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Maximum Likelihood Estimation of Linear Signal
Parameters for Poisson Processes

MICHAEL UNSER anD MURRAY EDEN

Abstract—The estimation of linear signal parameters is studied un-
der the hypothesis of independently Poisson distributed measurements.
A simple iterative maximum likelihood estimator (MLE) is derived and
is optimized for rapid convergence. It is shown to be statistically op-
timal in the sense of providing unbiased and minimum variance esti-
mates. Experimental conditions are identified where MLE results in
significant performance improvement when compared to conventional
linear least squares (LLS).

I. INTRODUCTION

Within the armamentarium of instruments for biomedical re-
search there are a number whose data are acquired by counting
independent events that fall into particular intervals of the mea-
sured variables. For example, flow cytometers count cells within
bins or channels corresponding to particular intervals of DNA mass
per cell [1], PET scanners count coincidences of gamma rays emit-
ted from a positron annihilation corresponding to photo-emission
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in crystal pairs occurring within a short time interval [2], energy
dispersive X-ray spectrometers or electron energy loss spectrome-
ters count X-ray photons and electrons respectively in different en-
ergy intervals [3]-[4]. The resulting histograms of count versus
channel number are then analyzed in order to estimate averages,
standard deviations, and other statistics of the experiment. In es-
sence, the analysis is equivalent to making a model of the under-
lying process and estimating its parameters.

Two factors need to be taken into account. First, the channel

counts per unit time, denoted by {x;}, where k = 1, - -+, Nis
the channel index, are generally assumed to be independent Pois-
son random variables with parameters { pu, k =1, - - -, N }. Sec-

ond, the likelihood that a count will be added to any particular
channel depends on physical or instrumental factors which deter-
mine the choice of an appropriate signal representation. A wide
range of problems is approached by assuming that the signal, de-
fined as { u = E{x;}, k=1, -+, N}, may be linearly decom-
posed as

M .
e = PX ai’(kl)y

(k=1,--+.N) (n

where the 4/ ”’s are known characteristic (or basis) functions of
the channel number (k), and where M is usually much smaller than
N. These basis functions are usually directly related to some ele-
mentary events of interest. This type of representation uses the
principle of superposition. The unknown parameters or expansion
coefficients {a;, i = 1, - - -, M }, which are the weights of those
functions, usually provide measures of the occurrence of the events
of interest. For example, in X-ray spectrometry, a particular non-
volatile element in a sample of fixed dimension will induce X-ray
emission of photons with a characteristic energy spectrum. The ex-
pected value for the number of photons generated per unit time
within any particular energy interval (channel) is linearly related
to the number of atoms of that element. Thus, for a mixed sample
of several species, the measured spectrum is the linear superposi-
tion of a set of characteristic functions (the individual reference
spectra, and the background radiation) weighted by the relative
concentrations of the elements. In practice, reference spectra are
either recorded as a whole and corrected for the average effect of
background or decomposed as a sum of a few characteristic lines
which are usually well represented by Gaussian curves [3], [4].

As in the example of X-ray analysis, physical or instrumental
factors may also include a background, or ‘‘dark current,”” unre-
lated to the events of interest. Such a slowly varying continuum is
usually well represented by a lower order polynomial function [5].
In some other instances, the signal is known to be band-limited,
due to the physics of the process that is being monitored, or as a
result of the convolution with the characteristic response of the de-
tector which often has the effect of a low-pass filter. In such a case,
a representation with a limited number of Fourier coefficients may
be appropriate.

It is customary for investigators to estimate the parameters of
such models using least squares techniques [3], [6]. Linear least
squares (LLS) is widely used because it is familiar to virtually all
biological scientists and it is simple to do. LLS is optimal for ad-
ditive white Gaussian noise, but is not the most appropriate for
nonstationary Poisson noise, where the variance is equal to the ex-
pected value of the underlying signal. In this correspondence, we
investigate the use of maximum likelihood estimation (MLE)
which, in the present case, is shown to be optimal in the sense of
providing minimum mean square error estimates of the signal pa-
rameters. An important practical issue is to explore whether there
are ranges of experimental interest for which improvement of per-
formance due to MLE is sufficient to justify added complexity when
compared to conventional LLS.
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II. PARAMETER ESTIMATION

The problem stated in the Introduction is equivalent to estimat-
ing the mean vector of a Poisson process characterized by the linear
model

E{x}=p=Ta (2)
where i = [, * - - uy]” is the mean vector of the measurement
vectorx = [x; + +  xy 15, T = [t -+ - tjy} an N X M matrix, and

a = [a, - - - ay )7 the vector of expansion coefficients. An esti-
mate & of the parameter vector a is computed on the basis of an
experimental instance of x using the known transformation matrix
T whose column vectors are obtained from the characteristic func-
tions in (1).

A. Properties of the Linear Poisson Model

The sequence of Poisson parameters { p, } represents the mean
of the Poisson process but also the variance of the individual mea-
surements. For independently distributed Poisson variables, the log-
likelihood function of x is

N —pk o, Xk
log < s e_ﬁ)
k

=1 X!

L(x[n)

N
,Z:I (= + x log (m) — log (x!)) (3)

and its covariance matrix is the diagonal matrix: diag { p}.

Since the number of parameters (M) in (2) is generally much
smaller than the number of measurements (N ), the estimation of
the expansion coefficients for a given x generally results in sub-
stantial noise reduction. More specifically, the noise contribution
before data reduction is measured by

E{llx = n|'} = (diag {p}) = Z ae (4)

When x is used to compute an estimate & of the signal parameter
in (2), the residual noise after processing is measured by the mean
square error between the estimated and true mean vectors:

E{|i - n['} = E{| TG - o)} = v {1C,T"} (5)

which is a function of the estimator’s covariance matrix: C; =
E{(&— a)(a — a)"}. This criterion provides a good performance
indicator. It also indicates that noise reduction is maximized when
the variances of expansion coefficients are minimized.

An upper bound for the performance of any estimator may be
obtained by using the Cramer-Rao inequality [7]. By substituting
(2) in (3) and taking the partial derivatives with respect to a, the
Fisher information matrix is computed as

J E{(L(x|a)/6a)(L(x|a)/6a)T}
= E{T" diag {u}_l(x — ) (x — ) diag { u}_lT}
77 diag {n} 'T. (6)

It follows that the covariance of any unbiased estimator of a is
bounded by

CizJ ' =(T"diag{p} 'T)" (7

B. Linear Least Squares (LLS)

The simplest estimation technique is LLS where the parameter
vector is determined by minimizing the quadratic error between the
model (2) and the measurement vector x, and leads to the well-
known solution

as =(T'T)'T"  x=T - x. (8)

T' is the so-called pseudoinverse of T and is equal to T7 when the
t’s are orthogonal. It is straightforward to show that the LLS es-
timator of & is unbiased and that its covariance matrix is given by

Cis = E{(a — ys)(a — &)} = T' diag {pn} (TH". (9)

By using the fact that & is linearly related to x and that the Poisson
distribution can be frequently approximated by a Gaussian law, it
follows that the distribution of & is approximately multivariate
Gaussian: ;g ~ N(a, Cis).

C. Maximum Likelihood Estimation (MLE)

The maximum likelihood estimator @,y is defined as the param-
eter vector that maximizes the joint probability density function of
the measurement vector. By using the constraint that p = Ta, amL
is determined by taking the partial derivative of (3) with respect to

a, and solving
dL(x|a)/da
e\
”>1 = 0.
BN/
(10)

A numerical solution can be found by using a standard steepest
descent or gradient method. An iteration of this algorithm is de-
scribed by

it

TT - OL(x|p)/3n

I
ﬂ
5
| —"
TN
—
|
T |x
~——
TN
|

gy = ag + o - Teg, (11a)
or, equivalently, by
Rary = Wy T ooy - (TTT) - ey (11b)

where e, is the gradient of log-likelihood function with respect to
n evaluated as p, given by

Xy = Mo,
T 3 M DRI
e(,(,—[

Bky.1

XN = BN (12)
Bk).N '

and which measures the relative error between x and the current
mean estimate ).

The rate of convergence is improved significantly by selecting,
at each iteration, the step size oy that provides the greatest increase
in the likelihood function. This is achieved by choosing oy such
that the gradient at iteration (k¥ + 1) is orthogonal to the gradient
at iteration (k) [8]. Using (11b) and (12), the error at iteration (k
+ 1) can be expressed as

€+ 1y = diag {P(k+|)} _l(x = Py O‘k(TTT)e(k))

(1 — oy diag { ey} (TTT))ey

where the simplified expression on the right-hand side is obtained
by assuming that p, is reasonably close to ., and that (diag
{pu+1 )" diag { p}) is therefore almost equal to the N X N
identity matrix. Hence, the scalar product between two successive
evaluations of 8L (x| n)/da is approximately equal to

eloT - TTeysr) = ey(TTT)
(1~ oy diag { py } —I(TT"))ew

The optimal step is found by setting this expression to zero and is
given by

n

1 77ew |

T . —1 )
(TTT91I<)) diag {l’-(k)} (TTTe(k))

As both vectors (T7ey,) and (T T ey,) have to be evaluated suc-
cessively in order to compute the update in (11a, b), the determi-
nation of o is relatively straightforward. A cycle of this algorithm
is more or less equivalent in complexity to an LLS in the simplest
case of orthogonal basis functions. In such a situation, the correc-
tion term TTTe(k, may be interpreted as the projection of the error
on the subspace defined by #;, - - -, fy. The least squares estimate
given by (6) provides an initial guess @y, which is usually very
close to the correct ML solution. Under such circumstances, it has
been verified experimentally that the algorithm converges rapidly
to the correct solution with a number of iterations approximately
equal to M (the dimensionality of a).

(13)

o =
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It is demonstrated in the Appendix that the MLE provides the
best possible estimator of a in the sense that it is unbiased and has
minimum variance; this property is usually referred to as efficiency.
It is also shown that its covariance matrix corresponds to the lower
Cramer-Rao bound given by (7):

- -1

Cv = E{(a - a5)(a - &LS)T} = (77 diag { n} ]T)

(14)
As for the LLS, the joint distribution of @y is approximately mul-
tivariate Gaussian. This assertion is further supported by the well-
known asymptotic properties of maximum likelihood estimators [7].

III. SIMULATION AND DiscussiON
For the comparison of LLS and MLE, some general observa-
tions can be made on the basis of a simple two component signal
model:

(15)

where a, represents a constant background on which has been su-
perposed some waveform represented by a unique function {1,
k=1, -+, N}. Typical examples of such signals are given in
Fig. 1. The loss of performance of LLS when compared to MLE
may be measured from the ratios of the variances of the estimated
expansion coefficients

p; = Var {@u }/Var{ans} =1, i=1,-",M<N,
(16)
or by a more global criterion which is the ratio of their expected

mean square errors for the estimation of p, and which is evaluated
as

W = ap + ax

p =t {TCy . T"} /tr {TCsT"} = 1. (17)

An important observation is to be made: for Poisson signals, mul-
tiplying the mean p by a factor o (which is usually achieved by
increasing the acquisition time in the same proportion), decreases
the signal-to-noise ratio by v while the relative performance cri-
teria (16) and (17) remain unchanged. Consequently, for the two
component model (15), p;, 0, and p depend only on the ratio a, /a,
(which is invariant to any scaling factor @) and may as well be
expressed as a function of max { g} /min { p, } which, we feel,
provides a more useful indicator.

The results of the computation of p as a function max { p, } /min
{ w;} for the cosine, straight line, and quadratic reference signals
are shown in Fig. 2. For these particular models, it can be seen
that the use of MLE may result in a 20-30 percent greater noise
reduction than LLS when max { y; } /min { 4, } > 100. When the
sequence {7, } was chosen to be zero mean, and therefore orthog-
onal to the background component, the improvement of the per-
formance of MLE was essentially due to a reduction of the variance
of a,. In this particular case, both methods performed equally well
for the estimation of a; (p; = 1).

The Gaussian peak model provides a simple example where the
relative improvement of the MLE can be made arbitrarily large by
decreasing the width of the peak. This is illustrated by Fig. 3 which
shows the relative performance criterion computed for various peak
widths. It appears that the loss of performance of the LLS increases
dramatically as the peak gets narrower. The superiority of the MLE
approach is due to the fact that it incorporates the property that, for
Poisson measurements, the variance is equal to the mean value. In
contrast, LLS applies identical weights to all measurements and
therefore provides a fit that is dominated statistically by high signal
values. This results in a greater estimation error which is further
amplified when the proportion of high values is comparatively
small, as is the case when the peak width is narrow. As for the
previous example, MLE clearly outperforms LLS when max
{ we}/min { p,} > 10.

In conclusion, the loss of performance of the LLS over the MLE
is far from negligible under the following conditions: i) when the
ratio between the maximum and minimum signal level is large, say
greater than 10; and ii) when the overall proportion of large signal
values is relatively small, which is usually the case when one is
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Fig. 1. Examples of reference signals used for simulation. (1) Straight line:
1, = k + ¢; (2) quadratic: t, = k% + c¢; (3) cosine: #, = cos (2wk/N);
(4) Gaussian peak: 1, = exp { — (k — A)?/20?} where A = N/2,0 =
Nw,and k =0, - - -, 99 (N = 100).
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Fig. 2. Ratio of the mean square estimation errors for MLE and LLS (cri-
terion p) as a function of Max { p}/Min { u} for signal models (1),
(2), and (3) in Fig. 1 and N = 100.
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Fig. 3. Ratio of the mean square estimation errors for MLE and LLS (cri-
terion p) as a function of Max { p}/Min { } and the peak width for
reference signal (4) in Fig. 1 and N = 100. The relative width w is
defined as the ratio of the standard deviation of the peak reported to the
size of the estimation region.

estimating peak heights. These are examples for which the usual
hypothesis of stationary Gaussian noise is strongly contradicted and
where the use of the MLE is to be preferred. These results should
be useful for background and peak estimation in low dose scanning
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transmission electron microscopy (STEM), electron energy loss
spectrometry (EELS), or energy dispersive X-ray spectrometry
where the hypothesis of independent counting statistics is generally
well accepted.

APPENDIX
EFFICIENCY OF PoissoN ML ESTIMATOR

The efficiency of the MLE is demonstrated indirectly by using
the following theorem.

Theorem [7, p. 185]: If an estimator exists such that equality is
satisfied in the Cramer-Rao inequality, it can be determined as a
solution of the maximum likelihood equation.

We will show that such an estimator exists. This implies that the
covariance matrix of the MLE is given by the inverse of the Fisher
information matrix. '

Let us consider the linear minimum mean square (LMMS) esti-
mator where the samples are weighted by the inverse of their stan-
dard deviation:

dpvws = (T7 diag {p} 'T) 'T7diag {p} 'x = Rx. (A.1)

Note that this formula cannot be applied in a practical situation
because it requires the true mean p to be known. The LMMS es-
timator is unbiased and its covariance matrix is computed as

Civms = E{R(x - wW(x - u)TRT} = R diag {u}RT
= (T diag {u} 'T) " (17 diag {p} ' T)

- (77 diag {n} 'T)”"
- -1
= (T"diag {n} 'T) . (A2)
This expression corresponds to the lower limit specified by the Cra-
mer-Rao bound (7) and therefore proves the efficiency of the MLE.
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On the Performance Analysis of the MVDR
Beamformer in the Presence of Correlated
Interference

MICHAEL D. ZOLTOWSKI

Abstract—Expressions are developed which describe the output of
an adaptive array based on the minimum variance distortionless re-
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sponse (MVDR) beamformer when multiple correlated interfering sig-
nals are present. Such signals may arise in certain multipath scenarios
or in the case of ‘“‘smart” jamming. Previous analyses considered only
the case of a single correlated interferer. Three scenarios of interest
are examined: very high SNR, moderately high SNR, and very low
SNR. The analysis is based on simple linear algebra concepts and gen-
eralizes a number of previously reported results proved for special

- cases. In addition, a modification of MVDR beamforming based on

Total Least Squares is introduced in the final section as a means for
mitigating the sensitivity of the MVDR beamformer to uncertainties in
element positions, pointing angle, etc.

I. INTRODUCTION

In [1], the signal cancellation and interference rejection prop-
erties of the minimum variance distortionless response (MVDR)
beamformer were studied in detail for the case of a single corre-
lated interferer (in addition to the desired source) and additive noise
for various levels of signal-to-noise (SNR) ratio. Although it is
pointed out that the results derived in [1] can be extended for the
case of more than one interferer, a general analysis based on the
approach taken there requires calculations- that are quite tedious.
Here, a different approach is taken which facilitates the perfor-
mance analysis of the MVDR beamformer for an arbitrary number
of correlated/uncorrelated interferers. Interfering signals which are
correlated with the desired source may arise in certain multipath
scenarios or in the case of ‘‘smart”” jamming [1]-[3]. Three scen-
arios are examined: very high SNR, moderately high SNR, and
very low SNR. The approach taken here, based on simple linear
algebra, produces results that agree with and extend upon those
presented in [1]. In addition, a modification of MVDR beamform-
ing based on Total Least Squares is introduced in the final section
to mitigate the sensitivity of the MVDR beamformer to uncertain-
ties in element positions, pointing angle, etc.

II. ARRAY SIGNAL MODEL AND THE CORRELATION MATRIX

Consider an array of m antennas receiving signals from d sources
of emission at directions 6, k = 1, - - - , d with respect to the
array. The angles of arrival are enumerated such that 6, is the angle
of the desired source. We will assume that the desired source is
narrow-band and that narrow-band filtering about the center fre-
quency of the desired source, fy, occurs at the front end of the
receivers such that the d — 1 interfering signals are narrow-band
and co-located in frequency with the desired signal at the beam-
former input. We will also assume additive, “‘spatially white’’
noise. Let x (1) = [x,(¢), x,(¢), * * * , x,(¢)]7, where x;(t) is the
signal received at the ith array element. Given the above-assumed
scenario, x (1) can be expressed in the following fashion:

x(1) = As(t) + n(1). (1)

A = la(0)), a(8,), - -, a(6,)] where Ay = a;(6;) is the re-
sponse of the ith array element relative to that of the first when a
single signal arrives at 6, s(z) = [s,(1), - - -, s,(1)]7 where
s, (1) is the signal associated with the kth source as received at the
first array element, and n(¢) = [n,(t), n,(t), - - - , n, (7)]” where
n; () is the additive noise present at the ith receiver. Note that we
here assume the d columns of A, a(f,), k =1, -+ - , d, to be
linearly independent.

With the assumptions made previously, it follows that the cor-
relation matrix of the array element outputs can be written in the
following form:

R = E[x(t) x"(1)] = ASA" + o621 (2)

where H denotes conjugate (Hermitian) transpose. S is the d X d
source covariance matrix associated with the d signal sources: § =
E[s(t)s”(t)]. The clements of S are Sy, = E[s,(t)s5(£)] =
PriOk0;, ky i =1, - -+ | d, where p; is the complex correlation
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