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ABSTRACT

The Karhunen-Lo¢ve transform (KLT) is applied to
the analysis of dynamic sequences of thermograms
describing the temporal evolution of the body surface
temperature following the application of a external
thermal stimulus. The KLT may be evaluated either
along the spatial or temporal dimensions of the data;
the duality of both representations is emphasized. An
example is presented to illustrate that the KLT allows
an efficient data reduction and facilitates tumor
detection by highlighting physiologically important
abnormalities in the time behavior of thermal patterns.

I. INTRODUCTION

Although static infrared (IR) thermography has a
number of attractive properties for its practical
application in mass screening, some fundamental
limitations have cast serious doubts in the medical
world as to its value for tumor detection [1]. To reduce
some of these drawbacks, a dynamic method for
medical IR thermography has been described recently,
and has been shown to be more reliable for early
breast cancer detection [2]. This technique starts with
microwave irradiation which is intended to induce a
differential heating between healthy and tumor
tissues.The temperature distribution during relaxation
to thermal equilibrium is then recorded, resulting in a
characterization that is richer than that of conventional
thermography.

To facilitate the interpretation of a dynamic
sequence of thermograms and to reduce the amount of
data, it seems advantageous to uses digital image
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processing techniques. This paper describes the
application of the Karhunen-Loéve transform (KLT)
to this particular problem. This method is used
because it is optimal for data compression. It is also
closely related to factor analysis [3], and, as such,
should be capable of extracting patterns related to
physiological or physical characteristics. Similar
techniques have been applied previously to the analysis
of dynamic sequences in medical imaging [4].
However, the decomposition has always been
performed by considering the temporal signals
associated with each pixel. An important point that we
want to make here is that the KLT can also be applied
in the spatial domain, and that both temporal and
spatial decompositions are dual representations. The
use of centered variables is also conceivable but the
normalization with respect to the average signal,
which is either defined in time or in space, is not
equivalent in both representations. In the spatial
approach, standardization with respect to the average
image has the advantage of allowing a clear separation
between dynamic and static image components.

II. DATA COLLECTION AND
PREPROCESSING

A. Dynamic thermography

This technique involves the study of the evolution of
the thermal distribution on the skin after application of
a thermal stimulus [2]. The stimulus is induced by
microwave heating (frequency : f=2.45 GHz,
irradiation time : r=2min; power density : P= 80 to



100 mW/cm?) combined with active convective
cooling of the skin to reduce excessive heating of the
subcutaneous fat layer. The microwave radiation
produces a higher heating rate of tumors in
comparison to healthy tissues, mainly due to
differences in dielectric constant, density, specific
heat, and vascularisation. Following the heating
period, thermograms are acquired every 30s using an
infrared camera (AGA 680) connected to a video
digitizer. At the end of a session of approximately
8min, the evolution of the thermal distribution is
described by a sequence of about 16 (N) digital images
of 512x512 pixels with 8 bits per pixel, which may
then be analyzed using image processing techniques.

Based on experiments on phantoms, Wistar rats and
humans, it appears that the dynamic approach is
superior to conventional static thermography in
revealing the presence of malignant disease, even
without digital image processing [2]. This new method
has the ability to detect deeper lying and smaller
tumors. It also has the advantage of allowing shorter
thermographical sessions, and of being less sensitive to
environmental conditions.

B. Preprocessing

The major problem with our data acquisition system
is that the structures of interest may be subject to small
displacements from one time frame to another, due to
respiration and accidental movement of the patient. To
compensate for this effect, a rectangular window is
specified interactively to extract a breast (right or left)
on an image of the sequence, which typically displays
the whole chest of the patient. This sub-image is used
as a reference template and is correlated with the
remaining images of the sequence within a range of a
few pixels in each direction. A sequence of aligned
breast images is generated by selecting the sampling
window position that maximizes the correlation value.
This processing, which is applied to each breast
separately, compensates efficiently for global
translational movements and has been found to be
adequate in most cases.

For improved robustness, the reference sub-image
is usually extracted from the central image in the
sequence. The measure of goodness of fit is chosen as
the normalized correlation coefficient, which is
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invariant under global amplitude and baseline
variations.

III. THE KARHUNEN-LOEVE TRANSFORM

The use of the KLT for the analysis of thermo-
graphic data is justified for two main reasons. First,
the KLT is optimal for linear data reduction. It allows
the compression of an initial sequence of N images into
a small number N'SN of eigen-images with their
associated weights along the time dimension. These
eigen-images contain almost all relevant dynamic and
static information and should be easier to interpret or
process in order to detect abnormalities. By removing
the components with lesser contributions, one also
reduces noise. Second, the KLT is closely related to
factor analysis [3]. It provides an easy way to estimate
factors that may be related to physiological or physical
characteristics. Our analysis can be performed by
using either one of the following representations of
our data, which globally consists of N images of M
pixels each.

A. The spatial Model

Let the sequence of preprocessed thermograms be
represented by the collection of M-dimensional
vectors {x;, K=1,...,.N}, obtained by re-arranging the
pixels in an image sequentially. We consider the
expansion :

N
Xy = 2a<f‘>u" + n,

n=1

ey

where N'<N, which decomposes our data in a
structural part plus a residual noise component n,. The
vectors u;, i=1...N', represent certain intrinsic spatial
characteristics (or components) of the data that appear
with different weights in time. The coefficients of the
model are the time functions : {a<f>, k=1,....N},
n=1,..,.N.

The KLT is used to determine the structural part of
this model by minimizing the variance of the residual
noise component and by producing orthogonal spatial
factors. The u,'s are computed as the eigenvectors of
the spatial MxM scatter matrix (XXT), where X is the
MxN data matrix X =[x, ....xy]. The rank of (XX7) is



less than or equal to N, which implies that there are at
most N non-zero eigenvalues {A,,, n=1,..N}.
B. The temporal Model

Alternatively, we may also consider the time-series
associated to every spatial location, which we

represent by the set of N-dimensional vectors : {y;,
i=1,..,M}. We now assume a temporal model :
N
yi= by, +n 2)
n=1

where n/ is an N-dimensional noise signal and where
the v,'s are time functions representing different
intrinsic heating or cooling characteristics. The
coefficients of the model, {b<i>, i=1,.M} with
n=1,..,N', are spatial weights which measure the
specific contribution to any of those factors at a given
position i.

To determine the components of this model, we may
use the KLT in very much the same way as for the
spatial representation. The v,'s are chosen as the
eigenvectors of the NxN temporal scatter matrix (or
spatial inner-product matrix) (YYT) =(XTX), where
Y=[y, ... yu]. The eigenvalues of the matrix are {A,,
n=1,...,N}.

C. Dual KLT expansions

The KLT expansions associated with Eq.(1) and (2)
are dual representations. By using the characteristic
equations (XXT)u=Au and (XTX)v=A'v, it is
straightforward to demonstrate the following
properties, which allow the determination of one
representation from the other.

Property 1 : The scatter matrix XXT and the inner-
product matrix XTX have an identical set of non-zero
eigenvalues : A,, ...,Ay, where N' < min(M,N).

Property 2 : The corresponding eigenvectors {u,}
and {v,} are related by the relationships :

v,=X u, /X, (n=1,...,N") 3)
u,=Xv, /v, (n=1,...N) 4)

In our case where N is much smaller than M, it is
computationally more advantageous to determine the
spatial expansion by diagonalizing the inner product
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matrix (XTX) and to use Eq.(4) to compute the eigen-
images {u,}, which is a procedure initially suggested
by McLaughlin [5]. In addition, we can show that the
coefficients of the spatial model {a<¥}, represented
by a N'xN coefficient matrix A=[a, ... ay], may be
simply determined by

A=la, ..ay) = [VA, vy .. VA vpl” 5)

All these equations indicate that there is a one-by-one
relationship between u, and {b%”), and (a5} and v,,
respectively, which is a simple normalization by the
square-root of the corresponding eigenvalue.
Therefore, the spatial or temporal KLT expansions
are essentially equivalent. The only difference is in the
interpretation of the results which depends on the
underlying model.

A natural extension of these techniques is to
consider centered or standardized variables, which is
obviously not equivalent in both formulations. For our
application, we have deliberately chosen to standardize
the data with respect to the average image to
distinguish between the static and dynamic image
components. This normalization favours a spatial
interpretation of the results.

IV. RESULTS

We present results obtained for a patient with a
positive diagnosis of cancer in the left breast. The
sequences of aligned left and right breast images were
extracted from the original thermograms using the
technique outlined in section 2.B. These sub-images
are shown in Fig. 1. The average image (or static
component) of both sequences were computed and are
displayed in Fig. 2-A. A comparison between these
pictures reveals that the left breast is hotter than the
right one. The average image was then subtracted
from each individual image in the sequence in order to
concentrate on the dynamic behavior of the data
exclusively. The Karhunen-Loéve analysis was
performed on these reduced variables using the
algorithm described in section 3.C. For each breast,
the first three eigen-images and their corresponding
temporal weights are shown in Fig. 2-C. In both cases,
the first components account for more than 80% of the
energy of the dynamic component. The effect of



Fig. 1 : Sequences of 12 aligned sub-images for the right and left breast of the patient.

Fig. 2 : Results of KLT analysis for the right and left breast. (A): mean images; (B): first three
eigen-images corresponding to the most significant eigenvalues; (C): temporal weights.
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movement is slightly visible in some components but
has been substantially reduced by preprocessing. The
lower components, which are not all shown here, are
mainly due to noise. The first eigen-component of the
right breast has a nearly homogeneous greyvalue,
while the one associated to the left breast has a
abnormally dark region in the upper right part of the
image, indicating a strong difference in the dynamic
cooling between this area and the background. This
area which is marked by an arrow corresponds to the
exact location of the tumor. The phenomenon that is
visualized on this image is purely dynamic and
supports the fact that the additional (non-static)
information measured by dynamic thermography is
particularly relevant for tumor detection.

The examination of the sequence of time coefficients
corresponding to the different eigen-images is also
informative. For both breasts, the first of these
sequences are rather smooth decreasing functions of
time that may be interpreted as cooling characteristics.
It follows that the brighter regions in the first eigen-
images are the ones that cool down the most rapidly
while the darker ones (smaller values) are the ones that
lose less heat. Thus, a possible interpretation of the
predominant factor is that of a measure related to the
time constant or to the slope of the temperature law as
a function of the spatial position.

For comparison, the KLT was also performed with
no mean subtraction with results comparable to those
obtained above. The static image components were
almost completely extracted by the first eigenvectors
and the corresponding eigen-images were very similar
to the averages displayed in Fig. 2-A. The second
eigen-images were similar to the first eigen-
components displayed in Fig.2-B, with the difference
that the corresponding sequences of time weights were
not nearly as smooth as those shown in Fig. 2-C.
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V. CONCLUSION

The conclusion of this study is that the analysis of a
dynamic sequence of thermograms can be performed
efficiently by decomposing it into two main
components. The first one represents the static
information that is common to most images and is
most naturally measured by the average image of the
sequence. The second component is extracted by
means of the Karhunen-Loéve transform and explains
a relatively large portion (~85%) of the dynamic
variation. The first advantage of this approach is a
substantial data compression. The second is that of an
alternative data representation which emphasizes
important aspects of the time behavior of the thermal
patterns and greatly facilitates tumor detection.
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