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THE SPECTRAL SIGNAL-TO-NOISE RATIO RESOLUTION CRITERION:
COMPUTATIONAL EFFICIENCY AND STATISTICAL PRECISION
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This note describes a practical improvement in the computational efficiency of the spectral signal-to-noise ratio (SSNR)
resolution criterion for correlation-averaged images. The total set of N images is randomly partitioned into n, subsets, each
subset is separately averaged, and a reduced form of the SSNR is computed from these average images. In general, larger
values of n, achieve lower statistical uncertainty, while smaller values of n, are computationally more expedient. It is shown
that, for negatively stained data, a judicious compromise is achieved with 10 < n, < 20, regardless of how large N may be.

1. Introduction

In a previous paper [1), we have introduced the
SSNR resolution criterion. Compared with three
alternative criteria, viz. the differential phase re-
sidual (DPR) [2], the Fourier ring correlation
(FRQO) [3], and the Q-factor [4], the SSNR offers
several advantages. First, it relates in a straightfor-
ward way to the diffraction-based resolution crite-
rion that has long been applied to crystalline
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specimens [5]. Second, it has a lower statistical
uncertainty than the DPR, the FRC, or the Q-fac-
tor (which is usually computed for single Fourier
components). Third, it allows one to estimate the
improvement of resolution that may be expected
from expanding the data set by a specific amount,
as well as the asymptotic resolution to be achieved
by averaging over an infinitely large data set.
However, whereas the DPR and FRC are
calculated on the basis of two Fourier transforms.
— one for each partial average over the respective
halves of the data set — the SSNR requires the
Fourier transform to be evaluated for each image,
which becomes increasingly laborious for large
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data sets. Here, we present a way of expediting
computation of the SSNR. In particular, we ex-
amine the properties of a reduced SSNR based on
a himited number of partial sums, and conclude
that a computationaily much less demanding form
of the SSNR may be defined that nevertheless
retains essentially the full statistical precision of
the original measure.

2. Basic definition

Given a set of images { x{'}} with correspond-
ing Fourier transforms { X!} }, the SSNR (&) in
a region R in Fourier space is given by:

2
0 s
Gpt —— -1 (1)
GRn/N
The signal energy 62_ and the noise variance 65,
which is reduced by a factor N in the final aver-
age, are estimated as

Z| n|

N
R - 1 ,
01%5 = T, where X, . £ N g ,(,,),,,
(2)
N p—
ID MBS
a2 R i=1 )
_ . 3
oRn (N—l)nR ( )

np is the number of spectral components in R
and Xm , 1s the average image in Fourier space.
The spatial frequency dependence of ay is calcu-
lated by taking R to be concentric annuli in
Fourier space. An operational resolution limit is
specified as the spatial frequency at which the
SSNR falls below an acceptable baseline (typi-
cally, SSNR = 4). When the number of images to
be included in the average is increased progres-
sively, as is the case in most practical applications,
the energy estimates in eqs. (2) and (3) may be
updated recursively *, which is computationally
more efficient than recomputing eqs. (1) to (4) for
each addition to be data set.

3. Generalization to subsets

Instead of considering each image and its Four-
ier transform separately, let us consider n, subsets

of particles {x'/’}, where i=1,.... N, and j=
1,....n,, with a total of N images. The average
over subset (j) is denoted by x{’/ and its FT is
X{7 In terms of these latter quantities, a reduced

m,n"

form of the SSNR may be computed as:
&= —B (4)
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where 67, is given by eq. (2) with the global
average being evaluated as
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and where 65 . is an estimate of the noise variance
given by
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Note that the determination of eqgs. (4)-(6) only
requires the evaluation of n, Fourier transforms,
as opposed to N in the basic formulation.
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4. Statistical analysis

Using the same arguments as in our previous
study [1], (&% + 1) can be shown to have a non-
central F distribution with non-centrality parame-
ter A = ngag, where a, = E{ay}. and degrees of

* This is achieved by defining the auxiliary arrays { X%/} } and
{®!/) } which represent the Fourier transform of the average
image and spectral density of the first j images, respectively.
When adding the ;jth image to the previous data set of
(j — 1) particles, these quantities are updated iteratively:
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We also use the property that the numerator in eq. (3) is
equal to
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Fig. 1. Variance of the SSNR (ag) as a function of the number
of subsets (n,) into which the data are partitioned.

freedom n,=n, and nj=ng(n,—1). Because
n% <n,=ng(N —1), the estimate of the noise
variance given by eq. (6) is less reliable than the
standard estimate given by eq. (3), and so the
reduced form of the SSNR will be subject to
greater uncertainty. This effect may be quantified
by using an approximate expression for the vari-
ance of a non-central F distribution [1] (see ap-
pendix), and making the appropriate substitutions
for n, and nj:

2+4 2+ 4a, + 2al
Var{dy ) = — = 8T “%k
R nR(ng_l)
=] (o) +4c}(n,), (7)

where a, denotes the true SSNR. The variance of
the SSNR has been expressed as the sum of two
terms, the first of which is independent of Ny,
whereas the second decreases with n, (the only
parameter under direct control of the experi-
menter), as illustrated in fig. 1. The relative mag-
nitudes of the two components shown in this plot
are only illustrative since both depend on ag, as
well as on ng, which varies with R and is fixed by
sampling considerations. However, in all cases, the
tendency is the same: as n, increases, the variance
decreases monotonically from o2(cc) + Ac2(2), for
n,=2, to an asymptotic value of o2(c0). More-
over, the relative proportion of the non-asymp-
totic variance component with respect to its maxi-
mum value (e.g. 46/(n,)/Ac}(2)) is a dimension-

less quantity that is independent of both «, and
ng and can be read in percents on the left axis of
fig. 1. What is clearly illustrated by this graph is
that the rate of improvement is much more sub-
stantial for smaller values of n, than for larger
ones. For practical purposes, we may tolerate an
overall variance reduction that is slightly below
the maximum achievable such as, for example,
90% (for n, =11) or 95% (for n,=21).

The statistical uncertainty in the SSNR (ag)
will translate into some corresponding uncertainty
in spatial resolution. This relationship, however, is
far from obvious and is highly dependent on the
particular shape of a given SSNR curve, as dis-
cussed in the appendix.

5. Results and discussion

To investigate the effect that the number of
subsets used may have on the SSNR resolution
estimates, we tested two data sets: negatively
stained ribosomal particles [6] and herpesvirus
capsomers [7]. In each experiment, the images
were randomly divided into n, equal subsets and
the resulting values of the reduced SSNR were
calculated as described in section 3, the resolution
(/4) being determined at az =4 [1]. The proce-
dure was repeated many times, and from these
results, the expected value and standard deviation
of f, were calculated for each n ¢ (tables 1 and 2).
It is evident that, for both data sets, the standard
deviation of f, decreases as n, increases. The
trend is essentially the same in both cases and is
qualitatively consistent with the theoretical curve
calculated for a, (fig. 1). However, the relative
proportion of the non-asymptotic variance compo-
nent is surprisingly large, substantially greater than
would be predicted from evaluating eq. (7) at the
critical value of az =4. An explanation of this
effect is that the resolution limit depends on the
values of the SSNR over a range of frequencies
and that the uncertainty in f, is determined pre-
dominantly by those spectral bins within this range
that have the largest expected values for &, (cf.
appendix). Another effect that can be observed is
that the expected value of resolution limit slightly
decreases as the number of groups increases. This
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Table 1

Summary of an experiment in the statistical uncertainty in the
spatial resolution specified by the SSNR for a set of N =80
40S ribosomal subunits images (size 64 X 64 and sampling step
Ax = 0.714 nm) [6]; the data were divided into various num-
bers of subsets (ng) with multiple such random divisions for
each value of n,

ny, Number Range Resolution limit ( f;)
of trials (nm™") Average  Standard
(nm™ ") deviation
(%)
2 80 1/4.15-1/2.60 1/3.18 11.5
4 80 1/3.32-1/2.76 1/3.19 4.48
10 80 1/3.30-1/3.07 1/3.24 1.07
20 80 1/3.28-1/3.13 1/3.24 0.64
40 80 1/3.28-1/3.18 1/3.25 0.60
80 1 - 1/3.26 -

observation is consistent with the fact that the
theoretical expected value of the SSNR curve can
be shown to be slightly biased (in the proportion
n5/(n5—2)) and that this effect is the most pro-
nounced for small values of n,.

The partition of the data into two subsets only,
which is the strategy that is used in both the DPR
and the FRC, is clearly the worst case and the
statistical errors in our examples are far from
being negligible. In different trials, the resolution
values given for the ribosomal data set varied
from 2.6 to 4.1 nm depending simply on how the
data were arbitrarily divided! A comparable span
is encountered in resolution figures given by con-

Table 2

Summary of an experiment in the statistical uncertainty in the
spatial resolution specified by the SSNR for a set of N =24
herpesvirus capsomer images (size 50X 50 and sampling step
Ax = 0.30 nm) [7]; the data were divided into various numbers
of subsets (ny) with multiple such random divisions for each
value of n,

n, Number Range Resolution limit ( f,)
. 1
of trials (nm ") Average  Standard
(nm™") deviation
(%)
2 9% 1,/4.06-1/2.65 1/3.09 11.7
4 9 1/3.82-1/2.73  1/3.14 8.06
12 48 1/3.14-1/287 1/3.18 1.54
24 1 - 1/3.07 -

ventional FRC (which is mathematically related to
SSNR with n,=2) and DPR [1]. However, these
estimation errors fall off quite rapidly as n, in-
creases, and the statistical uncertainty for n, = 20
should be rather close to that associated with our
initial formulation of the SSNR criterion [1] (n, =
N).

We would like to emphasize the distinction
between the respective influences of N and n,.
Since the resolution is determined by the SSNR
and noise is abated by increasing N, nominal
resolution is usually improved by increasing N,
although in practice the improvement to be
achieved beyond a certain value of N is minimal
[1]. On the other hand, the choice of n, does not
affect the resolution, but does affect the precision
of our estimate of this quantity.

In section 3, we have not made any restrictions
on the way we sub-divide the initial data set, and
it can be shown that the expected value of the
SSNR for a given n, is independent of the num-
ber of images that have been assigned to each
subset. However, from a practical point of view, it
is preferable to use a balanced design (e.g. N/n,
particles per subset) in order to come up with
partial averages that are comparable in the sense
that they have identical statistical distributions.

Appendix. Uncertainty of the resolution estimate

To achieve some insight into the effects
involved, we will make the simplifying assumption
that the resolution limit always occurs within a
sampling interval of some fixed discrete radial
frequency f, at which the SSNR is determined.
This is equivalent to requiring that a* = a( fy) <4
<a =a(fy+Af)and fy<f,<f,+Af and that
these relations are also satisfied for all estimates
of these quantities. In our initial formulation, the
resolution limit f, is determined by linearly ex-
trapolating the SSNR curve between f, and f, +
Af and searching for the intersection with the
critical value a =4. In this simplified case where
the resolution limit always depends on the SSNR
values evaluated at two discrete frequencies only,
there is a direct relationship between the uncer-
tainty in the determination of f,, and the estima-
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Fig. 2. Illustration of the how uncertainty in SSNR relates to
uncertainty in the resolution estimate ( f,).

tion errors of a* and a”, as illustrated in fig. 2.
Using a first-order Taylor series expansion, it is
relatively straightforward to derive the following
equation:

w22 -0 2]

g,

da
of
(A1)

where o,, o, and o_ are the standard deviations
of f,, @ and &, respectively. da/df is the slope
of the SSNR curve which is locally approximated
by:

da/0f= —(a*—a”)/Af, (A2)
and vy is a weighting factor lying between 0 and 1:
y=(a"—4)/(a" —a”). (A3)

In most practical cases, this relationship is com-
plicated since it involves values of the SSNR at

more than two frequencies. However, based on eq.
(A.1) we can make the following observations
which will also apply, at least qualitatively, to less
idealized cases:

(1) The standard deviation of the resolution
estimate is inversely proportional to the slope of
the SSNR curve.

(2) It is predominantly affected by the variability
of the larger SSNR value «™, which according to
eq. (7) i1s greater than that of a. In particular, we
note that for large values of a™, the quadratic
term in eq. (7) when n, is small (e.g. n, = 2) can
be substantially greater than the asymptotic vari-
ance component which is a linear function of a™.
Fortunately, this term can be made arbitrarily
small by selecting n, sufficiently large.
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