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This note describes a practical improvement in the computational efficiency of the spectral signal-to-noise ratio (SSNR) 
resolution criterion for correlation-averaged images. The total set of N images is randomly partitioned into n s subsets, each 
subset is separately averaged, and a reduced form of the SSNR is computed from these average images. In general, larger 
values of n s achieve lower statistical uncertainty, while smaller values of ng are computationally more expedient. It is shown 
that, for negatively stained data, a judicious compromise is achieved with 10 < n s _< 20, regardless of how large N may be. 

1. Introduct ion 

In  a previous paper  [1], we have in t roduced the 
SSNR resolution criterion. Compared  with three 
al ternative criteria, viz. the differential  phase re- 
sidual (DPR) [2], the Fourier  ring correlat ion 
(FRC)  [3], and  the Q-factor [4], the SSNR offers 
several advantages.  First, it relates in a straightfor- 
ward way to the diffract ion-based resolution crite- 
r ion that has long been applied to crystalline 
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specimens [5]. Second, it has a lower statistical 
uncer ta in ty  than the DPR,  the FRC,  or the Q-fac- 
tor (which is usually computed  for single Four ier  
components) .  Third,  it allows one to est imate the 
improvement  of resolut ion that may  be expected 
from expanding  the data  set by a specific amount ,  
as well as the asymptot ic  resolut ion to be achieved 
by averaging over an  infini tely large data  set. 

However, whereas the D P R  and  F R C  are 
calculated on the basis of two Four ier  t r a n s f o r m s  
- one for each partial  average over the respective 
halves of the data  set - the SSNR requires the 
Four ier  t ransform to be evaluated for each image, 
which becomes increasingly laborious for large 
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da ta  sets. Here,  we present  a way of  expedi t ing  
c o m p u t a t i o n  of the SSNR.  In par t icu lar ,  we ex- 
amine  the p roper t i e s  of  a reduced S S N R  based on 
a l imi ted  n u m b e r  of par t ia l  sums, and  conc lude  
that  a compu ta t i ona l l y  much less d e m a n d i n g  form 
of  the S S N R  may  be def ined  that  nevertheless  
re ta ins  essential ly the full s tat is t ical  prec is ion of 
the or iginal  measure.  

2. B a s i c  d e f i n i t i o n  

Given  a set of images  s . / , )  with co r re spond-  I ~ k , l  

ing Four ie r  t rans forms  { X(,.']. }, the S S N R  (&R) in 
a region R in Four ie r  space is given by:  

aR ~ 1. (1)  
a 2 . / u  

The signal energy 82~ and  the noise var iance  -2 O R n ,  

which is reduced  by  a factor  N in the final aver-  
age, are es t imated  as 

Y'~ I Xm,,, '2] 
( ~ 2  __ R R,, , where 

/ ' /R 

N 

~m ~ 1 
- -  Z X ~ £  . n l ) 

i = 1  

(2) 
N 

- -  ¢2 

Z Z Ix-2,L-x ,or 
^ 2  R t = l  

= : (3)  
ORn ( N -  1)n  R 

n R is the n u m b e r  of  spectra l  componen t s  in R 
and  Am,, is the average image in Four i e r  space. 
The  spat ia l  f requency dependence  of &R is calcu-  
la ted by  tak ing  R to be concentr ic  annul i  in 
Four i e r  space. A n  ope ra t iona l  resolut ion  l imit  is 
specif ied as the spa t ia l  f requency at which the 
S S N R  falls be low an accep tab le  basel ine  ( typi-  
cally,  S S N R  = 4). W h e n  the n u m b e r  of  images  to 
be inc luded in the average is increased progres-  
sively, as is the case in most  prac t ica l  appl ica t ions ,  
the energy es t imates  in eqs. (2) and  (3) may  be 
u p d a t e d  recursively *, which is compu ta t i ona l l y  
more  efficient  than  r ecomput ing  eqs. (1) to (4) for 
each add i t i on  to be da t a  set. 

3.  G e n e r a l i z a t i o n  t o  s u b s e t s  

Ins tead  of  cons ider ing  each image  and its Four -  
ier t r ans fo rm separate ly ,  let us cons ider  ng subsets  

X ( t , J )  of par t ic les  ( k,t }, where i = l  . . . . .  N / and  j =  
1 . . . . .  nu, with a total  of N images.  The  average 
over subset  ( j )  is deno ted  by  2~(,~> and its F T  is 
~(J> In terms of these la t ter  quant i t ies ,  a r educed  m,  n" 

form of the S S N R  may  be c o m p u t e d  as: 

^ 2  
^ ,  O R s  
a R - 1, (4) 

where 8~s is given by  eq. (2) with the g lobal  
average being eva lua ted  as 

ng 
1 

= - -  N,X~, , , ,  (5) S,.., N E c'> 

and  where 6 2 ,  is an es t imate  of the noise var iance  
given by 

n g 

^ ~  I 

ORn" (rig 1) E E Ni l - - (J )  - A',,,, ,2 
I q R  - -  ( m , n ) G R  i = l  

(6) 

Note  that  the de t e rmina t i on  of eqs. (4 ) - (6 )  only  
requires the eva lua t ion  of ng Four i e r  t ransforms ,  
as opposed  to N in the basic  formula t ion .  

4.  S t a t i s t i c a l  a n a l y s i s  

Using the same a rguments  as in our  prev ious  
s tudy [11, (&~ + 1) can be shown to have a non- 
centra l  F d i s t r ibu t ion  with  non-cen t ra l i t y  p a r a m e -  
ter X = nRaR, where a R = E{&R}, and  degrees  of 

This is achieved by defining the auxiliary arrays { - o )  X~,, } and 
{ (J) q~m,n } which represent the Fourier transform of the average 
image and spectral density of the first j images, respectively. 
When adding the jth image to the previous data set of 
( j -  1) particles, these quantities are updated iteratively: 

L (j) 1 ( j - -  1 ) X ( ; - 1 )  + X ~  . - - ( j )  ~x ( t )  m , n  , 
x . , . .  = - X~,,. = 

J , = l  J 
12 

~ I ~ (J 1)~',:'+lx2".t ~(J) A _  X 0) m' m,n --  . m,n 
J i l l  J 

We also use the property that the numerator in eq. (3) is 
equal to 

JE l.,,, - q [ ,,,.n "." I " 
R 
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Fig. 1. Variance of the SSNR (aR) as a function of the number 
of subsets (ng) into which the data are partitioned. 

less quantity that is independent of both aR and 
n R and can be read in percents on the left axis of 
fig. 1. What is clearly illustrated by this graph is 
that the rate of improvement is much more sub- 
stantial for smaller values of n e than for larger 
ones. For practical purposes, we may tolerate an 
overall variance reduction that is slightly below 
the maximum achievable such as, for example, 
90% (for ng = 11) or 95% (for ng = 21). 

The statistical uncertainty in the SSNR (aR) 
will translate into some corresponding uncertainty 
in spatial resolution. This relationship, however, is 
far from obvious and is highly dependent on the 
particular shape of a given SSNR curve, as dis- 
cussed in the appendix. 

freedom n i = n R  and n 2 = n n ( n g - 1 ) .  Because 
n 2 < n  2 = n R ( N - 1 ) ,  the estimate of the noise 
variance given by eq. (6) is less reliable than the 
standard estimate given by eq. (3), and so the 
reduced form of the SSNR will be subject to 
greater uncertainty. This effect may be quantified 
by using an approximate expression for the vari- 
ance of a non-central F distribution [1] (see ap- 
pendix), and making the appropriate substitutions 
f o r n l  and n2: 

2 + 4a  R 2 + 4a R + 2a~ 
Var{ a~ } - -  + 

. .  a) 

= o2(oe) + ao2(ng) ,  (7) 

where a R denotes the true SSNR. The variance of 
the SSNR has been expressed as the sum of two 
terms, the first of which is independent of ng, 
whereas the second decreases with ng (the only 
parameter under direct control of the experi- 
menter), as illustrated in fig. 1. The relative mag- 
nitudes of the two components shown in this plot 
are only illustrative since both depend on a a, as 
well as on nR, which varies with R and is fixed by 
sampling considerations. However, in all cases, the 
tendency is the same: as ng increases, the variance 
decreases monotonically from o~(oo) + A02(2), for 
n g =  2, to an asymptotic value of o2(oo). More- 
over, the relative proportion of the non-asymp- 
totic variance component with respect to its maxi- 
mum value (e.g. a a 2 ( n g ) / A o f ( 2 ) )  is a dimension- 

5. Results and discussion 

To investigate the effect that the number of 
subsets used may have on the SSNR resolution 
estimates, we tested two data sets: negatively 
stained ribosomal particles [6] and herpesvirus 
capsomers [7]. In each experiment, the images 
were randomly divided into ng equal subsets and 
the resulting values of the reduced SSNR were 
calculated as described in section 3, the resolution 
(f4) being determined at a n = 4 [1]. The proce- 
dure was repeated many times, and from these 
results, the expected value and standard deviation 
of f4 were calculated for each ng (tables 1 and 2). 
It is evident that, for both data sets, the standard 
deviation of f4 decreases as ng increases. The 
trend is essentially the same in both cases and is 
qualitatively consistent with the theoretical curve 
calculated for ot R (fig. 1). However, the relative 
proportion of the non-asymptotic variance compo- 
nent is surprisingly large, substantially greater than 
would be predicted from evaluating eq. (7) at the 
critical value of a R = 4. An explanation of this 
effect is that the resolution limit depends on the 
values of the SSNR over a range of frequencies 
and that the uncertainty in f4 is determined pre- 
dominantly by those spectral bins within this range 
that have the largest expected values for &R (cf. 
appendix). Another effect that can be observed is 
that the expected value of resolution limit slightly 
decreases as the number of groups increases. This 
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Table 1 
Summary of an experiment in the statistical uncertainty in the 
spatial resolution specified by the SSNR for a set of N -  80 
40S ribosomal subunits images (size 64 × 64 and sampling step 
~x - 0.714 nm) [6]; the data were divided into various num- 
bers of subsets (ng) with multiple such random divisions for 
each value of ng 

ng Number Range Resolution limit (f4) 
of trials (nm t) Average Standard 

(nm 1 ) deviation 
(%) 

2 80 1/4.15-1/2.60 1/3.18 11.5 
4 80 1/3.32-1/2.76 1/3.19 4.48 

10 80 1/3.30-1/3.07 1/3.24 1.07 
20 80 1/3.28-1/3.13 1/3.24 0.64 
40 80 1/3.28 1/3.18 1/3.25 0.60 
80 1 1/3.26 

observat ion  is consistent  with the fact that the 

theoret ical  expected value of  the S S N R  curve can 

be shown to be slightly biased (in the p ropor t ion  

n '= / (n '  2 - 2 ) )  and that  this effect is the most  pro-  

nounced  for small values of ng. 

The  par t i t ion of  the data  into two subsets only, 

which is the strategy that is used in both the D P R  

and the F R C ,  is clearly the worst  case and the 

statistical errors in our examples  are far from 

being negligible. In different  trials, the resolut ion 

values given for the r ibosomal  data  set varied 

f rom 2.6 to 4.1 nm depending  simply on how the 

data  were arbi t rar i ly  divided! A comparab le  span 

is encountered  in resolut ion figures given by con- 

Table 2 
Summary of an experiment in the statistical uncertainty in the 
spatial resolution specified by the SSNR for a set of N = 24 
herpesvirus capsomer images (size 50× 50 and sampling step 
Ax = 0.30 nm) [7]; the data were divided into various numbers 
of subsets (rig) with multiple such random divisions for each 
value of ng 

n g Number Range Resolution limit ( f4 ) 
of trials (nm 1) Average Standard 

(nm - ~ ) deviation 
(%) 

2 96 1/4.06-1/2.65 1/3.09 11.7 
4 96 1/3.82-1/2.73 1/3.14 8.06 

12 48 1/3.14-1/2.87 1/3.18 1.54 
24 1 1/3.07 

ventional  F R C  (which is mathemat ica l ly  related to 
S S N R  with ng = 2) and D P R  [1]. However ,  these 

es t imat ion errors fall off qui te  rapidly as ng in- 

creases, and the statistical uncer ta in ty  for r tg> 20 

should be rather close to that associated with our 

initial formula t ion  of the S S N R  cri ter ion [1] (ng = 

N) .  

We would  like to emphasize  the dis t inct ion 

between the respective influences of  N and n~. 

Since the resolut ion is de te rmined  by the S S N R  

and noise is abated by increasing N, nomina l  

resolution is usually improved  by increasing N, 

al though in practice the improvemen t  to be 

achieved beyond a certain value of  N is minimal  

[1]. On the other  hand,  the choice of  ng does not  

affect the resolution, but  does affect the precis ion 

of our est imate of this quanti ty.  

In section 3, we have not made  any restr ict ions 

on the way we sub-divide the initial da ta  set, and 

it can be shown that the expected value of  the 

S S N R  for a given n~ is independen t  of  the num-  

ber of images that have been assigned to each 

subset. However ,  f rom a practical  point  of view, it 

is preferable  to use a ba lanced design (e.g. N / n g  

particles per subset) in order  to come up with 

partial  averages that are comparab l e  in the sense 

that they have identical  statistical distr ibutions.  

Appendix. Uncertainty of the resolution estimate 

To achieve some insight into the effects 

involved, we will make  the s implifying assumpt ion  

that the resolut ion l imit  always occurs within a 

sampling interval  of some fixed discrete radial  

f requency f0 at which the S S N R  is de termined.  

This is equivalent  to requir ing that  a + = a ( f 0 )  < 4 

<_ a -  = a ( f  0 + A f )  and )Co --<f4 <)Co + A f  and that  
these relat ions are also satisfied for all est imates 

of  these quantit ies.  In our initial formula t ion ,  the 

resolution limit f4 is de te rmined  by linearly ex- 

t rapolat ing the S S N R  curve be tween fo and fo + 
A f  and searching for the intersect ion with the 

critical value a = 4. In this s implif ied case where 

the resolut ion limit always depends  on the S S N R  

values evaluated at two discrete f requencies  only, 
there is a direct relat ionship be tween the uncer-  

tainty in the de te rmina t ion  of  f4, and the est ima- 
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Fig. 2. Illustration of the how uncertainty in SSNR relates to 
uncertainty in the resolution estimate (f4). 

tion errors of a + and a - ,  as illustrated in fig. 2. 
Using a first-order Taylor series expansion, it is 
relatively straightforward to derive the following 
equation: 

I I - I  ~a ~a 1 
O4= ~ [~tO+ + ( 1 -  V)o_] < - ~  o+ 

(A.1) 

more than two frequencies. However, based on eq. 
(A.1) we can make the following observations 
which will also apply, at least qualitatively, to less 
idealized cases: 
(1) The standard deviation of the resolution 
estimate is inversely proportional to the slope of 
the SSNR curve. 
(2) It is predominantly affected by the variability 
of the larger SSNR value a +, which according to 
eq. (7) is greater than that of a. In particular, we 
note that for large values of a +, the quadratic 
term in eq. (7) when ng is small (e.g. ns = 2) can 
be substantially greater than the asymptotic vari- 
ance component  which is a linear function of a +. 
Fortunately, this term can be made arbitrarily 
small by selecting ng sufficiently large. 
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