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A new criterion for the "useful" resolution of electron micrographs of macromolecular particles is introduced. This criterion 
is based on estimation of the spatial frequency limit beyond which the spectral signal-t,~-noise ratio (SSNR) falls below an 
acceptable baseline. Applicable to both periodic and aperiodic specimens, this approac is particularly apposite for sets of 
correlation-averaged images. It represents a straightforward and intuitively appealing gent ,alization of the traditional method 
of estimating the resolution of crystalline specimens from the spectral ranges of periouJc reflections in their diffraction 
patterns. This method allows one to assess how closely the resolution of an averaged image based on N individual images 
approaches the ultimate resolution obtainable from an indefinitely large number of statistically equivalent images. Inter-rela- 
tionships between the SSNR and two other measures of resolutien, the differential phase residual ~nd the Fourier ring 
correlation coefficient, are discussed, and their properties ,-ompared. 

1. Introduction 

Correlation averaging is now a well-established 
technique for analyzing electron micrographs of 
quasi-periodic arrays [1-3], or sets of images of 
ostensibly identical free-standing particles [4,5]. 
The repeating elements - unit cells or individual 
particles alike - are brought into translational and 
rotational registration using correlation tech- 
niques, then averaged. Further refinements in- 
clude the use of multivariate .,tatistical methods to 
identify subsets of "like" particles [6,7] or to 
eliminate anomalous members [8] prior to averag- 
ing. This treatment ultimately yields images with 
improved signal-to-noise ratios. In this context, 

the quantitative assessment of resolution remains 
a key issue. 

Two measures of resolution for correlation- 
averaged images have been described [3,5]. Both 
methods divide the data into two subsets of images 
which are separately averaged, ond assess resolu- 
tion in terms of the spectral range of consistency 
between the Fourier transforms of the two aver- 
ages. h l  o n e  rn~:ti~Uu I.UtllClctlu,~l pH,a~. ~.~uu-a, .  

DPR) [5], resolution is defined as the spatial 
frequency at which the average phase discrepancy 
between the two transforms exceeds 45". In the 
second method (Fourier ring correlation, FRC) 
[3], resolution is defined as the spatial frequency 
at which annular samplings of the two Fourier 
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transforms register negligible cross-correlation. 
Although both approaches are conceptually sir& 
lar, the values that they give for resolution often 
differ substantially. Furthermore. neither method 
relates in a straightforward way to the long-stand- 
ing resolution criterion applied to images of two- 
dimensional crystals via their diffraction patterns; 
that is the spatial frequency of the outermost 
reciprocal lattice point whose intensity is appre- 
ciably above background. 

This paper presents an alternative resolution 
criterion that is equally applicable to both peri- 
odic and non-periodic structures, and is related in 
a simple and direct way to the classical resolution 
criterion for crystalline specimens described above. 
Our method is based on measurement of the sig- 
nal-to-noise ratio as a function of spatial frequency 
whereby the SSNR (spectral signal-to-noise ratio) 
is determined by comparing the Fourier trans- 
forms of individual unit cells (particles) with that 
of the global average image. Resolution may be 
specified in terms of the spatial frequency at which 
the SSNR falls to an unacceptable level, or alter- 
natively and more formally, may be imposed as a 
statistical tes: for the presence of signal in a given 
spectral range. 

A detailed account of the SSNR measure of 
resolution is given in section 2. Some examples of 
its application are also discussed. Section 3 pre- 
sents a systematic comparison between the prop- 
erties of this measure and those introduced earlier 
[3,5], in addition to deriving some relationships 
among them. Among other points, this compari- 
son explains why the DPK [S] tends to be more 
conservative than the FRC [3]. 

2. Spectral signal-to-nokt: 1 atio 

2.1. Preliminaries 

Following common practice, we assume an ad- 
ditive measurement model for a set of N images, 
(_C;‘,:>. i = I....) N: 

x:‘,: = pk., + nL.\. (1) 

where {ph./ } denotes the signal of interest which 
is common to all images and { tii!,)} is a zero-mean 

noise component. On account of the linearity of 
the Fourier transform, this equation is also satis- 
fied in Fourier space 

X(I) 
m.n =M*,,+N;‘*‘, (i=l,..., N), (2) 

where { X,f& }, { Mmn } and ( iv::.‘,, 1 are the Fourier 
transforms of {xc{}, { P~,~ } and { ny.‘, }, respec- 
tively. The signal (pk.,} is estimated as ( Ck,,} 
averaging: 

&,= + ,g x~.J/-+&/; i x:.‘n. 
r=l I=1 

Here and elsewhere, we use the circumflex 

by 

(3) 

to 
designate an estimated quantity, subject to statisti- 
cal uncertainty. The variance of the noise in { fik.,} 
is reduced by a factor N relative to that in { xf,{ }, 
provided that the noise component { n$$) is iden- 
tically and independently distributed over the 
complete image set. Furthermore, { fili., ) will tend 
to be Gaussian distributed as a consequence of the 
central limit theorem 191. 

2.2. Spectral signal-to-ncise estimation 

Our proposal is to assess the spatial resolution 
of the data set, and hence of the averaged image 
{pk., >, on the basis of the spatial frequency de- 
pendence of the signal-to-noise ratio computed in 
Fourier space. For a given region R in Fourier 
space, we define the quadratic signal-to-noise ratio 
before averaging as: 

2 
GRS (YE- 

1 7 (4) 
4” 

ui, and ai,, are the average signal and noise 
variances over R: 

2 
uRn= - ! ~(zll~m.n1+ 

nR R 

where nR denotes the number 

(6) 

of Fourier compo- 
nents in R *. Typically, R is an annulus corre- 

* Due to the central hermitian symmetry of the Fourier trans- 

form of real signals, we may choose to restrict the analysis to 

the upper half plane of the Fourier domain. although the 

definition of nR remain5 a5 given above. 
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sponding to a mean radial frequency f and a 
width of the sampling increment in Fourier space, 
i.e. 1/nd, where n is the dimension of the real 
space image and d is the sampling step. The 
corresponding signal-to-noise ratio of the aver- 
aged image, {~k,t}, is 

t~ u = Na, (7) 

accounting for the fact that the noise contribution 
is reduced by a factor N in the average. These 
quantities are usually unknown and must be 
estimated from the data set. 

Thus, ~ ,  the estimate of normalized signal 
energy o 2 is computed from the Fourier trans- Rs~ 

form of the averaged image: 

E ,  &,,,, II 
= R (8) 

I/R 

-,2 Similarly, an unbiased estimate %~ of the corre- 
sponding noise variance is obtained from the nor- 
malized sum of squares of all spectral residv0! 
noise components: 

N 
^ 2 Z E x..%- M,,,.,, 

( N - 1 ) n  R 

These quantities are then combined in the foliow- 
ing ratio: 

Fg = NS~/8~, .  (10) 

In effect, FR i~ equivalent to a signal-to-noise 
ratio defined between the estimated (correlatioa 
averaged) signal and residual noise components in 
the spectral region of interest. However, as shown 
in the appendix, this quantity is a biased estimate 
of a.v (E(FR} ---- o~x + 1) on account of the noise 
still present in the average. Appropriate com- 
pensation for this bias yields the following esti- 
mate of the spectral signal-to-noise ratio (SSNR} 

{ FR- I, FR > I 
a x =  O, F R_<I" (11) 

Taking R to he concentric annuli in Fourier ~pace, 
the spatial frequency dependence of a.v = 8 x ( f )  
may be calculated. In practice, the estimated SSNR 

curve generally decreases as a function of the 
spatial frequency. By defining a minimum accep- 
table threshold (for example, &x(f )  > 4), an em- 
pirical cutoff frequency f4= 1/d  4 i~ specified, 
providing a measure of resolution (d4) of the 
averaged image. 

2.3. Statistical distribution of the SSNR 

Fully quantitative resolution assessment should 
take into account the statistical nature of the 
estimated SSNR. Knowledge of its p~oabi l i ty  
density function is needed to determine lower and 
upper confidence limits for some critical SSNR 
values, and hence for the corresponding resolution 
limits. In other words, it allows an assessment of 
the variability in nominal resolution to be ex- 
pected among different image sets of the same size 
containing statistically equivalent data. 

As shown in the appendix, the varia,ce ratio 
defined by eq. (10) observes a non-central F dis- 
tribution [9] with n l = n  R and n 2 = n  R ( N - l )  
degrees of freedom and non-centrality parameter 
nletv. Tiffs result is derived using the relatively 
mild assumption of stationary noise, which holds 
for most types of structured (correlated) and non- 
structured (white) noise [10]. Because tabulated 
values for non-central F-distributions are not 
available, the use of a Gaussian approximation 
suggests itself. It can be justified because ~ and 
n 2 will be large in practice. It then follows that the 
estimated SSNR is approximately normally dis- 
tributed, i.e., 8:v-  N(~ x, o~), with variarce a~ 
given by eq. (A.5) in the appendix. 

2.4. Quantitatice interpretation of the SSNR curt,e 

An illustrative SSNK curve calculaled for a 
negatively stained data set - in this case, of 

[8,11] - k, ~,nown in fig. 1. For resolution assess 
meat. ".,e consider two limits. ~v = 4  and a x=  0. 
Tke first, more conservative, measure is concerned 
with full inte:~retability of the current averaged 
image, for it specifies a spatial frequency tip to 
which the SSNR remains akove an acceptable 
baseline that is considered adequate for unam- 
biguous visual interpretation. Here we have taken 
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the reasonable (although arbitrary, cf. section 3.3 
below) value of 4 for this baseline. The second 
limit, aN = 0, delimits a region in Fourier  space 
where it can be safely concluded that there can be 

no detectable signal. 
In this example, the resolution f 4 -  def ined by 

the point  at which the SSNR curve crosses the 
a N = -  4 limit - is given as f4 = (1 /2  9) nm -1 .  Also 
represented on this graph are the bounds  of a 95% 
confidence interval (a0 + 2o,,0, where %o is ob- 
tained from eq. (A.5)) for a theoretical signal-to- 
noise ratio: a0 = 4. The intersection of the S S N R  
with those curves provides upper  and lower confi-  
dence limits for f4: f4-  = (1/3 .7)  nm -1 and f4+ = 
(1/2 .7)  nm -1 * 

The second limit, f0, corresponds to the ulti- 
mate  resolution which cannot  be surpassed with 
data of the given quality. It  is estimated f rom the 
intersection of the experimental  SSNR curve with 
the upper  95% confidence limit for a theoretically 
zero SSNR. In the present  example, the corre- 
sponding value is f0. = (1 /2 .4)  nm -1. While this 
limit should not depend  on the number  of images 
in the data set, the precision with which it is 
est imated improves as N increases. 

For  comparison, we determined the resolution 
using the DPR ond F R C  criteria [3,5]. In contras t  
with the SSNR criterion, these approaches neces- 
sitate an arbitrar~y part i t ion of the data into two 
subsets of N / 2  images, which introduces an ad- 
ditional source of uncer ta inty in the resulting val- 
ues. For  four different parti t ions of the original 
data, we measured the values: fDPR = ( 1 / 3 . 5 ) ,  
(1/4.1),  (1/3.8) and (1 /3 .5)  nm -1 and fFRC = 
(1/2.8),  (1/2.6), (1 /2 .5)  and (1/2.8) n m  -a, re- 
spectively. The relationships between these values 
and those given by the SSNR (f4, f0) are dis- 
cussed further in section 3. 

* Note that the statistical interprct,~hort of these bounds  is the 
following: (i) a x > 4 for f < .f4-. ( P < 0.025) and (it) %\. < 4 
for f > ]'4, (P  < 0.025}, where a.~. denotes the true (but 
unknown)  SSNR and P is the probability of incorrectly 
rejecting the hypothesis that a.v = 4. 

' ~  ~ SSNR 

~ ' ~ ,  ....__ SSNR>4 (P<0.025) 

/ " 

t ~ . . , ~ "  / SSNR,0 (P<0.025) 

0 10 20 

Normalized radial frequency 

-~- SNR 
- -  0-limit 
- . -  >4-limit 
- - -  <4-limit 

Fig. 1. Experimental SSNR curve computed from a set of 
N = 30 images of Herpes Virus Type II capsomer (size: 50 x 50; 
sampling step: Ax = 0.3 nm). The SSNR resolution limit is 
given by: (b) f4 = (1/2.9) nm -t. The dashed lines correspond 
to the upper and lower (+ 2 a) confidence limits for a SSNR of 
4; the solid line represents the upper (20) confidence limit for 
a zero SSNR. The intersection with these curves corresponds to 
the frequency values: (a) f4+ = (1/3.7) nm-1, (c) f4- = (1/2.7) 
nm -I, and (d) fo+ =(1/2.3) nm -l. The experimental SSNR 
values were calculated at equally spaced steps of the spectral 
increment over annuli of tNs width (see section 2.2), and linear 
interpolation was used between these points. Aiiernatlvely, a 
finer sampling could be achieved by using annuli of the same 

fixed width but whose radii increase by finer increments. 

2.5. How much is enough? 

A quest ion that arises in every image-averaging 
study is how many data  should be included in 
order to obtain an averaged image that contains  as 
much  informat ion as may  be extracted from data  
of the given quality, i.e. to reach a point  beyond  
which no significant improvement  is to be ex- 
pected, no  matter how many  more images are 
included in the analysis. The SSNR curve allows a 
quanti tat ive answer to this question. Increasing N 
to N '  gives a propor t ionate  decrease in a x, (= 
(N/N' )eLv ,  cf. eq. (7)). The  resulting improve-  
ment  in resolution, f4. can be estimated by shift- 
ing the threshold (cf. fig. 1) downwards by this 
factor ( N / N ' )  and locating its intersection with 
the current  SSNR curve. As the SSNR is generally 
a decreasing function of f .  it will usually be the 
case that f4 > f4' >]]~-. In this context, f0-  repre- 
sents an estimate of the asymptotic resolution 
(N ~ ~c) that cannot be exceeded. 

In the present case (fig. i),  doubling the a m o u n t  



M. Unser et al, / A new resolution criterion 43 

of data from the current N = 30 would be ex- 
pected to increase the resolution only from (1/2.9) 
m-1 to (1/2.7) n m - 1  and the asymplotic limit for 
the data of this quality is (1/2.4) n m - k  It has 
been our experience to date with sets of electron 
micrographs of negatively stained specimens re- 
corded without extreme low-dose conditions and 
therefore not limited by recording statistics, that 
little improvement in either visual interpretability 
or nominal resolution is to be expected after aver- 
aging the first 50-100 images. 

2.6. Compatibility with resolution assessment of 
periodic specimens from their diffraction patterns 

In structural studies of repetitive specimens - 
e.g. two-dimensional crystals or particles with heli- 
cal symmetry - it has long been standard practice 
to express resolution in terms of the spatial 
frequency of the outermost reciprocal lattice re- 
flection whose intensity is appreciably above 
background [12-15]. This resolution criterion 
amounts to visual testing for a spectral signal in 
the presence of noise. As such, it is closely related 
to the more general SSNR criterion discussed in 
the present paper. For instance, if attention is 
confined to a single Fourier component,  these 
criteria are equivalent provided that its intensity 
exceeds that of the local background (noise) by a 
factor of at least 4, according to the f4 measure 
(see section 2.2). This equivalence is explained 
formally in appendix B. However, for strict com- 
parability, the SNR calculated from the periodic 
diffraction pattern should be based not just on a 
single reflection, but on an average that includes 
all reciprocal lattice points in the spatial frequency 
band under consideration. Inclusion of "non-visi- 
ble" reflections in the average will tend to dilute 
the overall SSNR, perhaps to the point of reduc- 
~ , . . ~  " 1 ~ 1  ~. ,  " ~ _ : r :  S i ~ m H -  1 1 1 1 1 . ) u S K ; H  t i l l  ~ 3 1 1 0 1 k . I  

canoe. In partic~flar, a solitary visible reflection 
preceded by a zone of Fourier space containing no 
visible reflections that index on the reciprocal 
lattice is likely to give an overly optimistic value 
of resolution relative to the SSNR (fa) criterion. 
In other words, "one  swallow does not make a 
s u m m e r  . 

3. Relationships between three different resolution 
criteria 

The purpose of this section is to explore the 
relationships between the SSNR and two other 
measures of resolution [3,5]. In contrast with the 
SSNR, the DPR and FRC operate on a reduced 
data set consisting of two partially averaged 
images. We assume that the initial data has been 
divided arbitrarily into two subsets of N / 2  images 

,n ~2~ and corre- with averages {m~[~} and { k.ts 
sponding Fourier transforms denoted by ( M  I } 
and { M 2 }, respectively. Fourier indices have been 
discarded for notational simplicity. The DPR - 
Aq, _ is defined by: 

/ ~ (  II M1 [I + II M2 I[) 02 A¢,=~ n 
Y~-( II M1 It + l] M2 l]) 
R 

(12) 

where O is the phase difference between the com- 
plex Fourier coefficients M~ and M 2. The FRC - 
p - is given by 

11 ti [I M2 Ii cos(O) 
R p = (13) 

R 

In both cases, the summations are made over 
successive annuii R in Fourier space. 

In a sense, the difference between those ap- 
proaches and the SSNR method is of the same 
nature as the difference between a T-test and an 
analysis of variance in statistics. The former is 
restricted to the comparison of two sub-groups 
while the latter allows the simultaneous compari- 
son of as many sub-groups as desired. In the 
SSNR method described in section 2, we have 
chosen the most natural partition by assigning 
each image to its own subgroup. The main ad- 
vantage of this approach is a greater statistical 
precision that could only be achieved by the DPR 
or FRC by considering successively all possible 

A ,,,. images. partitions into two sub-~roups of , I. 
For purposes of comparison, it i.,: convenient to 

intredu :e a reduced form of the SSNR bz~sed on 
the two partial averages M~ z',nd M~. although it 
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should be noted that the associated uncertainty is 
thereby increased substantially. In this particular 
case, the signal-to-noise ratio defined by eqs. (8) 
to (12) takes the form 

+ M 2  II 2 

^, a - 1  (14) 
= M1 - 3//2 II z " 

R 

Using the approximation ER II MIII 2 --- ER II Mz II =, 
which is entirely reasonable when the summation 
is performed over a large number  of coefficients, it 
is straightfor~,ard to show that 

&' U = 2 p / ( 1 - p ) ,  (15) 

which establishes a close relationship between this 
particular form of the SSNR and the ring-correla- 
tion coefficient. However, by virtue of eq. (A.5), it 
can be verified that the variance of the quantity 
defined by eq. (14) (N--- 2) is significantly greater 
than the variance of the original SSNR described 
in section 2. 

In an attempt to inter-relate these different 
criteria (at least in terms of their expected values), 
we consider first the simplified case where the 
summation includes only two complex conjugate 
Fourier coefficients symmetrically disposed with 
respect to the origin. The results are then extended 
to the more general case. 

N~ 

,Im 

Fig. 2. Representation in the complex plane of two Fourier 
components M~ and M2 which differ in their noise compo- 

nents N 1 and N 2. 

functions of the signal-to-noise ratio O~N/2(O2s/O 2) 
(see the lower and upper curves in fig. 3). When  
no signal is present, the average phase difference 
is 90 ° and the correlation is 0. At the other 
extreme, that total absence of noise implies a zero 
phase difference and a correlation of one. It is 
interesting to note that an elementary phase resid- 
ual of 45 ° corresponds on the average to a signal- 
to-noise ratio of t~x/, - - 1.4 (or, equivalently, a:,¢ --- 
2.8). 

3. 2. Multiple spectral components 

The global phase residual given by eq. (12) is a 
weighted quadratic ( L 2 ) average of the elementary 
phase differences. The weights, normalized to 

3.1. A single spectral component 

Fig. 2 represents two complex Fourier coeffi- 
cients M~ and M 2 that share a common signal, S, 
and differ in their noise components, N l and N2, 
respectively. The real and imaginary parts of the 
noise coefficients are assumed to be independently 
and identically distributed with variance o 2 =  
2o~n /N .  As a consequence, their phases are uni- 
formly distributed between 0 and 2~r. The phase 
residual criterion is given by the angle between 
M1 and M2: a ,b=  l0 I. From eq. (13), the FRC 
coefficient is given by O = cos(0). Both measures 
are closely related and their statistical distribu- 
tions can, at least in principle, be derived. Being 
mainly interested in their first- and second-order 
moments, we used numerical integration to de- 
termine their means and standard deviations as 

re" 

a 

g 
o. × 
LLI 

1 3 5  

9 0  

4 5  

D 

. . .  , ~ .,,., 1 i i 

2 4 6 8 1 0  

S S N R  

1.0  

0 . 8  

0 . 6  

0 . 4  

0 . 2  

0 , 0  

O 
d:: 
u _  

i l l  

Fig. 3. Expected DPR and FRC values as functions of the 
SSNR. The cur~'es DPR(1) and FRC(I) correspond to an 
elementary spectral component (n a = 2) and were obtained 
through Monte-Carlo simulation. The limiting curves (n R > 10) 
DPR(zc) and FRC(%) have b,,'¢n computed from eqs. (17) and 

(18). respectively. 
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unity, are given by the averaged Fourier ampli- 
tudes associated with each component.  The use of 
a quadratic mean, as opposed to a more conven- 
tional arithmetic mean, introduces a bias, as will 
be shown next. 

When all Fout'ier components belonging to R 
are independently and identically distributed (i.e., 
same signal-to-noise ratio for all components), the 
elementary phase differences and the weighting 
coefficients can be considered as mutually inde- 
pendent. In this particular situation which may 
not necessarily be the case in practice, but at least 
is mathematically tractable, the expected value of 
the squared phase residual (eq. (12)) may be re- 
written as follows: 

E{aq,2 } __. E{ Y'.( I M, I + 
 (IM, I+ 

--= Var{ 101) +/Z{ 

M21)M2 I) } 
01}= (16) 

where E( [ 01 } and Vat{ 10 l} are the mean and 
variance of the elementary phase difference con- 
sidered in section 3.1. When the summation in eq. 
(12) is performed over a sufficiently large number 
of components, the statistical fluctuation of the 
squared phase residual 392 around its expected 
value E{A~ 2} tends to be small enough for the 
bias introduced by the square-root transformation 
to be negligible. Thus, the expectation of this 
quantity tends asymptotically to the limit: 

ECaq,} ---, ~Var{ 101} + E(  101} 2 . (17) 

This expression shows that the use of the weighted 
(L 2) average introduces a bias in the estimation of 
E { i O [ } that is entirely due to the variance of [ O I. 
The expression given by eq. (17) was computed as 
a function of the SSNR using the values of the 
mean and variance of the phase residual for a 
single spectral component as given in section 3.1. 
Numerical simulation was used to verify that the 
expected phase residual shifts from its minimum 
value E{ 101} to its maximum value given by eq. 
(17) as the number of Fourier coefficients in- 
cluded in the summation (n R) increases. These 
curves are represented in fig. 3. Convergence to 
this limit was usually reached for n R > 10. 

When the summation is performed over a ring 
with more than one spatial frequency component, 
the cross-correlation still represents the cosine of 
the angle between the two n R-dimensional vectors 
whose coordinates are given by real and imaginary 
Fourier coefficients for both averages. Its expected 
value has been derived by Saxton for n R suffi- 
ciently large and is given by [16]: 

E(0}-+ + ), (is) 

where a~,/: denotes the SSNR of a partially aver- 
aged image. In this equation it is assumed that the 
noise is independently and identically distributed 
in Fourier space. In contrast with eq. (17), how- 
ever, no restriction is imposed on the spectral 
distribution of the signal component. As shown in 
fig. 3, the behavior of this quantity differs some- 
what from the curve followed by an elementary 
component. We have found by simulation that the 
asymptotic limit given by' eq. (18) is usually re- 
ached for nR > 10. It is worthwhile to note that 
eq. (18) is quite consistent with eq. (15) by recal- 
ling that a.x. = 2ax. 2. Saxton [16] also gives an 
expression for the variance of the ring cross-corre- 
lation when p is zero, that is, when no signal is 
present: 

V a r { p i a ,  2 = 0 }  = l / n ~ .  (19) 

According to this criterion, the resolution is given 
by the spatial frequency at which the estimated 
ring correlation crosses the curve defined by the 
two-standard deviation upper limit for a theoreti- 
cal zero-correlation (i.e. 2~ ti n ). 

3.3. Comparison between the FRC and DPR criteria 

A relationship between the SSNR and the DPR 
or FRC has been established by relating the ex- 
_ _  ~ . ~ . 3  . .  I . . . . .  g "  . 1 + -  ' ' t . . . . .  ; ~ l " ' t ' x  . . . . .  +3 
p ~ C t c u  ~ a i t a c ~  cu  t l l c ~ c  c r i t e r i a  tcH.~, t l ~ p  a ~ t u  {1 ~ . . . .  o # J ,  

Furthermore. the equivalence between FRC and 
the less precise form of the estimated SSNR com- 
puted from two partial averages - as opposed to 
the complete data set - is given by eq. (14). In this 
section, we more specifically compare the proper- 
ties of the FRC and the DPR. 

(a) Conditions fi~r equit'ale~ce: The DPR and 
the FRC are highly' consistent for large signal-to- 
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noise ratios, that is when the paired Fourier am- 
plitudes in both images have approximately the 
same magnitude ( I M1 I --- I M2 I -= I M I) and the 
phase difference is reasonably small. In such a 
case the DPR is approximately equal to 

~ I M I O  2 
a~2 ~ R (20) 

 IMI 
R 

The FRC takes a similar form in which the cosine 
function may be replaced by a truncated Taylor 
series: 

E I M I 2  cos O E I M I 2 [ 1 - O 2 + . . . ]  
R R 

P--- ~ I M I 2  = y , [Mi2 
R R 

y'IM[ZO 2 

--- 1 R (21) 
EIMI: 
R 

The right-most term in this expression is almost 
the same as that appearing in eq. (20), except that 
quadratic weights are used instead of linear ones. 
The importance of small Four i t  components is 
downplayed in both cases. However, with the FRC, 
there is a relative emphasis on phase contributions 
with large Fourier amplitudes. 

(b) Specification of resolution: According to the 
DPR criterion, the resolution is given by the spa- 
tial frequency at which the phase residual exceeds 
45 °. Assuming identically distributed Fcmriei 
components, this threshold corresponds, as show~ 
in fig. 3, to a SSNR (~XN,2) close to 2 (or slightly 
tess. depending on the number of Fourier coeffi- 
cient~ involved in the summation) for both partial 
averages. Combining these images wii! further re- 
duce the overall normalized varia,,.ce by a factor 2, 
corresponding to a global SSNR of a~ ~= 4 Ibis 
limit is thcTefore, in essence, comparable to the [4 
figure obtained from the SSNR crilerion. Accord- 
ing to the FRC criterion, the resolution is defined 
by searching for statistical evidence of a zero 
correlation, indicative of a v,.,tal absence of signal 
in the corresponding spccual range, viz. c~x/2 = 0. 
This situation corresponds more closely to the f~ 
estimate given by the SSNR fo~ ~,hc asymptotic 

resolution to be achieved when indefinitely large 
amounts of data are incorporated. Therefore, the 
main difference between these criteria, and one 
which explains why the DPR criterion tends to 
give more conservative figures for resolution, is 
one of thresholding. If the resolution limit as- 
sessed by FRC were to be imposed at a correla- 
tion value of 2/3 rather than 0, it is to be expected 
that rather close agreement will generally be 
observed between the resolutions specified by the 
DPR and FRC. 

3.4. Comments 

It is important to stress that most of the results 
established in section 3.2, especially those sum- 
marized in fig. 3, express overall relationships 
between the expected values of the different 
criteria. As such, these relationships cannot be 
applied directly to translate between the respective 
measures computed from the data, as these are 
subject to statistical fluctuations. Furthermore, the 
derivation that has been presented for the DPR is 
based on the rather restrictive hypothesis of iden- 
tically distributed Fourier components, which, 
among other things, implies an isotropic spectral 
distribution of the signal energy, e condition that 
is rarely fulfilled. In general, the DPR tends to 
specify a sl~ghdy mo~e conservative resolution th,;~ 
the SSNR, this  tendency has been observed in the 
experimental example described in section 2. An 
explanation of this property lie~ ;n the difference 
in weighting (cf. section 3.3) between the DPR on 
the one hand and the FRC and the SSNR on the 
other, which for the former tends to put compara- 
tively more emphasis on Fourier components with 
small ampl~tudes 

An important ditference between these criteria 
is, ~b.a~ the SSNR. when applied to the complete 
data set, has a significantly lower statistical uncer- 
tainty. T,~ demonstrate this property, it is suffi- 
cient to recall that a simplified form of SSNR may 
be computed from tile two partially averaged 
images that are used in the DPR or FRC criterion. 
In this particular case where it has been shown 
that the SSNR and FRC are approximately equiv- 
alent (cf. eqs. (14) and (15)), the variance of the 
former is given by eq. (A.5) with n , =  nR, instead 
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of n 2 = ( N - 1 ) n  R for the initial formulation. 
Since Var{ a N } = Vat{ Fn } is essentially inversely 
proportional t c n  2, the standard deviation is 
thereby increased by a factor close to v~xT-1. 
This result indicates that there is a tradeoff to be 
made between data reduction (which practically 
means less calculation) and statistical reliability. 
Some experimental evidence of the variability of 
lhe DPR and FRC criteria obtained with different 
partitions of the data is given in section 2.4. 

4. Discussion 

In biological electron microscopy, there are 
many factors that potentially limit resolution [14]. 
Some factors are instrumental in origin, others 
relate to the preservation and representation of 
native molecular structure when subjected to the 
traumas of specimen preparation and radiation 
damage, and others hinge on aspects of digital 
analysis. These factors include electron optical 
resolution; r~solution of the recording medium 
(grain size in the case of film. alternatively ex- 
pressed in terms of a modulation transfer func- 
tion); variability in conformational preservation 
or local stain distribution; the limitation of dis- 
crete sampling upon microdensitom,:try - the 
Nyqui~t fiequency [13], and l esolution a~ limited 
by spatial disorder in terms of the imperfect trans- 
lational and rotational registration even with cor- 
relation averaging. In biological electron mi- 
croscopy, instrumental resolving power is seldom 
the limiting factor. Rather, preservation of confor- 
mational integrity is likely to have the last word in 
constraining the resolution at which a representa- 
tion of the structure under study may be obtained 
for a given set of experimental conditions. In 
practice, noise contributions from the other fac- 
tors listed above prevent direct interpretation of 
structural details at the highest resolution poten- 
tially accessible, and the goal of image analysis is 
to overcome this limitation. In this context, a 
quantitative objective measure of resolution is vital 
for determining opt imum experimental conditions. 

The SSNR criterion presented in this paper 
provides an empirical measure of "" useful" resolu- 
tion, as do the DPR and FRC criteria proposed 

earlier. However, there is a statistical uncertainty 
associated with the resolution figures given by 
each criterion, deriving from the fact that only a 
finite number of images are included. In this 
respect, the uncertainty attendant on the SSNR 
measure is systematically lower than that of the 
DPR or the FRC because the SSNR uses the 
entire data set on the same basis, whereas the 
other two criteria compare the averages formed 
from two randomly chosen half-sets of images. 

When data sets of significantly different quality 
are compared, it is likely that all three criteria will 
rank them appropriately in the same order. 
However, the actual resolution values specified by 
them may be expected to differ considerably. Of 
the three, the FRC criterion tends to be the least 
conservative. As shown above tsection 3.3), this 
property follows mainly from a different 
thresholding decision. FRC resolution is specified 
in terms of the spatial frequency beyond which no 
signal is estimated to be present - in effect an 
SNR of 0.0 - whereas the other two criteria 
impose resolution limits thresholded at a minim- 
ally acceptable SNR. With the SSNR, we have 
used a cutoff value of 4 which has been shown - 
under special conditions, at least - to be ap- 
proximately equivalent to a DPR of 45 °. Tc a 
limited extent tcf section 3), all three measures 
are related and, as suggesled by fig. 3, the DPR 
and FRC may be interpreted in terms of signal- 
to-noise ratios. For example, it transpires that a 
closer agreement between FRC-specified resolu- 
tion and those given by the SSNR or the DPR 
may be obtained by thresholding the FRC at a 
correlation coefficient of 0.67, rather than 0.0. As 
shown above (section ~' 3..,p, the latter figure relates 
to the ultimate resolution attainable from averag- 
ing an indefinitely large number of images, rather 
than that obtained with a finite amount of data. 

The SSNR criterion, unlike the FRC and DPR, 
allows a quantitative answer to an important ques- 
tion of practical concern: how much data should 
be included in or,{.'r :a extract essentially all the 
accessible information. We have presented a 
method (cf. section 2.5) of assessing how closely 
the resolution of an N-image average approaches 
the asymptotic limit, and how muc;~ of an im- 
provement may be achieved by increasing N by a 
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specific amount. It has been our experience to 
date with conventional negatively stained prepara- 
tions that little further improvement is to be ex- 
pected after averaging the first 50-100 images. 
Most likely, the limitations of this technique are 
imposed at the level of structural preservation of 
particles perturbed by adsorption to the substrate 
and air-drying, and by (non-)reproducibility of 
staining, Low-dose techniques may improve the 
situation with regard to radiation damage, in which 
case substantially more images will be required to 
offset the increased statistical noise. However, in 
single-particle averaging, the use of low-dose 
images may adversely affect "disorder-limited" 
resolution as constrained by the exactness with 
which translational and, in particular, rotational 
alignment can be achieved in the presence of high 
noise levels. The extent to which this obstacle may 
be overcome by determining alignment parameters 
from correlation analysis of subsequent high-dose 
images is an interesting ooen question. 

A final positive feature of the SSNR criterion is 
that, unlike the DPR and FRC, it is closely and 
directly related to the classical method of de- 
termining the resolution of periodic specimens 
from their diffraction patterns which also, in ef- 
fe,:t, specifies an SNR cutoff in Fourier space (cf. 
section 2.6). Expressed quantitatively, the inten- 
sity of the outermost reciprocal lattice reflection 
should exceed the local background (noise) inten- 
sity by a factor of 4, according to the SSNR limit 
(section 2.4). However, for strict comparability, 
the SNR assessed for the periodic specimen should 
also take into consideration all the less prominent 
reflections in the same spatial frequency band, 
whose inclusion will be to reduce somewhat the 
overall SNR. Accordingly, the SSNR prescription 
of resolution will generally be more conservative 
than the figure determined from a crystalline dif- 
fraction pattern. 

5. Conclusion 

A measure of the operational resolution of a set 
of pre-aligned images of ostensibly identical speci- 
mens is introduced. The measure estimates the 
signal-to-noise ratio characteristic of the data as a 

whole as a function of spatial frequency from the 
corresponding set of digital Fourier transforms, 
and specifies resolution as the spatial frequency at 
which the SSNR falls below an acceptable level. 
Two SSNR thresholds are defined which specify 
respectively the resolution to be attained by aver- 
aging the data in hand (N images), and the ulti- 
mate resolution to be achieved with an indefinitely 
large number of statistically equivalent images. 

In contrast with previously reported ap- 
proaches which operate on a reduced data set of 
two partially averaged images, the present method 
takes advantage of the full data set and thereby 
minimizes the statistical uncertainty due to mea- 
surement noise. Furthermore, the experimental 
SSNR curve allows a prediction of the improve- 
ment in resolution to be expected from the inclu- 
sion of additional images of comparable quality in 
the average. It is thus possible to quantitate the 
minimum amount of data necessary for optimum 
signal extraction. 

Appendix A. Statistical distribution of the spectral 
variance ratio F n 

The derivation of the distribution of the vari- 
ance ratio F n defined by eq. (10) requires a few 
statistical assumptions: 
(1) The noise images ~nk.l~ (or noise spectra 
{N c~t. ,,,., j,,~ i = 1, . . . ,  N, are identically distributed 
and mutually independent from image to image. 
(2) For a given image i, the noise Fourier coeffi- 
cients belonging to the spectral region of interest 
(-N~i~,,,n, (m, n) ~ R} are identically Gaussian dis- 
tributed and mutually independent. 

The first assumption is implicit to all correla- 
tion-averaging techniques. Its major requirement 
is that the images have been previously brought 
into spatial registration so that the structure or 
signal component appears in the same position in 
cach image. 

The second assumption is clearly satisfied for 
additive white Gaussian noise and is also ap- 
proximately valid for isotropic stationary Gaus- 
sian noise. This last extension is possible because 
the Fourier and some closely related transforms 
are asymptotically equivalent to the Karhunen- 
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Lob.ve transform of an arbitrary wide sense sta- 
tionary process [17]. This means that correlated 
noise in real space always tends to be decorrelated 
in Fourier space, which also signifies it~.depen- 
dence in the Gaussian case. Note  that the hy- 
pothesis of isotropy is required to guarantee the 
summation of identically distributed variables 
when the estimation is performed over a region of 
Fourier space corresponding to spatial frequency 

f0.  
Let o~n denote the variance of the noise which 

is constant over the spectral domain of interest: 

o~,, Var{ r . ,c ,)  , = Re[ p,;,,,,,] } = Vat{ lm[  N ' "  1 } .  ,,,,,,, 

Ntn 12 } / 2  ( ( m , n } e R ,  i= l  N). = E {  I.  ,,,.,,, . . . . .  

By using assumption (1), we can easily show that 
the noise contr ibution is reduced by a factor N on 
the a~eraged Fourier coefficients: 

E{ ] a]lm,,,- M,,,.,,12 }/2=o~n/N. 

We will first consider the simplest case when 
the signal component  is totally absent, that is. 
when a.¥ = 0. By defining the degrees of freedom 

nm=nR,  n 2 = ( N - l ) n  R, (A.1) 

and using a fairly standard statistical argument, it 
can be shown that the normalized quantities 

X~ [ ^" , = = n,a~,,/(o~n/N )1 X] ( ^" " 

are independently X 2 distributed with n~ and n ,  
degrees of freedom, respectively. Therefore, the 
test statistic F R has an F distribution with n I and 
n 2 degrees of freedom, since this quantity can be 
expressed as the ratio of two independent X ? 
variables normalized by their degrees of freedom 
Its mean and variance are given by [9]: 

E{ F~ lax  = 0} = - - .  (A.2) 
n ,  - 2 

Var{ F e I a,. = 0} 

,2{,_,~ +_"2 • 21 (A.3) 
= e { r ~  I ~ ,  = 0 } - , , , ( , ,  _ g~ 

For n~ and n2 sufficiently large (typically > 30), 
the use of a Gaussian approximation of the F 
distribution is usually justified [9]. 

When a x =/= 0, the distribution of y~ is a non- 
central X 2 with n~ degrees of freedom and non- 
centrality parameter 

X=[N,,,(oa,,oa,,)] = , , , ~ , .  

The distribution of X~, however, remains un- 
changed. Therefore, by definition, F R has a non- 
central F distribution with n~ and n,  degrees of 
freedom and non-centrality parameter X. Expres- 
sions for its first and second moments are found 
by using the property that, for n~ and n ,  suffi- 
ciently large, the transformed variable 

F '  = n l Q / ( n  , + X) 

has approximately a central F distribution with 

< = [~, + x l : / [ , , ,  + 2x] 

and n z degrees of freedom (ref. [18], eq. (26.6.25)). 
Hence, after some simple algebraic manipulations, 
one finds that the mean and variance of the crite- 
rion are closely approximated by 

E{ F R lax } = (---~,,2_ 2)n~ 

={1 +a~). 
(A.4) 

Var{ F R J a.\. } 

}2 2( "l + n, -4)2) 
-- e (  & I ~,,, ~ (7 ,  ~---- 

2 [ ( n 2  + n , -  2){1 + 2cLv} + nme~{:] 
h i ( n :  - 4} 

(A.5) 

where a x = No~.,/o~n is the true (but usually un- 
known) spectral signal-to-noise ratio on the aver- 
aged image. Note that these expressions are con- 
sistent with eqs. (A.2) and (A.3) in the particular 
case where e, x = 0. Furthermore, since t,~ > n, ~he 
u,,,c of a Gaussian approxtmation for the non- 
central X 2 is also justified when n~ and n z are 
large (ref. [18], eq. (26.6.25B. 

Eq. (A.4) shows that F~ is a biased estimate of 
the spectral signal-to-noise ratio a~. The bias is 
introduced by the fact that averaging reduces the 
noise without suppressing it completdy,  so that a 
residual statistical fluctuation is superimposed 
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onto the signal's energy. When the signal is totally 
absent, only the statistical fluctuation due to the 
noise remains, leading to an F statistic close to 
one. 

These results allow simple statistical testing of 
hypotheses concerning the true (but unknown)  

value of o~ N. More specifically, for an estimated 
value 6 N, the hypothesis Ho: a:v = a0, where o~ o is 
a specified signal-to-noise value (typically ~x o = 0 
or a o = 4) is rejected against its alternative H~: 
~xN > ao (respectively, H~: ol N < ao) when &N > ao 
+ yOoo (respectively, &N < CXo -- Taro). The stan- 

Table 1 
Statistical equivalence between two procedures for SSNR determination in the case of  a periodic structure with N repeating unit cells 
of size M × M 

Partitioned processing • 

Correlation averaging 

Global processing • 

Fourier periodic filtration 

Input data N Unit cells (MxM) 1 image (M'xM') : M ' , = ~ M  

Fourier transform N FFT's (MxM) 1 FFT (M'xM') 

Spectral increment Af = 1/M Af'=l/M' 

N components : {Xm.,n, } 
Elementary spectral 

cell &f x Af 

Signal estimation 

Residual noise 

Variances 
estimates 

Degrees of freedom 
(complex- x2) 

Variance 
(real - imaginary) 

F-ratio 

<1> 
N components  • {Xm, 

• • @ • • • 

1 2 N 

By averaging • 
• N 

IC4m.nN i ~  " <i> Xl1.l,n 

N components • 

N<i> <i> ~I  m n} { m.n-Xrn. ,  " . 

Signal 
Noise" ~N 

Signal" 1 
Noise" N-1 

Signal • ~2/N 
Noise- o 2 

~RN 

SSNR 

Q [ ~ I I  i 

° A~" ° 

Af 

N-1 components : 

{Xm..n., (m'~'qNrn. n'~'qNn)} 

=Signal:  ~2  
Noise : ~  N 

Signal • 1 
Noise- N-1 

Signal- 0 2 
Noise" o 2 

~2 % 

~2 ~2 
O" R - O N 

By masking • 

~/N I~I m.n = XqNm,'qNn 
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dard deviation %0 is computed from eq. (A.5) by 
replacing o~ N by o~ o. The value of ~' determines the 
level of significance of the test or probability of 
incorrectly rejecting H 0 when the hypothesis is 
true (e.g., T = 2.00: P ---- 0.025). 

Appendix B. SSNR criterion for periodic struc- 
tures 

Assuming that the Fourier basis functions have 
been normalized to unity, the signal energy contri- 
butions in both approaches can be shown to be 
l[ M,,,.,, II 2 and N x II M,,,., II 2, respectively, which 
results in two formally equivalent F ratios. Simi- 
larly, equivalent signal-to-noise ratios are obtained 
by substracting the residual noise contribution 
(o2/N and o z, respectively) from the averaged or 
Fourier filtered signal energy. 

The statistical equivalence of two alternative 
procedures for SSNR determination for a single 
reflection in reciprocal space for a periodic struc- 
ture with v~- x q~- unit cells of dimension M x M 
is explained in tabular form. The first approach 
(a) sequentially processes separate unit cells and 
corresponds to a signal extraction through correla- 
tion averaging. The sccond approach (b) uses a 
single Fourier transform to globally extract, 
through Fourier filtration (or masking), the signal 
component from the multiple unit cells of a per- 
fect crystal. 
(a) Partitioned processing: the data set is parti- 
tioned into N single unit cells and N two-dimen- 
sional FFTs are thereafter computed. The SSNR 
is determined using the method described in sec- 
tion 2. The spectral increment is A f = A x / M .  
where Ax is the original sampling step. For an 
elementary region in Fourier space, the N availa- 
ble Fourier coefficients are combined through 
averaging to extract the signal component M.,.n 
which leaves us with N -  1 (complex) degrees of 
freedom to estimate the noise variance. 
(b) Global processing: a single global FFT is com- 
puted resulting in a spectral over-sampling of a 
factor vtN in each direction. In an elementary 
Fourier region of size Af X A f,  the energy of the 
signal component is entirely reported on the 
central coefficient due to the periodicity of the 
underlying structure. The variance of the back- 
ground noise is estimated from the ( N - 1 )  re- 
maining Fourier coefficients which have no signal 
contribution. 
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