and replaced by the 4f,_ clock signal. For the 4f,, sampling rate,
the sampled cos 27, .t and sin 27t signals become cos (n7/2)
and sin (n/2) in digital domain. As the integer n increases, three
values 1.0, 0.0, and —1.0 alternate between two sequences..

We can use these sampled signals as control clock for detecting
two color components, R-Yand B-Y, to avoid the multiplication pro-
cess. When the control logic c(n) for the scheme as shown in Fig.
1is “1”, the input chrominance signal from the digital bandpass
filter is passed and for the logic “0”, the input is stopped. In the
other case, the input is passed and complemented for the arith-
metical operation. This multiplerless digital color detection scheme
can be implemented as shown in Fig. 1.

digital BPF —
output O—y digital]l 5 R-y
LPF 1
Cln) O—
digital _
LPF 2 B-Y

Fig. 1. Proposed digital color detector.

When the control clock is phase-locked with the color burst,
R-Ysignal lagged by 90° can be detected and B-Y signal also detected
by one sample delay z~".

HI. ResuLts

A digital chrominance signal is obtained from the output of the
digital bandpass filter (BPF) whose input is an A/D-converted NTSC
video signal sampled at 4f, rate. The composite video signal (top)
and the band pass filtered chrominance signal (bottom) are shown
in Fig. 2(a).

Detected color components R-Y (top) and B-Y (bottom) are shown
in Fig. 2(b).

(0.5 [V)/div, 14.8 ps/div)

Fig. 2. (a) Input/Output signals of BPF. (b) Detected color compo-
nents.

IV CoNcCLusioN

The quadrature-multiplexed color components R-Y and B-Y mod-
ulated by the subcarrier signal have been easily demodulated by
the phase-locked 4f,. clock signal without resorting to digital mul-
tipliers. We have confirmed that the detection process can be real-
ized in real-time via the hardware implementation.
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Comments on ‘““A New Approach to
Recursive Fourier Transform”’

MICHAEL UNSER

The above letter’ calls for two comments; the first relating to the
newness of some of the results and the second relating to the prac-
ticality of the proposed algorithms. First of all, the recursive struc-
ture of the running Fourier transform has been investigated by a
number of authors [1]-[6], none of whom is quoted by Amin. Fur-
thermore, the main idea behind the generalization presented in
the third section stems from the properties of a yet more general
class of features that can be computed using the same recursive
structure. This result is expressed by the following theorem to be
found in [6].

Theorem: A feature g(n), being a function of the sample values
Xn, " ° ", Xn+n -1, Satisfies the first order recursion condition

gn =w-gn—"14+w, - Glx,4n) + w_ - Glx,_,) (§)]

where w, w, and w_ are complex values and G(-) is an arbitrary
function, iff

N—-1 w, = wN+1
gln) = ZO w " Gx,,m and { 2

w_ = —Ww.,

Examples of quantities sharing this property are the Fourier coef-
ficient F(n, ), the local mean value, the gth order moment, and the
z transform (value z = z) (cf. [6], table 1). In particular, the expo-
nentially weighted Fourier coefficient f(n, », y) described by Amin
is the z-transform evaluated at z, = ye ™.

When discussing the issue of computational complexity, the
author does not take into account the fact that the use of a win-
dowing function produces running Fourier coefficients that are
bandlimited and that there is no major loss of information when
F(n, w) is sub-sampled at a rate of N/2, which can result in a sub-
stantial saving in the number of operations when using a nonre-
cursive algorithm.

The author also considers the general form of a weighted run-
ning Fourier coefficient and suggests expressing the weighting
functionasasumof2M + 1geometric series and treating each term
separately. There are two major drawbacks with this approach. First,
there is generally no guarantee of the existence of such a decom-
position. Second, as stated by the author, this method turns out
to be quite impractical for large values of M.

When dealing with an arbitrary weighting function, there is an
alternative and generally simpler approach which evaluates agiven
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Fourier coefficient by using a modulator foliowed by a low-pass
filter. This design is based on the following decomposition:
N-1 N-1
Fuln, ) = 2 Wk, me ™" = e B woy, . = e (wiy,)
m=0 m=0

©)]
where {y,} is the modulated signal:
Vo = X,€". 4

In this approach, apart from a pre- and post-multiplication by a
complex exponential, the computational complexity depends
entirely on the efficiency of the convolution with the windowing
kernel and is therefore directly related to the problem of efficient
filter design. Usually, there is a fast algorithm (independent of the
block size) whenever the windowing filter can be implemented
recursively. For example, polynomial windows of degree (q — 1)
can be implemented from a cascade of g moving average filters
which require no more than 2 operations per sample. This approach
is not new and has been used for many years in analog spectrum
analyzers.
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Author’s Reply?

Many papers including those mentioned by Unser have been
published in the area of recursive Fourier transform (RFT) and its
implementation. These papers indeed share the same scope, yet
their focus is different than that of {1 which briefly addressed the
computationally block invariance (CBI) property of RFT, its gen-
eralization, and extention to the computationally lag-invariant
recursive spectrum estimation problems. For this reason, as well
as space limitation, we referenced in [1] two books for further read-
ings on RFT.

The commonly used approach to RFT as a modulated signal con-
volved with a linear time-invariant filter is a useful tool in signal
analysis and may be used for a different interpretation to the CBI-
RFT property. The latter becomes a result of expressing the FIR filter
in terms of a finite weighted sum of the [IR filters. When two IIR
filters are used to design a finite duration sequence, which cor-
respond to the theorem given in [2], the two filters must represent
a pair of a single pole lIR filter and its delayed version, as it is the
case with exponential or equal coefficient FIR. In this context, gen-
eralization [1, eq. 9] is equivalent to using multiple pairs of single
pole filters. Examples which fall under this generalization are Han-
ning and Hamming windows.

Our letter did not address the issue of possible subsampling
under the assumption of narrow low-pass characteristics of the
employed window, since the task was not to compare the com-
putations in recursive and nonrecursive calculations of the dis-
crete Fourier transform. The results by Unser [2] on this subject,
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however, can be valuable in determining the proper approach to
on-line Fourier-based spectral analysis.

In replying to the comment made about the impracticality of the
generalization of the CBI-RFT, we note that the decomposition of
a finite duration window to M different windows is not generally
recommended for use in all applications. Equation (9) in [1} may
first be used to qualify the window for CBI-RFT. If the window qual-
ifies, its recursive or nonrecursive implementation must then be
decided based on the value of the block length N in relation to M.

To reply to the last comment, we maintain that using (N — 1) fac-
torsin the cascading structure realization of an N-samples FIR filter
violates the CBI property, since it establishes a dependence
between the total computations and the number of filter singu-
larities.
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Comments on ““Closed-Form Solution for
Underground Impedance Calculations”

JAMES R. WAIT

This letter presents solutions relevant to electromagnetic wave
transmission along conductors in a cylindrical tunnel. The results
and conclusions differ from previous work not referenced. In the
above letter,' the authors formulate the boundary value problem
of an electric line source eccentrically located in a cylindrical cav-
ity. Their solution is consistent with the full-wave solution for a
similar problem [1] arising in electrical geophysics. However, in
reducing their solution to a simpler form, they make some physical
approximations which are questionable.

Tylavsky, Brown, and Ma present a “‘new, more accurate approx-
imation”’ for the modified Bessel function; it reads

Ko(2) = In (1 + 1/2). (4]

For |z] << 1, it behaves as —In z which, apart from a constant,
does have the correct small argument form [2]. However, for |z|
>> 1, it behaves as 1/z while the correct limiting asymptotic form
is (7/22)'? exp (- 2). The authors then assert that, for arg z = /4,

Ko2)Ki2) = zIn (1 + 1/2) ¥))

is a valid representation for all values of |z|. Indeed they dem-
onstrate that the percentage error, in using the approximation, is
small for the condition on the phase angle of z. However, this
agreement with the exact form is fortuitous because K,(z) is approx-
imated, throughout the range of z, by 1/z which is only valid if |z|
<< 1. In fact, it we accept (1) then, to be consistent we must have

d 1 1

Kz} = —Ky(z) = e In <1 + Z) =+ A +2 3)

which behaves as 1/2% as |z| — oo,
Conceding that (2) is a useful empirical representation, for arg
z = /4 for all |z|, one could accept their approximation for the
series impedance Z; for the case where the axial conductor is cen-
trally located in the tunnel. However, their approximated expres-
sion for the eccentric case is only valid for small values of the argu-
ment d/p of the modified Bessel functions of order n where n =
1,2,3, - - - . Consequently their conclusion that the series imped-
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