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Abstract - This paper presents a linear feature
reduction technique for multi-component or textured
image segmentation. The transformation matrix is
computed by simultaneously diagonalizing scatter
matrices evaluated at two different spatial resolutions.
Under reasonable conditions, this transform closely
approximates the generalized Fisher's linear
discriminants which are optimal for region
separability. Experimental examples suggest that this
technique is superior to the KLT for texture
segmentation.

I. INTRODUCTION

The goal of image segmentation is to divide an
image into regions that are uniform or homogeneous
with respect to certain characteristics. Most
techniques use a single scalar property, such as the
gray level [1]. There is considerable interest in
methods that can handle additional information as, for
example, is to be found in multiple component images.
In such a representation, each pel is characterized by a
feature vector. Typical examples are color images
with three color variables, multiband images such as
LANDSAT or Thematic Mapper, or images of
distributions of chemical elements in electron
micrographic sections [2].

Local texture properties may be represented in a
similar fashion, deriving feature vectors by means of
local linear transforms [3]. In this approach, the input
image is first processed by a bank of filters associated
with some linear transform; for example, the
Hadamard or Sine transform. A non-linear operator
(absolute value or square) is then applied to each
filtered channel and is followed by a lowpass filter.
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This procedure yields a multi-component
characterization of texture properties in terms of local
image statistics associated to some window centered
on the current spatial index. Other approaches to
texture analysis and segmentation are summarized in
[4].

In any of these applications, the use of multiple
features results in a much greater complexity in
decision making. It is therefore advisable to work in a
lower order projection space. The most commonly
used feature reduction technique is the Karhunen-
Logve transform (KLT) [5]. Although this transform
is optimal for minimum error data representation, it
is usually not the most nearly adequate for
discriminating between image regions. In the
particular case where the mean vectors and covariance
matrices associated to the different regions are
known, a much more satisfactory feature reduction is
obtained by using multiple or generalized Fisher's
linear discriminant functions (GFLD) [6]. The GFLD
is optimal for a large variety of separability criteria
[7]. Unfortunately, this technique is not applicable in
most practical situations, due to the lack of a priori
knowledge.

Here, we present an alternative to the KLT that
usually provides a much better approximation of the
optimal linear discriminant functions without
requiring any knowledge of the region statistics. This
approach uses multi-component image representations
at various levels of spatial resolution. The method is
fully described in section 2 and its major properties
are given in section 3. Finally, we present some
examples of texture segmentation and compare the
performance of our approach with the KLT.



II. MULTI-RESOLUTION FEATURE
REDUCTION

The technique described here applies to the
processing of an N component image {u,,}, where
U, is an N-dimensional vector defined for every
spatial index (k,), and n, is the number of pels in the
image. It is assumed that the spatial support Ryon
which the image is defined can be partitioned into r
mutually exclusive homogeneous regions : R, =
R,;UR; ~UR,, with corresponding number of pels
ng=n;+n, - +n,, and mean vectors E{u, (k1) € R,}
=M, (n=1,..,r). It is also required that adjacent
regions differ in their mean values W, # p,, (m#n),
and that all covariance matrices are non-zero.

A. Multi-resolution representation

The first step is to compute a series of images at
different resolutions, {u57}, by processing the
original multi-component image with a sequence of
lowpass filters :

uit= ug* g (1)
The convolution kernels {g§}, which are normalized
to unity, are applied to all components simultaneously.
The index i denotes the level of spatial resolution, and
the initial level is {u};}={u,,}, with the convention
that g<,f?=8k,,. Typically, the smoothed sequences are
computed iteratively from a cascade of operators.
Therefore, for j>i, we have that

udi=ui* g 2
The convolution kernels may be viewed as estimation
windows and are particularly useful for the evaluation
of texture features that are not defined at the single pel
level but always associated to some elementary region.
In practice, we may choose a succession of Gaussian
operators with a octave or half-octave scale
progression. These may be implemented efficiently
using the method described by Burt (or some slight
modification for a half octave progression) that is
based on the cascaded convolution with a separable
gaussian-like kernel that is progressively expanded
and filled with zeros to provide the desired scale
progression [8].
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B. Linear feature reduction

Assuming that the multi-component signal has a
global zero mean, the scatter matrix at resolution level
i is evaluated as

o1 . .
S¥=5,  Xuiius 3)
1o . ;
(k.he Ry

Our feature reduction techniques requires the
estimation of two such matrices $<> and $<9> at distinct
levels of resolution i and j (for example, i=0 and j=1)
and is determined by solving the generalized
eigenvector problem :

NS> = S ¢ 4)

An NxN transformation matrix U=[t, ... ty]T is
constructed from the N eigenvectors, which are
ordered according to their decreasing eigenvalues.
This transform, which is generally non-orthogonal,
diagonalizes both scatter matrices > and §</>. The
eigenvalues {A,, m=1,.,N}, represent the ratio
between the energies of the multi-component image
representations at resolutions i and j projected on the
axes specified by their corresponding eigenvectors.
Since smoothing decreases signal variability and i</,
the eigenvalues will be smaller than one.
Furthermore, the projected features are generally
ordered according to their decreasing discrimination
power. The number of significant features (M) is
determined by retaining only those eigenvalues
greater than a threshold o, which is the expected
energy reduction obtained with noise only (e.g.,
o=1/2 for a half-octave scale progression); this
number is usually inferior or equal to (r-1), as
Jjustified by properties C and E.

ITII. PROPERTIES

A. Invariance on linear transformations

Unlike the KLT, the transformation of the data
defined by Eq. (4), which we refer to as the multi-
resolution KLT (MKLT), is invariant to any non-
singular linear transformation.

Proof : Let us consider the linearly transformed
multi-component sequence w, =Tu,, where T is a
NxN full rank transformation matrix. We first note



that the linear transformation can be applied at any
level of the multi-resolution representation without
affecting the end result, that is :

<l> o

g= (T u) * g5
=T (ukl g<x>) T u<z>

> e
WY =wy *

&)

Consequently, the scatter matrix of w§ is given by
S5 =T S> TT and can be substituted in Eq.(4). It is
then not hard to show that the eigenvalues of this
modified equation and the diagonalized scatter
matrices of the transformed data remain invariant.

B. Minimal energy reduction

Let us consider a single projected component
Vi3 = {7 ug. The energy ratio of the sequences {v7)
and {vi3} is measured by A4 = (7S¢ )/(¢TS<>f) and
can be shown to be minimized when ¢ is the first
eigensolution of Eq.(4). Since vy7= v * g3,
follows that our feature reduction method will extract
the components for which spatial smoothing produces
the least energy reduction.

C. Approximation of the generalized linear Fisher-
discriminant

In multiple discriminant analysis, the scatter matrix
S is decomposed as the sum of a between-region
scatter matrix B and within-region scatter matrix W.
The GFLD, which maximizes the between to within-
region variance ratio, is obtained from the eigen-
solutions of [6,7] :

Bt=pWt. (6)

The eigenvalues represent the between to within
variance ratios along the axes of this transform. In the
case unsupervised segmentation, B and W are
unknown and this technique cannot be used. We will
show, however, that the eigenvectors of Eq.(6) and
Eq.(4) are equivalent, provided that :

B<“i>t :B<i>W<ui>t - B<,{>t =ﬁ<j>W<J>t (7)

This is equivalent to requiring that : (i) the between-
region scatter matrices at both levels of resolution are
equal, which is quite reasonable since smoothing only
modifies the average in the border regions which
generally account for a small portion of the total
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image area, and (ii) that the eigenvectors of (6) are

identical (or at least not changed significantly) from

one level to another, which is generally well satisfied.
Proof : Eq. (7) implies that :

[B5> + WPl = (B> + 1) Wt )
(B + W] t = (B> + 1) Wt (ii)
W<t = (B9>/B<>) Wt (iii)

Eq.(iii) can be substituted in (i). The next step is to

isolate W5>¢ on the right hand side of Egs.(i) and (ii)

which yields

_ ([§<i>/§<j>2 [B<i>
(B<i> + 1) u

1 . .
=TT BY Wl

Wt + W)t (iv)

W<,{>t (V)

We finally complete our proof by equating those two
expressions and rewriting the resulting equation as

[BS> + W] t =\ [BY> + W] £ (vi)
where A' is given by
o1+ 1B 8)

1+ 1/«

D. Relationship with the Karhunen-Loeve transform
The solution of Eq.(4) is equivalent to the KLT in
the particular case where S5 is proportional to the
identity matrix. This property leads to a particularly
efficient implementation. In a first step, the KLT is
computed at resolution level i and the rotated eigen-
components are standardized by their eigenvalues,
which results in an identity scatter matrix. The
transformed components are then convolved with the
kernel {g37} to reach resolution level j. The MKLT
is now given by the KLT associated to the scatter
matrix of the transformed sequence. This procedure
may be iterated for successive levels of resolution.

E. Ordering of the components of the MKLT

An advantage of the MKLT over the KLT is that the
eigensolutions of Eq.(4) are almost always ordered
according to their discriminability. If the conditions
of property C are satisfied, the relationship between
the eigenvalues of Eq.(4) and (6) is the following :
1+ 1/B>
1+ /87 =

B e )

A=



where oi=p<>/Bg>. If we now assume that o, which
is approximately equal to the ratio of the within
region variances at resolution levels j and i, is equal to
some constant, AJ is an increasing function of B<¥
which implies that the eigen-solutions of Eq.(4) are
ordered according to their decreasing within to
between variance ratios. When the within-region
variation is due to noise alone, the value of a/=o can
be derived analytically and used as a threshold for the
determination of the number of significant
components (M).

IV. EXPERIMENTAL EXAMPLE

To illustrate this technique, we have applied it to the
segmentation of a 128x128 test image composed of
two predefined texture regions (c.f. Fig. l1a-b). Both
texture regions had their histograms equalized with 32
equiprobable gray level values to guarantee that
segmentation is based on texture characteristics
exclusively. After subtraction of the global mean, the
image was filtered by the local 2x2 discrete Hadamard
transform and thereafter rectified, which is the
simplest application of the technique described in [3].
The corresponding multi-component image
representation is shown in fig. 1-c1 to 1-c4. The first
operator (|} }I) is a lowpass filter while the three

others are vertical (I} j}l), horizontal (HH) and
diagonal (| 1}]) edge detectors, respectively. Two

global indicators of individual channel performance
have been included: m; is the current relative energy
contribution in channel i, and B; is the corresponding
between to within-region variance ratio computed
using the pre-defined regions displayed in Fig. 1-b.
This latter quantity is an objective measure of region
separation. The channel histograms are also
represented.

A multi-resolution image representation was
obtained using an iterative Gaussian smoothing
similar to the technique described by Burt [8]. The
original scheme was slightly modified to provide a
half octave scale progression. For the initial sequence
{u%7}, the discrimination power is very small,
although it can be seen that the texture regions differ
slightly in their mean values. The effect of smoothing
is to decrease the within-region feature variance as
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illustrated in Fig. 1-d1 to 1-d4 which displays the local
texture features {u3’7}, after 3 iterations of the
Gaussian filter. The equivalent diameter of the spatial
window is approximately 7. Channel No. 2 is the most
discriminative with (,=1.08. The first reduced
components obtained with the the KLT and the MKLT
are shown in Fig.1-e and 1-f, respectively, and must
be compared to the optimal solution obtained with the
GFLD (Fig.1-g) which was computed using the pre-
defined texture region given in Fig.1-b. The
performance of the KLT is fair with $,=0.87 but is
not better than channel 2 taken on its own. The MKLT
was determined by simultaneously diagonalizing the
scatter matrices at resolution level 2 and 3 (e.g. <2
and $<3>). With B;= 1.67, it provides an excellent
approximation of the GFLD (B*=1.71). Unlike the
KLT, the corresponding histogram is bimodal and
makes accurate image segmentation feasible by simple
thresholding.

In this example as well as in all other cases that we
have considered using different textures, the
discrimination power of the first component of the
MKLT was always found to be superior to any
individual channel or to any component of the KLT
and was almost as good as that of the GFLD. The
texture regions usually appeared to be more nearly
uniform within the different image regions and the
modes in histogram were always more pronounced.
We have also found the MKLT to be quite robust in
the sense that segmentation performance was less
sensitive to changes in structural parameters such as
the size and the texture properties of the image
regions than for the KLT. It should be pointed out,
however, that the method breaks down when the size
of the averaging window approaches the size of the
smallest regions in the image. This result is not
surprising and is due to the fact that smoothing with
too large a kernel tends to modify the region averages
so that they can no longer be assumed to remain
constant, as required for property C.

The MKLT does also perform well when there are
more than two regions in an image. In such cases, the
number of significant components (M) of the MKLT
(or GFLD) can be greater than one ( M < max{r-1,
N} ), which usually requires the use of more
sophisticated classification techniques than simple
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Fig. 1 : Example of feature reduction. (a) : 128x128 test image created using D57 and D9 Brodatz
textures [10], (b) definition of image regions, (c1-4) : filtered channels using masks obtained
from the 2x2 DHT , (d1-4) : feature planes at iteration 3 of the smoothing algorithm, (e) : first
component of the KLT, (f) first component of the MKLT, (g) Fisher linear discriminant.
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histogramming. The MKLT may also be used with
other texture features than those discussed in the
example. These features, however, should be
evaluated from the succession of an operator (usually
non-linear) working at the pel level and a smoothing
window which provides a local estimate of the
expected value of some region property. This
particular decomposition defines a broad class of
measurements that includes most of the features
commonly used in texture analysis [9].

V. CONCLUSION

In this paper, we have discussed the use of feature
reduction techniques to simplify segmentation of
images with multiple components. We have described
a new multi-resolution linear transform (MKLT) that
appears to be more powerful than the conventional
KLT. This transform has a number of very attractive
properties such as its good approximation of the
optimal generalized Fisher's linear discriminants and
its ordering of the reduced components according to
their separability. It is specially suited for
segmentation by texture but is also applicable to all
kinds of multi-component signals such color or
multiband images.

We have presented an illustrative example for
which efficient texture segmentation could be
achieved by simple thresholding of a reduced
component. This procedure could be potentially
improved by using the MKLT in conjunction with
more sophisticated pel classification schemes such as a
coarse-fine strategy to refine the location of edges or
relaxation labeling.
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