicate that this texture analysis method performs nearly as well as
the SGLDM.

II. SECOND-ORDER TEXTURE DESCRIPTION
A discrete texture image defined on a K X L rectangular grid is

denoted by {y;;}, k=1, --+ ,K; =1, -+ ,L)and is con-
sidered to be a realization of a bidimensional stationary and ergodic
process. Let G = {1, 2, - - -, Ng} be the set of the N, quantized

grey levels. It is common to characterize the spatial organization of
the picture elements by a set of second-order statistics. Consider
two picture elements in a relative position fixed by (d;, d,):

Y1 = Vi
(1

Y2 = Yk+dil+dr

The relative displacement (d,, d,) may be equivalently character-
ized by a distance d in radial units and an angle # with respect to
the horizontal axis. The discrete joint probability function (PF) of
these two random variables is P(y;, y,). The probability of observ-
ing the gray levels i and j at a fixed relative position specified by
d,, dy) is

Prob {ye: = i Yeraiva =J} = PO, s diy d) = PG, J) ()
and does not depend on the absolute indexes (k, I).

A. Spatial Gray Level Dependence Matrix

Let D be a subset of indexes specifying a texture region to be
analyzed. The spatial gray level co-occurrence or dependence ma-
trix with parameters (d;, d,) is defined as [2]

¢, J; di, dy) = c(i,j) = Card {(k, ]) € D, y,, = i

and Va4 =J} ®
The total number of counts is
Ne N
N = Card {D} = _21 _Zl G, j) )
i=1j=

where Card { } refers to the number of elements of a set. The
normalized co-occurrence matrix is an estimate of the joint PF de-
fined by (2); one has

BG, j) = c(, j)IN = PG, j). )
B. Principal Axis

The covariance matrix associated with the pair of random vari-
ables y; and y, is given by

Cy=oj" ©)
where |
o p=EB{(i —w On— W} and p=E{n} =Emn} O
Because of stationarity, one has that
E{(y — w*} = E{(» — W’} = 0}. ®)

The eigenvalues and eigenvectors of the matrix C, are solution of
the matrix equation -

C,ru=Xxru ®

These quantities are given by

N 0,3'(1‘*'13)

) - (10
)\2 =0yt (1 - P)
and
T1 1T 1 -1
‘ w=[5g] w5l b

V22l



120

The eigenvectors are the axes of inertia of the joint probability func-
tion P(y,, y,) and the eigenvalues are the variances along those
axes. The vectors u; and u, are the eigenvectors of any 2 X 2 co-
variance matrix where Var {y;} = Var {y,}. Therefore, the sum
and difference define the principal axes of any second-order PF of
a stationary process. The linear transform

= (3 + W2
7= + ) 2 12
2= (y — Y2

will produce two random variables z; and z, which are decorrelated.
One has the following properties:

Var{z;} = \; =0} - (1 + p) (13)
Var {z;} = N\, =0 - (1 — p) (14)
Covar {z; * z5} = E{(z; — E{z;}) * (zz — E{zo})} = 0. (15)

C. Approximation of Second-Order Probabilities

When the uncorrelated random variables z; and z, are also in-
dependent, the joint probability function can be computed from

P(y1, ») = Pz, 25) = Py(z) - Py(z,). (16)

This expression is always true for Gaussian random variables. For
arbitrarily distributed random variables, uncorrelatedness is a nec-
essary but not sufficient condition for independence. The last equal-
ity will therefore not always be satisfied. Nevertheless, the product
of the first order PF’s along the principal axis can still be used as
a close approximation of the joint PF. ' :

Py, j) = co * Pl + J) * Pyli = J) = Py, j) an

where ¢ is a normalization constant chosen in order to guarantee
that

Z

M=

2 Pyi, j) = 1 (18)

i=1j

1]

when the support of (i, j) is finite. This condition reflects the con-
straint that the pairs (i, j) are only defined in the square domain
shown in Fig. 1. It takes into account the fact that the product
Pyi +j) + Py(i — J) is not necessarily zero outside this region.
The degree of deviation of the true probability distribution

P(i, j) from its approximation P, j), G, j=1 -+, Ng); can
quantitatively be measured by
Ny N
I, Py = 5 2 P, j) - log {Pyi, )IBG, )} 20 (19)
i=1j=
Ny N

]

2 Z PG, J) - log {Pi, DI + j)

PPy = j)} — log {c} = 0

=H,+ H;— H, — log {co} = 0 20)
where H,, H,, and H, are the entropy measures defined by
Ny N
Hy= -2 % P.)) - log {PG, )} @b
2N
H, = = 2 Py(k) - log {P,(0}
and
Ng—1
Hy= =~ 2 Pal) - log {PD)}. (22)

The relative entropy I(P, 13) is a measure of interdgpendence [11,
p. 59] and is equal to zero if and only if P(i, j) = P(i, j), forij =
1, - -+, N,, that is, when the random variables z; and z, are in-
dependent. The similarity measure between the sets of probabilities
{P(i, j)} and {P(, j)} is sometimes called the directed divergernice
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Fig. 1. Geometric representation of the sum and difference transformation
in the space of y, and y,.

or the Kullback information and has some interesting properties
[12], [13]. The practical interest of (20) is that it is possible to test
the hypothesis of independence in simply comparing the sum and
difference entropies to the entropy of the associated co-occurrence
matrix. The closer I(P, 13) is to zero, the better is the approximation
defined by (17).

III. TEXTURE FEATURES

It was shown that the sum and difference define the principal
axes of the second-order PF of a stationary process. Therefore, it
is suggested that the usual co-occurrence matrices used for texture
description be replaced by their associated sum and difference his-
tograms which can be estimated directly from the image. Differ-
ence statistics on their own have already been used for texture anal-
ysis and have been compared to other methods [14], [15]. In this
study, the complementarity of sum and difference statistics is em-
phasized. Their use is justified by the approximation of 3 joint PF
by a combination of first order statistics of uncorrelated trans-
formed variables. :

In the following text, the nonnormalized sum and difference, as-
sociated with the relative displacement (d;, d,), are defined as

Skt = Yo+ Yevditvan 23)
s = Yoo = Yesdiivar

Thus, the dynamic range of the sum and difference is generally
twice the range of the original image.

A. Sum and Difference Histograms

The sum and difference histograms with parameters (d,, d,) over
the domain D are defined in a manner very similar to the spatial
grey level co-occurrence or dependence matrix definition:

h(i; dy, dy) = hy(i) = Card {(k, I) e D, S =10} (24)
ha(js di, dy) = hy(j) = Card {(k, [) e D, dy; = j}. (25
As before, the total number of counts is
N = Card {D} = X h(i) = %)hd(j). (26)
The normalized sum and differences histograms
B(i) = h(i)/N; (i =2, ,2N) @7
By(j) = hy()IN; (= =Ny +1,-++,N,— 1) (28
are estimates of the sum and difference PF’s defined by
Pyi) = prob {s,; = i}; (@ =2,---,2N,) 29)
Py(j) = prob {de; =) (j=Ny+1,--- Ny~ 1. (30

B. Global Histogram Features

In many applications, it may be necessary to reduce the dimen-
sionality of the set of characteristics used for texture description.
Statistical information can be extracted from the histograms by
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TABLE 1
EXAMPLES OF GLOBAL HISTOGRAM FEATURES
FEATURE FORMULA
mean u=Y i-f’(i)
i
. 2 s 25
variance o = ¥ (i-p)° - P(i)
i
th _ R
q  moment about the mean mq = ¥ (i-p)3-P(4)
i
entropy H=7 -ls(i)- log(i(i))
i
TABLE II
EXAMPLES OF THE MosT CoMMONLY USED TEXTURE FEATURES COMPUTED
FROM THE CO-OCCURRENCE MATRICES AND THEIR EQUIVALENT FORM
COMPUTED FROM THE SUM AND DIFFERENCE HISTOGRAMS
TEXTURE FEATURE CO-OCCURRENCE MATRIX SUM AND DIFFERENCE HISTOGRAMS
mean £, =§)j:i-f'(i,j) =%§i-§s(i) —
variance £, =11 (i—y.)z-l;(i,'j) = —21-[ i: (i—2u)2-§5(i) + § jz-f’d(j) )
i3]
energy £y = [ Z f’(i,j)z x Z 1-55(1'.)2 . ): ﬁd(j)z
i3 1 J
correlation £,= L ¥ (d-p)- (§-4) - B(4, §) = %[ ;Z (i-zp)z-ps(i) - }j: jz-Pd(j) }
ij
entropy £5 = LT -P(1,§)-10g(P(1,§)) | = - T Bg(i)- log(Pgli)} - )j: Pg(§) - Log(Byq(§)}
i3 i
contrast £ =L L (i-j)z-f’(i,j) =7 jz-hd(i)
ij b]
X 1 : ) -
homogeneity £, =77 —r 2* P(i,]) = ¥ —==2-Ps(3j)
7 i3 1+(153) j 1+3 d
cluster shade £5 = L L (i+i-2u)3 B(4,3) = ¥ (i-2p)° P (i)
i3 i
cluster prominence | fg = [ T (i+j—2u)‘-13(i,j) =7 (i-2#)4'f’s(il
i3 i .
computing quantities such as the mean, the variance and the en- classes w;. (i = 1, -+ - , K ). For simplicity, it is assumed that the

tropy. Table I gives a list of features that can be computed from
both sum and difference histograms.

Haralick [2] has proposed a variety of measures that can be em-
ployed to extract useful textural inforamation from the spatial co-
occurrence matrices. It is suggested here to evaluate these features
directly from the sum and difference in order to simplify the com-
putation. Consider the set of 14 features introduced in [2]; nine of
them can be computed exactly from the sum and difference histo-
grams while the remaining five can be approximated very closely
assuming mutual independence between s and d (for example: the
energy and the entropy). Table II shows the equivalence between
the most widely used features computed from the co-occurrence
matrices and those computed from their associated sum and differ-
ence histograms. Using this approach the gain in computation time
(a double summation is replaced by a simple summation) and mem-
ory requirement can be important depending on intensity resolution
(a factor Ng/4). Consider the case of an image quantified with N,
= 32 gray levels. The use of the proposed method will enable a
computation eight times faster than the previously mentioned fea-
tures and will need memory eight times smaller than the usual eval-
uation based on the co-occurrence matrices.

IV. CLASSIFICATION

In this section two maximum likelihood or Bayesian classifiers
will be presented. They differ in the type of features that are used
and in the assumptions that aré made concerning the parametric
family of class conditional probability density functions of the fea-
ture vector associated with different types of textures.

Consider the problem of classifying a given texture sample, with
associated N-dimensional feature vector x according to K texture

prior probabilities of x belonging to the different classes are all the
same. A class w; is characterized by the conditional probability
density function f(x|w;). The maximum likelihood or Bayesian de-
cision rule that minimizes the total probability of false classification
is given by [16]

flx|w) = Max { f(x|w;},

(i=1, -+ ,K — choose class w,.
€29

The optimum maximum likelihood criterion requires knowledge of -
the class conditional probability density functions f(x|w;). For
practical reasons, a parametric representation of these functions has
to be chosen. Two different cases are investigated next.

A. Sum and Difference Histograms

It is possible to characterize a particular texture sample by a col-
lection of sum and difference histograms that have been estimated
for different relative displacements d; and d,. In the following de-
velopment, the case of a unique histogram is considered. Subse-
quent results can easily be adapted for the case where more than
one histogram is used, assuming mutual independence.

Let {h(i)}, (i = 1, - - -, N) represent a particular histogram
that has been chosen for texture representation. The different counts
h(i) can be presented as an N-dimensional feature vector

x = [h(1) hQ) - - - KW)]" = [x1x, (32)

It is assumed that the components of this feature vector are distrib-
uted according to a multinomial distribution

N

N
f(xj) = <=21 x,)! 'I=Il Pj(l)x‘/x"

T
RO I

33)
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where P;(i) is the probability of having the particular sum or dif-
ference equal to i on the texture of typej. This assumption is equiv-
alent to considering that the counting process can be seen as the
result of N independent generalized Bernoulli trials [17, pp. 74-76]
where the mutually exclusive events are the observation of a sum
or difference of a given value. Because of the stationarity and er-
godicity of the underlying random process, this assumption be-
comes more and more realistic as the size of the estimation domain
increases.

It can be shown that the quantity P(i) = x,/N, computed on tex-
ture j, is the maximum likelihood estimate of P;(i). Therefore, the
parameters of distributions f(x|w;), (( = 1, - + - , K), can be esti-
mated in a learning phase on texture samples of sufficient size. Tak-
ing the logarithm of (33) and neglecting the terms that are common
to the different PDF’s, the maximum likelihood decision rule (31)
can be shown to be equivalent to

U;x) = min {U;(®}, (j=1, -+, K)— choose class w;

(34)

where Uj;(x) is given by

N
Uy = = 2 x; - log {P;0)}. (35)
One has to remember that x; = h(i) represents the number of oc-
currences of a sum or difference equal to i over the domain of in-
terest D. Therefore, using (24) or (25), it is possible to replace the
summation in the feature space by a summation over the spatial
domain.

U@ = 22 = 10g {PiOks £ Yeraisa)}:  (36)
Applying this equation, the whole process can be accomplished by
a simple table lookup procedure. Optimum classification is per-
formed with only K additions per pixel without an explicit evalua-
tion of the difference or sum histograms. It is straightforward to
extend the method when using more than one histogram and assum-
ing mutual independence. The resulting decision function is ob-
tained by simple summation of the individual contributions. The
block diagram of a system performing the classification of (M X
N) texture samples is depicted in Fig. 2. This texture classifier of-
fers multiple advantages. First of all, it is computationally very
attractive. The decision functions U;(x) can be computed in ap-
proximately the same time as would be required to estimate the
histograms explicitly. Secondly, there is absolutely no loss of infor-
mation of the kind that would result from some heuristic dimen-
sionality reduction.

B. Global Features

A texture sample can be characterized by a set of global features
as described in Section III-B, computed from sum and difference
histograms:for different relative positions d; and d,. As before, these
values are ordered in an N-dimensional feature vector x = [x; -
xy17. It is convenient to assume that the feature vector is distributed
according to a multivariate normal distribution ‘

forley) = @my"™ R - exp {— 4 — m)" - BT+ (x — my)}

(37

where m; is the mean vector and R; the covariance matrix associated
to the class wj:

m; = E{x|w;} and R, = E{(x — mj)(x - m)Tw}.  (38)

It is possible to compute these parameters in a learning procedure
on a sufficiently large number of texture samples. Let {x;}, (i = 1,
+++, M) be the M feature-vectors associated with a set of refer-
ence texture samples of type j. The maximum likelihood estimates
of the distribution parameters are given by [16]

ot ~log(p(s/w, )}

SUMMATION
MxN

Y,

WAOWINTL W

-Tog{p(d/wy )}

Fig. 2. Block diagram of a texture classifier using sum and difference his-
tograms as features.

M
1
ity = E] x; (39)
- , )
B = 2 (o= iy — iy (40)

Justification for the use of a Gaussian model is given by the partic-
ular family of texture features that have been chosen. Most of them
can be expressed as a spatial average over the domain D. For this
reason, one can expect their individual first-order statistics to be
almost Gaussian. The multivariate Gaussian probability density
function is also the maximum entropy distribution that satisfies the
constraints given by (38). In this situation, the maximum likeli-
hood decision rule (31) can be shown to be equivalent to

D;(x) = min {D;(x)}, (j=1, -, K)— choose class w;

(41)
where D;(x) is given by

Dix) = (x — m)" - R - (x —my) + log {|R;|}. (42)

V. EXPERIMENTAL RESULTS

This section presents an experimental evaluation of the proposed
approach and a comparison with methods based on the computation
of spatial gray level dependence matrices. For this purpose, we have
selected 12 Brodatz textures [18].The texture samples were digi-
tized with a 256 X 256 spatial resolution and 256 gray levels. Spa-
tial transducer nonuniformities were compensated by a local nor-
malization procedure. A histogram equalization, producing an
output image with 32 equiprobable gray levels, was then performed,
in order to obtain texturres with approximately the same first order
statistics. The advantage of such a treatment is twofold: first of all,
it reduces the sensitivity to lighting condition and to gain adjust-
ment of the transducer, and secondly, it guarantees that first order
statistics are not taken into account for discrimination. The prepro-
cessed images are shown in Fig. 3.

A. Sum and Difference Approximation

These textures were used to compute four co-occurrence ma-
trices, ford = 1 and 6 = 0, 45, 90, 135°, as well as their associated
sum and difference histograms. The maximum likelihood estimates
of the corresponding sets of probabilities were obtained by nor-
malization, applying (5) and (27), (28), respectively. The validity
of the approximation of a second order distribution by a product of
sum and difference histograms has been tested in evaluating the
interdependence measure defined by (20). The detailed results of
computation for all textures in Fig. 3 are given in Table III, for d
= 1and § = 0°. Equations (21) and (22) were evaluated using the
binary logarithm. The second order entropy H, has to be compared
with the maximum value 2 log, {32} = 10, corresponding to the
equiprobability of all possible pairwise configurations. A conse-
quence of preprocessing, which imposed flat histograms for all tex-
tures, is that this limiting case also represents the approximated
distribution which would be obtained in assuming mutual pixel in-
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Fig. & Preprocessed Brodatz textures used for classification (256 x 256
pixels with 32 equiprobable grey levels).

TABLE 11
DETARLED COMPUTATION OF THE INTERDEPENDENCE MEASURE (d = ] AND §
< 0y vor rae 12 TENTURES IN Fig, 3

Texture | 14, H, Hy | logyleg) | UP,B)
| a8 B 946 4730 1163 0205
| aom 897 4720 1236 0385
moeng 5910 4444 1315 0427
“y s 5 B4 1548 1258 0448
® 950 5943 4989 1203 0.160
M 94R0 B8 4862 1182 0151
tn | nEm 5606 5363 1941 0402
L gme s845 5384 1243 0173
@ 9704 5420 5262 1231 0157
o | owem 5 5954 4959 1201 0.142
(| 9ee? 5930 $122 1212 0142
1) | gew | sea | som 1213 0169

dependence. Histogram equalization has also the effect to enlarge
both sum and difference histograms. This explains the relatively
high values of logy {¢,} indicating important side effects, due to the
fact that the product P(i + j) + Py(i = j) is nonzero outside the
domain defined by §f = 1, -+, N,. Nevertheless, the quality of
the approximation is acceptable and generally much better than the
one that would be obtained by assuming pixel independence. The
measures of interdependence in the four principal directions are
given in Table I'V. These values are roughly the same for all direc-
tions and are of the $ame order of magnitude for all textures that
have been considered.

TABLE IV
INTERDEPENDENCE MEASURES IN THE FOUR PRINCIPAL DIRECTIONS WITH d =
I COMPUTED FOR THE 12 TEXTURES IN FIG. 3

Texture | 8=0° 8 =45° 8=95° §=135°
1) Q205 0.247 0.250 0.248
{2) 0386 0.392 0380 0.394
{3) 0.327 0.339 0327 0.334
{4) 0.448 0.469 0.468 0467
(5) 0.160 0.202 0170 0.198
{6} 0.151 0.167 0.180 0173
{?) 0402 0412 0.454 0404
(8) 0173 0.175 0.147 0.182
{9) 0.157 0176 0.165 [eBvag
{10} 0.142 0167 0.143 0.156
{11) 0.142 0.169 0.137 0.158
(128) 0.169 0.175 0.165 0.200

TABLE V

CLASSIFICATION OF THE 12 TEXTURES IN FiG. 3 USING SUM AND DIFFERENCE
HISTOGRAMS IN THE FOUR PRINCIPAL DIRECTIONS WITH & = 1: P,.,: PROB. OF
CORRECT CLASSIFICATION FOR THE TRAINING SET, N.,: NUMBER OF
CORRECTLY CLASSIFIED TEXTURE SAMPLES BELONGING TO THE TRAINING
SET, Pyt PROB. OF CORRECT CLASSIFICATION FOR THE UNKNOWN SET, N,
NuMBER 0F CORRECTLY CLASSIFIED TEXTURE SAMPLES BELONGING TO THE
UNKNOWN SET

Features N | Blze Py Nex Poy Nuz
sum and dd histograms | BxB4 16x18 | 9188% | 1411 out of 1536 | 88227 | 1355 oul of 1538
sum and dif histogramus | Bx64 A2¢32 | 9894% | 08B0 oul of 384 | D88BX | 372 oul of 384
sum and dif histograms | 8x84 BaxB4 | 1002 26 oul of 98 a7.92% ™ oul of 98
sum histograms 4x64 16x16 | 85944% | 913 out of 1638 | 85.40% | 851 oul of 1538
sum fistograms AxB4 I2xU2 | 82037% | 15 out of 34 TBO4% | 202 out of 384
sum hitograms 4xB4 G4x64 | 91687 88 out of 96 84087 | B8t out of 88
difterence histograms 4x64 16x16 | 89842 | 1380 oul of 1538 | 87.17% | 1339 oul of 1538
difference histograms Ax64 32x32 | GBT0X | 379 out of 384 94277 | 362 outl of 384
dillerence huslograms 4x64 B4xB4 | 100X 96 out of 96 96887 @ oul of 88
co~oeCurTence matrices 4x32% | 16«16 | 9642% | 1481 out of 1536 | 68727 | 1332 aut of 1538
CO-peTUrTENCe matrices 43327 | 02x32 | 9696% | 380 out of 384 | 9320% | 358 oul of 384
co-ocourrence melrices | 4x02% | B4xB4 | 100X | 906 oul of 88 | 9582% | 92 oul of 98

B. Clussification Bused on Sum and Difference Histograms

Sum and difference histograms have been applied to the classi-
fication of the 12 textures displayed in Fig. 3. The upper half of
cach was used as training set to estimate eight sum and difference
probabilities along the directions of 0, 45, 90, and 135 degrees and
d = 1. Classification was then performed for nonoverlapping sub-
images of dimension 16 X 16, 32 X 32, and 64 X 64, belonging to
both training and unknown scts (upper and lower parts of the im-
ages, respectively). The classifier that was used is an extended ver-
sion of the one shown in Fig. 2. The contributions of the probabil-
ities corresponding to the different orientations have been added at
the inputs of the summation blocks. Table V gives the results of
classification in terms of the computed probability of correct clas-
sification for different window sizes. Results of classification using
the sum (respectively difference) histograms on their own have been
reported for comparison. The classification rates are always better
for the training set than for the unknown set. This indicates a strong
interdependence between the performances of the method and the
quality of the estimation of the distribution parameters. As it can
be expected, classification becomes more accurate as the window
size increases. Classification is performed almost perfectly for win-
dow sizes larger than 32 X 32. In this experiment, difference his-
tograms appear to be significantly more powerful than sum histo-
grams for texture discrimination. Besides, these quantities perform
a little better when used jointly than when used separately.

For comparison, the results of the classification of the same tex-
tures, using as features the four co-occurrence matrices in the di-
rections of 0, 45, 90, and 135 degrees, have also been included.
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TABLE VI
CLASSIFICATION OF THE 12 TEXTURES IN FIG. 3 FOR VARIOUS FEATURE SETS
USING GLOBAL MEASURES BASED ON PAIRS OF PIXELS IN THE FOUR
PRINCIPAL DIRECTIONS WITH d = 1: P,.: PROB. OF CORRECT CLASSIFICATION,
N,; NUMBER OF CORRECTLY CLASSIFIED TEXTURE SAMPLES (USING THE
“LEAVING ONE OUT”’ METHOD)

Features N Slge P, Ng
Co-occurrence matrices
set 1 (d=18=045,90,135%) 16 16x16 8882 Z 10243 out of 11532
set 1 (d=18=0,4590,135%) 16 32x32 9174 % 2639 out of 2700
sel 1 (d=14=0,4590,135%) 16 64x64 100. % 588 out of 588
set 2 (d=16=045,80,135°) 24 16x16 9119 % 10516 out of 11532
set 2 (d=18=0,45,90,135°) 24 32x32 9963 % 2690 out of 2700
set 2 (d=18=0,45,90,135) 24 64x64 100. Z 588 out of 588
Sum and dif. histograms
set 3 (d=14=045,90,135°) 16 16x16 88.06 7 10165 out of 11532
set 3 (d=16=045,90,135°) 16 32x32 9719 Z 2624 out of 2700
set 3 (d=16=045.90,135%) 16 64x64 100. Z 588 out of 588
sel 4 (d=14=045.90,135%) 20 16x16 9106 Z 10501 out of 11532
sel. 4 (d=18 =0.45.90,135°) 20 32x32 9933 7% 2682 out of 2700
sel 4 (d=16=0,45,90,135°) 20 64x64 100. 7% 588 out of 588

These results were obtained by a similar classification algorithm,
for additional details refer to [8]. The performances of the co-oc-
currence matrices are slightly better, considering the training set
only. Surprisingly, there is a decrease in performances for the clas-
sification of the unknown set, when compared with sum and differ-
ence histograms. This could be a consequence of the large dimen-
sionality of the feature vector. The classification rates obtained with
sum and difference histograms are very competitive—these features
being also more robust. For approximately equivalent results in tex-
ture discrimination, sum and difference histograms may be pre-
ferred to the usual co-occurrence matrices for their relative com-
pactness as texture descriptors.

C. Classification Based on Global Features

For this classification experiment, the images were divided in
square regions with 50 percent overlap. The experimental data set
for each class consists of 961 texture samples of dimension 16 X
16, 225 samples of dimension 32 X 32, and 49 samples of dimen-
sion 64 X 64. Four symmetric co-occurrence matrices (d = 1 and
6 = 0, 45, 90, 135 degrees), as well as their corresponding sum
and difference histograms, have been computed on every texture
sample and have been used to evaluate four different sets of fea-
tures:

¢ Feature Set I—Each co-occurrence matrix is characterized by
the four most commonly used Haralick features [2]: ‘“‘energy,”
“entropy,” “correlation,” and “inertia.”

e Feature Set 2—Each co-occurrence matrix is characterized by
the “‘energy,” “‘entropy;” “inertia,”” ‘‘cluster shade,” ‘‘cluster
prominence,” and ‘“‘homogeneity” features, which were proposed
more recently by Conners et al. [19], [20].

® Feature Set 3—Each co-occurrence matrix is characterized by
the approximation of the four most commonly used Haralick fea-
tures, using sum and difference histograms: ““correlation,” “iner-
tia,”” and approximated “‘energy’’ and “‘entropy.” ’

¢ Feature Set 4—Each co-occurrence matrix is characterized by
the “‘correlation,” “‘inertia,” ‘“‘cluster shade,” “cluster promi-
nence,” and ‘“homogeneity” features. This feature set was ob-
tained in selecting the quantities in Sets 1 and 2 that can be directly
computed from the sum and difference histograms.

The method described in section IV-B was used to classify the
texture samples based on their measured feature values. For each
pattern that has been tested, the training was performed on the
remaining samples (‘‘leaving one out” method), using the maxi-
mum likelihood estimates of the distribution parameters deﬁned'by
(39) and (40). The results of classification are given in Table VI. It
appears that the use of the sum and difference approximation (Set -

3 instead of Set 1) does not change the performances in texture
classification very much. The best results are obtained with feature
Sets 3 and 4. The former is slightly more performant than the latter,
which was obtained in choosing the co-occurrence features that can
be computed from the sum and difference histograms. This set
might be of practical interest because it can be evaluated directly,
by spatial averaging, at the output of the sum and difference filters.
This technique enables a significant savings in computation and
memory storage, as it is not necessary to estimate explicitly the
auxilary sum and difference histograms—and even more so the co-
occurrence matrices.

From these experiments, it can be concluded that global texture
features derived from the sum and difference histograms provide
almost equivalent results in texture classification than those ob-
tained from the usual co-occurrence matrices.

VI. CONCLUSION

A simplification of the very popular Spatial Grey Level Depen-
dence Method for texture analysis has been proposed. The usual
co-occurrence matrices are replaced by their associated sum' and
difference histograms. This is justified by the fact that the sum and
difference define the principal axes of second-order. probability
functions of a stationary random process and are therefore decor-
related. A set of global histogram measures was introduced. It was
also shown that the usual texture features (or some close approxi-
mations) associated to the co-occurrence matrices could be com-
puted directly from the sum and difference histograms. The advan-
tage of this procedure is the reduction in computation time and
memory storage.

Two maximum likelihood texture classifiers have been intro-
duced. The first one considers the sum and difference histograms
as the component of a feature vector. The assumption of a class
conditional multinomial distribution leads to an extremely fast im-
plementation which avoids an explicit evaluation of the feature vec-
tor. The second classifier is based on global measurements ex-
tracted from the histograms. Experimental results indicate that sum
and difference histograms are almost as powerful as co-occurrence
matrices for texture discrimination.
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