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We have addressed the problem of optimizing procedures of multivariate statistical analysis (MSA) for identifying 
homogeneous sets of electron micrographs Of biological macromolecules, with a view to averaging over consistent sets of 
images. Using pre-aligned images of negatively stained protein molecules - known a priori to fall into two subtly different 
classes - we compared how the capacity to discriminate between them was affected by the normalization procedure used, and 
by the choice of factorial representation. Specifically, these images were analyzed both after being scaled according to constant 
minimum and maximum (CMM) values, and after imposing constant values of image mean and variance (CMV). The factorial 
representations compared were correspondence analysis (CA) and the principal components (PC) formalism. When used with 
PC, CMM normalization was found to give rise to spurious inter-image fluctuations that were more pronounced than the 
genuine difference between the two kinds of images; even with CA, CMV proved to be a more satisfactory method of 
normalization. When CMV was used with CA or PC, both factorial representations yielded qualitatively similar results, 
although according to a quantitative measure of inter-set discrimination, the performance of PC was slightly superior. Even in 
the best case, however, the two classes of images - as mapped in factorial space were not fully resolved. The implications of 
this observation are discussed with regard to potential ambiguities of image classification in practice. 

1. I n t roduc t ion  

T h e  a d v e n t  o f  gene ra l i zed  i m a g e  ave rag ing  

t e chn iques  [1-5]  has  g rea t ly  e x t e n d e d  the  scope  of  

h igh  r e so lu t ion  e l ec t ron  m i c r o s c o p y  of  b io log ica l  

m a c r o m o l e c u l e s .  H o w e v e r ,  in o r d e r  to ach ieve  the  

h ighes t  r e so lu t ion  a d m i t t e d  by  a g iven  m e t h o d  of  
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s p e c i m e n  p r e p a r a t i o n  a n d  set o f  i m a g i n g  c o n d i -  

t ions,  one  m u s t  be  ab le  to r ecogn ize  - in the  

p r e sence  o f  no i se  - pa r t i c l e s  tha t  a re  in t r ins ica l ly  

al ike.  F o r  ins tance ,  the  par t i c les  to be  ave raged  

h a v e  to lie in the  s a m e  o r i e n t a t i o n  re la t ive  to the  

b e a m  d i r e c t i o n  (or  subs t r a t e  p lane) ,  a n d  o t h e r  

factors ,  such  as m o d e  of  s ta in ing,  the  b i n d i n g  of  
o t h e r  molecu les ,  g e n u i n e  c o n f o r m a t i o n a l  d ivers i ty ,  

o r  a r t i f ac tua l  c h a n g e s  sus t a ined  d u r i n g  the  b io-  

c h e m i c a l  i so l a t i on  p r o c e d u r e  o r  p r e p a r a t i o n  for  

e l ec t ron  m i c r o s c o p y ,  m a y  also give rise to he te ro -  
genei ty .  
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To identify homogeneous  sets of images in an 
objective quanti tat ive way, methods of multi- 
variate statistical analysis (MSA), originally devel- 
oped much earlier and in an entirely different 
context,  have been introduced [6]. According to 
these procedures,  each image is represented as a 
point  in a coordinate  system that is derived from 
the covariance structure of the overall data set (i.e. 
a factorial representation), and supposedly homo-  
geneous sets or "classes" are defined on the basis 
of  some criterion of clustering or mutual  proxim- 
ity of  the points (images) in this space [7]. 

With a view to defining a procedure  that gives 
opt imal  inter-class discrimination in practice, we 
have analyzed a model set of electron micrographs 

known to fall into two subtly different classes 
in four different ways. We wished to determine 
how the outcome was affected by two impor tant  
aspects of the analysis - normalizat ion of the 
images, and the choice of  factorial representation. 
Since some variability in optical density is to be 
expected from particle to particle on account  of 
differences in the depth of the stain layer or in 
photographic  development,  it is necessary to com- 
pensate for this source of  (spurious) variability by 
normalizing each digitized image in the same way. 
Here we have compared  two commonly  used nor- 
malization conventions:  C M M  and CMV. Several 
different forms of  factorial representation are used 
in MSA [8,9] and differ primarily in how the 
covariance matrix is defined. Of these, CA [10], 
al though a relatively recent and specialized for- 
malism, is the one that has been adopted for 
applications in electron microscopy [6,7]. Also of 
interest is the PC formalism [11,9], which has long 
been used in many  applications of MSA, and 
which possesses the useful proper ty  that relative 
inter-image distances are preserved between real 
space and factorial space. This latter approach is 
commonly  used in the fields of signal processing 
and pat tern recognition where it is usually referred 
to as the K a r h u n e n - L o 6 v e  transform [12,13]. The 
experimental images were analyzed according to 
both normalizat ions and both  factorial representa- 
tions, and the inter-class discrimination evaluated 
in each case. 

The set of  images used taken to be typical of 
negatively stained data - represent "distal half- 

Fig. 1. Purified tall complexes of bacteriophage T7 imaged by 
bright-field TEM after negative staining with sodium silico- 

tungstate. Bar - 25 nm. 

fibers" of bacteriophage T7 [14] (see fig. 1). This 
rod-like molecule ( M  r - 9 0  kDa) consists of four 
aligned globules of slightly differing sizes, so that 
there is a pseudo-dyad  at its center. As a result, it 
is generally difficult to determine which end is 
which from an unfiltered image of a distal half- 
fiber along (cf. fig. 2), a l though this decision may 
easily be made on the basis of  its point  of at tach- 
ment to the "prox imal  half-fiber" (cf. fig. 1). In 
our  set of distal half-fibers, half were oriented in 

Fig. 2. Examples of individual distal half-fibers in two different 
orientations. The particles were brought into alignment by 
correlation techniques. The resolution of these data is 2.0 nm 

by the SSNR criterion [17]. Each image is 11.9×35.7 nm. 
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the same way, and half were in the antiparallel 
configuration. 

2 .  I n i t i a l  d a t a  s c a l i n g  

Finally, we also define the global average gray 
level as: 

1 N M 
= ~ ~=1 Z X<m i>" (6) 

i =  m = l  

2.1. Notat ions  and  definitions 

The methods described in this paper apply to 
the processing of a set of N spatially registered 
images of M pixels each: {x~O: m =  1 . . . . .  M; 
i = 1 . . . . .  N }. For simplicity, we use a single spa- 
tial index m which identifies pixels according to a 
sequential row-column ordering. This data set may 
be viewed from two dual points of view depending 
upon the index on which we focus our attention. 

One point of view is to consider the variations 
from pixel to pixel in a given image (( i ) ) .  In this 
context, it is useful to define the following image 
statistics: 
- the image first moment  or average gray-level 
value: 

~<0 = 1 M 
- ~  ~_, x~i); (1) 

m = l  

- the image second moment  or spatial energy 
(dynamic power): 

1 m 
Ox(i) 2 = - ~  E (X{m i) - y<i>)2 (2) 

m=l 

- minimum and maximum image values: 

{Y<i) = min i  Y<i) 1 . . . . .  M } ,  
" * m m  [ "m , m = 

v <i> = m a x / x  </) m = l  . . . . .  M } .  (3) 
"~max ( m , 

The alternative point of view is to consider how 
a given pixel m varies over the image set: {x(~ i), 
i = 1 . . . . .  N }. At this level, we define the mean 
pixel value 

N 

1 i~____lX~mi), ( 4 )  ~,~=~ 

and the local variance: 

1 N 
. ( 5 )  a2m = -N E (X~m i) -- 2 

i = 1  

2.2. Normal izat ion procedures 

All normalization procedures considered here 
involve a simple global linear rescaling: 

z~ i> = a ( i ) (  x~  i) - b 0 ) ) .  (7) 

The global offset and gain to be applied to each 
image are specified on the basis of standardizing 
some property over the entire data set. 

For CMM normalization, these properties are 
the maximum and minimum pixel values and the 
coefficients are given by: 

a (i) -- Z m a x  - -  Z m i n  b (i) = X(imi)n Zmin ( 8 )  
X(i )  _ x ( i )  ' a ( i )  ' 

max - -mln  

where 2mi n and Zma x are the prescribed values for 
the extrema of the rescaled images: {z~ i>), i =  
1 . . . . .  N. This approach makes efficient use of 
available data storage (e.g. one byte per pixel) and 
is widely used in practice. 

For CMV normalization, the coefficients are 
determined from: 

O?o ~o 
b i = ~ , -  - -  (9) 

ai 02(i ) ' a i ' 

where ~0 and o20 are prescribed values for the first 
and second moments  of the rescaled images. This 
normalization is also in common use (e.g., ref. 
[15]). 

3 .  F a c t o r i a l  r e p r e s e n t a t i o n s  

In this section, we briefly review the basic PC 
method. We then provide the relationship with 
other factorial representations such as PC with 
mean subtraction, and CA. Finally, we introduce a 
measure of class separability that will be used 
later in evaluating discriminatory power. 



302 M. Unser et al. / Classification o f  correlation-aligned images 

3.1. Principal components 

Images are represented as M-dimensional vec- 
tors { xl . . . . .  .If N }. We now consider the expansion 

M' 

-~i= Y] y(,/>u,,, M '  < m i n ( M ,  N)  (10) 
m - 1 

which approximates each image by a weighted 
sum of some base vectors (urn, m = 1 . . . . .  M '  < 
N }. Principal components  have the notable prop- 
erty of providing a representation for which the 
approximation error for any M ' <  rain(M, N)  is 
minimal, and whose base vectors u are orthogonal 
[11,9]. The optimal base vectors (u  I . . . . .  UN, }, or 
eigen-images, are the eigenvectors of the M × M 
scatter matrix; S~x = x x T ,  where X is the M × N 
data matrix X =  [x 1 . . . X u ] .  The coefficients 
(y~i> }, represented by a M '  × N coefficient ma- 
trix Y=  [Yl--" YN], are obtained by simply pro- 
jecting the data on the sub-space defined by ( u m } : 

Y =  [ Y , . . .  YN] = [u, . . .  UM,]r x ,  

and the approximation error is given by: 

N min( M, N ) 

( 2 =  E I [ ~ i - x ,  ll 2=  ~ Xi, ( 1 1 )  
~=1 i - - M ' + l  

where (h  i, i =  1 . . . . .  N} are the eigenvalues of 
S~., ordered according to decreasing magnitude. 
An important property is that the spectrum of 
eigenvalues (X i } is a measure of the energy distri- 
bution across the components of this decomposi- 
tion. 

In our particular case where M > N, the rank of 
S~ ~ is less than or equal to N, implying that there 
are at most N non-zero eigenvalues (X, ,  n = 
1 . . . . .  N}. It is therefore computationally ad- 
vantageous to determine principal components by 
diagonalizing the N ×  N inner product matrix: 
Rxx = x T x .  This procedure uses the property that 
the non-zero eigenvalues of (XX T) and ( x T x )  
are identical and that the corresponding eigenvec- 
tors of these matrices ({u,}  and {v,}, respec- 
tively), are related by the following equation: 

u , = X . v , / f ~ ,  ( n = l  . . . . .  U ' ) .  (12) 

In addition, we can show that the optimal expan- 

sion coefficients in eq. (10) may be simply de- 
termined by 

Y = [ y l . . . y N J = [ V " ~ V , . . . V ' X ~ , V N . ]  r. (13) 

In summary, the computat ional  steps involved 
in the determination of PC for a given set of 
electron micrographs are the following: 
(i) Perform the appropriate initial data scaling. 
(ii) Compute  the N × N inner product matrix R~, 
= X V X  which amounts to evaluating the cross- 
correlations between all possible pairs of images. 
This is usually by far the most computationally 
intensive task. 
(iii) Determine its eigenvectors and eigenvalues 
((E,  •,), i = 1  . . . . .  U}. 
(iv) Compute  the coordinates in factorial space 
according to eq. (13). 
(v) Eventually compute the eigen-images {u ,}  
using eq. (12). 

The data are then analyzed in terms of the 
coordinates (or components)  in this reduced pro- 
jection space. The number  of significant compo- 
nents is usually determined empirically, based on 
the magnitudes of the eigenvalues [9]. The other 
components are essentially due to noise and are 
disregarded for the purposes of classification or 
data reduction. 

3.2. Relationship with other factorial representations 

Almost any other factorial representation can 
be obtained using PC, provided that the data has 
been previously normalized in an appropriate 
fashion. The general equation for such a normal- 
ization is 

(i) , ( i>=a~[> (x2  > _ b ~  ) (14) 

which is very similar to eq. (7) except that a and b 
are now allowed to vary as functions of the spatial 
index m. 

Often one is primarily interested in the dif- 
ferences between measurements,  in which case it is 
natural to perform the analysis on variables that 
are centered about their mean. The appropriate  
normalization coefficient for PC with mean sub- 
traction are as follows: 

a (i> = a o, b~,, '> = Y,,. (15) 

where a 0 is an arbitrary positive constant. 
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Another popular method is CA [10,6]. By de- 
sign, this method requires the measurement values 
to be positive. This constraint has to be taken care 
of in the case where the data is initially scaled 
using either min /max  and mean/var  scaling tech- 
niques. The equivalence between CA and a nor- 
malized form of PC is well known [16]. Translat- 
ing this basic result (ref. [16], pp. 282 and 311) 
into our notation, it is relatively straightforward to 
show that CA is equivalent to PC with the follow- 
ing normalization equations: 

a ~  > _ 1 b<., i> - x,.x<i> (16) 

}/MN.~ ,.~< 0 ' 

We note that when the images have been initially 
scaled using CMV, ~(O is equal to Y and the 
normalization is equivalent to adjusting each pixel 
value by subtracting ~,, and then dividing by 

3.3. A measure  o f  class separabil i ty  

In the context of correlation averaging, the 
usefulness of a given factorial representation re- 
sides in its capacity to distinguish differences be- 
tween subsets of particles. At this stage of the 
analysis, a given image i is represented by a 
reduced set of coordinates: { y~O, m = 1 . . . . .  M '  
< N ). In the event that the particles are assigned 
to K distinct classes with n k ( k  = 1 . . . . .  K )  par- 
ticles respectively, the separation power or dis- 
criminability of a given component y~i) is given 
by the ratio between the inter-class variance and 
the intra-class variance: 

K 

E nk[~m(k) - -ym]  2 

fly,.  = k=l  (17) 
. K 

E . oL(k) 
k = l  

In this equation, ~, ,(k) and %Zm(k ) denote the 
mean and variance of y~i)  in class k. These values 
are determined from equations similar to (1) and 
(2) with the summation being performed over the 
corresponding subset of n k particles. ~,, is the 
mean value over the entire set. 

The components with the most potential for 
classification or clustering are those that give the 
largest values of /3~,~. On the other hand, the 
components with values of fly,.  close to zero may 
be regarded as noise. We note that this separabil- 
ity criterion relies on the use of distance (in the 
Euclidean sense) to measure similarity between 
particles. 

4. Results 

Intact tail complexes of bacteriophage T7 have 
six kinked fibers (fig. 1), whose distal parts are 
- 1 6  nm long by - 4  nm wide. They have a 
nodular substructure with a definite polarity that 
is evident in averaged images, but much less so 
prior to averaging [14] (cf. fig. 2). Sets of distal 
half-fibers in both orientations, mutually aligned 
by correlation methods, provided a set of model 
data with the attributes of real experimental 
images. 

This data set was analyzed in four ways (two 
factorial representations, and two normalization 
procedures). The four corresponding eigenvalue 
spectra were calculated (fig. 3 and table 1). 
According to the criterion that significant factors 
are those whose eigenvalues are sufficiently large 
to rise above the background continuum, one of 
the analyses (PC + CMM) appears to have two 

CA with CMM CA with CMV 

4 4 

PC with CMM PC with CMV 

Fig. 3. Spectra showing the 20 largest eigenvalues obtained 
when the set of experimental distal half-fiber images was 

analyzed according to the four methods listed. 
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Table 1 
Eigenvalues (Xi) (expressed as percentages of the total energy) and inter-class discrimination indices (/{i) calculated for the first four 
factors corresponding to each of the four different multivariate statistical analyses; the values of/3 that are significantly above zero 
are underlined; the/{'s evaluated for the remaining factors were all below 5 × 10-2 

M e t h o d s  ~'1, /{1 ~kl ,  /{2  ~ 3 '  /{3 ~k4" /{4 

CMM and CA 5.34%, 1.62 4.50%, 0.05 4.43%, 0.03 4.22%, 0.00 
CMV and CA 5.13%, 1.99 4.26%, 0.07 4.17%, 0.03 3.83%, 0.02 

CMM and PC 7.43%, 0.10 5.16%, 1.44 4.30%, 0.00 4.16%, 0.05 
CMV and PC 5.26%, 2.19 4.26%, 0.10 4.23%, 0.00 3.85%, 0.01 

s ign i f i can t  fac tors ,  w h e r e a s  the  o t h e r  three  h a v e  

o n l y  one.  

F o r  each  f ac to r  o f  each  M S A  fo rma l i sm ,  its 

c a p a c i t y  to d i s c r i m i n a t e  b e t w e e n  the  two  subse ts  

o f  images  was  e v a l u a t e d  in t e rms  of  the  p a r a m e t e r  

/3 (see sec t ion  3.3, eq. (17)). T h e  fac tors  w i th  the  

g rea tes t  d i s c r i m i n a t o r y  p o w e r  ( and  hence  the  

g rea tes t  p o t e n t i a l  for  c l a s s i f i ca t ion  a n d  c lus te r ing)  

are  those  tha t  g ive  the  la rges t  va lues  for /3 ,  w h e r e a s  

those  w h o s e  /3-values are  c lose  to ze ro  m a y  be 

r e g a r d e d  as noise.  I n  this  capac i ty ,  /3 c lose ly  

r e sembles  a s igna l - to -no i se  ra t io .  T h e  r e su l t i ng  

003 I C A  w i t h  CMM 

1 O • • 

oo I • 

O O 

- ~ o o ~ O o  . .  • 
oO,W "o • • 

C A  w i t h  C M V  

o~O<~ o ° 

~o 
~o o~O~_00 ,e 
-+u •o II •u• 

003 003- 
• 003 003 1s t  factor o o3 I s t  f a c t o r  

1so0 - 1500 • 
P C  with CMM PC w i t h  C M V  

o 

0 

oe ° o °  ° ooSO o6~b 0 

• o® • ° 

• . ,  
~ 0 ~ 

.1500 1500 
soo 1s t  f a c t o r  1 s00 ~ s o0 1 s t  f a c t o r  ~ s00 

Fig. 4. Factorial maps associated with the two most significant factors obtained when each of four different MSA were applied to a 
set of 38 distal half-fiber images of which half were oriented in parallel (©) and half in antiparallel (O) (cf. fig. 2). All factors obtained 
using a particular factorial analysis method (CA or PC) are shown on the same scale. These graphs illustrate the property that the use 

of CMV tends to reduce the intra-class scatter when compared to CMM. 
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values are listed in table 1. In each case, only one 
factor detects a significant distinction between the 
two subsets: with (PC + CMV), (CA + CMM), and 
(CA + CMV) it is the first factor, but with (PC + 
CMM), it is the second (i.e., in this MSA the 
factor with the highest eigenvalue is, in fact, spuri- 
ous). 

Two-factor plots are also presented for each 
analysis (fig. 4), and they convey the same effect 
as the tabulated values of 13. With (PC + CMM), 
the images are randomized in the first factor 
(horizontal axis) and segregated in the second 
(vertical axis), whereas the situation is reversed for 
the other three mappings. Therefore, when CMM 
normalization is used in conjunction with PC, 
spurious fluctuations in the pixel densities con- 
stitute a more important source of variation than 
the genuine structural difference between the two 
kinds of images. Nevertheless, when PC is used 
with CMV normalization, the best margin of dis- 
crimination, i.e. the highest /3-value, is obtained. 

It is of interest to compare the first few eigen- 
images of the respective analyses (fig. 5). In a 

a b e 

grey-scale representation of an eigen-image (as 
shown here), areas that are very dark or very light 
denote locations where high levels of variability 
occur for the factor in question, whereas inter- 
mediate grey tones denote relatively small fluctua- 
tions among the images. The first few eigenimages 
are recognizably the same in each case, except for 
an offset by one image with (PC + CMM), whose 
leading eigenimage relates to the spurious normal- 
ization-related effect described above. Thus, with 
this set of negatively stained data at least, essen- 
tially the same characteristics of primary variation 
are picked up in each of the four analyses. 

Finally, we note that, even with the 2-factor 
plot that corresponds to the largest margin of 
discrimination achieved in these experiments (PC 
+ CMV, fig. 4), the two classes of images segre- 
gate but are not fully resolved from one another. 
Thus, if we had not already been aware of their 
division into two classes, it would have been a 
ticklish business to distinguish between them from 
this plot. The implications of this observation for 
the practical problem of assigning experimental 
data into coherent classes [7] are discussed further 
below. 

5. Discussion 

5.1. A spurious factor occurs when C M M  normal- 
ization is used in conjunction with principal compo- 
nents 

e d f 

Fig. 5. Factorial analysis of T7 distal half-fibers: (a) first two 
eigen-images (CA + CMM); (b) first two eigen-images (CA + 
CMV); (c) first two eigen-images (PC + CMM); (d) first two 
eigen-images (PC+CMV); (e) image average; (f) difference 
between average images in alternative (up and down) orienta- 

tions. 

The most notable difference among the four 
analyses was the spurious factor encountered with 
(PC + CMM). The number of significant factors 
in a given MSA is usually decided upon by refer- 
ring to a discontinuity in the slope of the eigen- 
value spectrum [18]. By this criterion, the spectra 
in fig. 3 suggest a single significant factor for CA 
with both normalizations and for (PC + CMV). 
However, with (PC + CMM), the spectrum sug- 
gests two significant factors, and it is noteworthy 
that the spurious first eigenvalue exceeds the 
genuinely significant second one by a substantial 
margin. The origin of this spurious factor is that 
CMM normalization is subject to the vagaries of 
single pixels i.e. the extreme densities. (It could, 
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for instance, be offset in a major way by a single 
dust particle on a scanned negative, although such 
was not the case with these experiments.) Whether 
or not these fluctuations turn out to be the domi- 
nant factor will depend on how pronounced the 
real differences are. Notwithstanding the present 
experiments make the point that CMM-related 
fluctuations can dominate a genuine, albeit subtle, 
source of variation. CMV normalization, on the 
other hand, depends on the entire distribution of 
pixel densities, and accordingly, is a stabler proce- 
dure. 

It is noteworthy that this source of spurious 
variation does not occur with CA, because CA 
effects an implicit post-normalization that is 
more-or-less equivalent to a spatial mean stan- 
dardization (cf. eq. (16)). In any case, better inter- 
class discrimination was achieved with CA when 
CMV normalization was used, and we conclude 
that this normalization is to be preferred over 
CMM with either factorial representation. 

5.2. Which factorial representation gives best inter- 
class discrimination in practice? 

In principle, it would be possible to undertake 
image classification on real-space representations. 
However, a major problem with doing so is that 
the high noise levels of non-averaged micrographs 
would tend to swamp the fine details on which a 
valid classification would ultimately depend. The 
advantage of a factorial representation for this 
purpose is to greatly reduce noise levels * while 
preserving most of the inter-class differences, In 
practice, however, the residual levels of noise can 
be substantial relative to the mean differences as 
indicated by the scatter of the points in fig. 4, as 
also observed in many previous applications of 
CA (e,g., refs. [6,17]). This being the case, a ques- 
tion of practical importance is: which of the many  
possible factorial representations most strongly 
accentuates inter-class differences, and therefore 
has the greatest potential for accurate inter-class 
discrimination? 

The essential difference between CA and PC 
lies in their respective scaling factors which lead to 
a different concept of inter-image distances in 
factorial space. The underlying metric in PC space 
is the conventional Euclidean distance. According 
to classical decision theory [13], this is the metric 
of choice for classifying objects corrupted by ad- 
ditive white Gaussian noise, which makes PC pre- 
ferable in such cases. In contrast, CA expresses 
proximity between elements in terms of chi-square 
distances, and so puts comparatively more weight 
on low signal values, which may or may not be a 
desirable property. Finally, we note that the fac- 
tors in PC are invariant with respect to global 
additive and multiplicative scaling of the data, 
whereas in CA this invariance property holds only 
for multiplicative scaling. 

With the present data - experimental micro- 
graphs of negatively stained protein molecules - 
the global S : N  was estimated to be 0.61", al- 
though the specifics of the noise distribution are 
not known, and are unlikely to conform precisely 
to some idealized distribution. To a first ap- 
proximation (and once the spurious factor of (PC 
+ CMM) was discounted), all four analyses gave 
similar results - a single significant factor (fig. 3), 
the same unit cell locations identified as particu- 
larly variable (fig. 5), and a segregation of the two 
classes along the factorial axis (fig. 4). However, in 
quantitative terms (table 1), (PC + CMV) gave the 
best discrimination with a 10% higher value of 
parameter/3 than was realized with (CA + CMV). 

5.3. Is there an optimal factorial representation? 

The ideal factorial representation would maxi- 
mize class discriminability. As shown in the ap- 
pendix, a precise knowledge of the statistics (mean 
and covariance) of underlying image classes is 
needed to define such a representation. In prac- 
tice, however, there is no way to obtain this in- 
formation, and we can at best approximate this 
hypothetical solution by using procedures such as 
PC and CA. Nevertheless, there are some useful 

* For additive white Gaussian noise, it can be demonstrated 
using perturbation methods that the total noise energy tends 
to be evenly distributed over all dimensions of factorial 

space. 

* Square root of the ratio of the dynamic power of the mean 
image to the average power of the residual (i.e. original-mean) 
images. 
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points to be learned from studying the properties 
of such a solution. First, as discussed in the ap- 
pendix, the optimal solution is closest to PC when 
the data are standardized so that the intra-class 
noise variance is the same for all pixels. Thus, it is 
important to employ preprocessing or scaling pro- 
cedures that try to achieve this goal, and the use 
of CMV normalization is a good step in this 
direction. Second, there is the issue of the number 
of significant factors, which should not be greater 
than the number of distinct classes minus one. In 
particular, for a two-class problem such as the one 
studied here, there should be only one significant 
factor which corresponds to the difference be- 
tween the respective mean images. It is evident 
from comparing fig. 5f and the eigen-images in 
figs. 5a to 5d that this factor is reasonably well 
extracted by each procedure. 

5.4. Implications for classification of experimental 
electron micrographs 

One point of concern raised by these experi- 
ments has to do with the feasibility of performing 
reliable classification in practice. The level of dis- 
crimination achieved between two genuinely dif- 
ferent classes of images was, in the best case (fig. 
4d), a segregation in factorial space and not full 
resolution into two separate clusters. That is to 
say, it is not clear how successful formal classifica- 
tion algorithms [7] are likely to be when applied to 
statistically comparable data in a practical setting. 
With these data, a reasonably successful outcome 
(92%) would be obtained by simply defining the 
dividing-point between two classes as the 
zero-value of the factorial coordinate in the last 
plot in fig. 4. However, this strategy presupposes 
that we know that there are two classes and that 
they have equal numbers of members, premises 
that are not likely to be generally met. We have 
also applied the KMEANS [19] and several 
hierarchical clustering algorithms [7,19] to the data 
as represented by the two-factor coordinates from 
the (PC + CMV) analysis (the most avantageous), 
again in the rather artificial situation of fore- 
knowledge that the images fall into two classes 
(see table 2). These experiments confirm what is 
already suggested by visual inspection of the two- 

Table 2 
Classification of T7 distal half-fiber images with several clus- 
tering algorithms in a two factor space (PC + CMV); we used 
standard procedures available in the SYSTAT statistical 
package [20]; the KMEANS algorithm is according to ref. [19]; 
the various hierarchical algorithms correspond to different 
linkage criteria [13,19]; the specified options were linkage = 
centroid, median, single and complete, respectively; the centroid 
method is equivalent to the hierarchical ascendant clustering 
algorithm described in ref. [7]; these results are predicated on 
the assumption that the data fall into two classes, which is an 
artificially advantageous situation, since this information is not 
generally available in practice; a classification error corre- 
sponds to assigning a given particle to the wrong class 

Method Set A Set B Errors 

Ideal classification (19 up, 0 down) (0 up, 19 down) 0% 
Random assignment ( - ,  - )  ( - ,  - )  50% 

Iterative: 
KMEANS (17 up, 3 down) (2 up, 16 down) 13.2% 

Hierarchical: 
Centroid a) (15 up, 3 down) (3 up, 16 down) 18.4% 
Median (13 up, 3 down) (6 up, 16 down) 23.7% 

Nearest neighbor (19 up, 3 down) (0 up, 16 down) 7.9% 
Farthest neighbor (13 up, 12 down) (6 up, 7 down) 47.4% 

a) The centroid linkage method initially isolated a set contain- 
ing only one image. 

factor plots (fig. 4), that if the noise level is 
sufficiently high, foolproof classification is not to 
be achieved even with the use of quantitative 
algorithms. The use of a larger number of factors 
did not improve these results, since those compo- 
nents contain no discriminating information (their 
fl 's are all close to zero, cf. table 1) and their only 
effect is to increase the level of noise. 

In such marginal situations, any incremental 
improvement in the initial S : N  ratio, achieved 
either by improvements in specimen preparation 
or imaging techniques, or by refinements of the 
procedures for aligning the particles, or in perfor- 
ming the MSA, is to be welcomed. Thus the slight 
margin of superiority in the performance of (PC + 
CMV) over (CA + CMV) observed here may be of 
greater practical significance than appears at first 
sight. In this context, we have also tried some 
other methods of pre-processing the data that 
might reduce noise. By windowing the particles 
with a binary template that eliminates those back- 
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ground pixels outside the particle's contour (50%) 
[18], the largest /~ obtained was 2.42 for (PC + 
CMV). We have also tried low-band-pass filtra- 
tion with a bell-shaped filter falling to zero at (1.5 
nm)-1, based on the premise that any components 
beyond this spatial frequency must be noise. How- 
ever, no significant improvement in inter-class 
separation was recorded in this case. It might also 
be that noise in strong low-frequency components 
of the image may obscure classification distinc- 
tions based on relatively fine details. To test this, 
we applied a mid-band-pass filter [1/7.5 to 1 /2  
nm -1] falling to zero at frequencies below 1 /8  
and above 1 / 1 / 5  nm --1. This procedure resulted 
in a /~-value of 2.37 for (PC + CMV), which, as 
with masking, indicates a small improvement. 
However, in neither case was the slight improve- 
ment achieved sufficient to resolve the two classes 
fully in factorial space. 

Classification of images in a space where they 
are not fully resolved is analogous to the proposi- 
tion of "super-resolution" in optics. As an attempt 
to tackle this problem, one may apply clustering 
algorithms (e.g., ref. [7]), but as the results given 
above (table 2) indicate, they are not foolproof, 
particularly for subtle structural distinctions in the 
presence of substantial noise levels. Another 
pragmatic approach is to concede some degree of 
objectivity, and perform "supervised classifica- 
tion" (work in progress). In this approach which 
bears some relation to the KMEANS or ISO- 
DATA clustering algorithms [8,13,19], two or more 
archetypal particles are chosen, and the remaining 
images assigned according to their respective prox- 
imities (in factorial space) to these references (or 
to the current inclass averages). This procedure 
allows for elimination of those images which are 
not closer to one reference than the others by 
some pre-speeified margin. The reliability of such 
analyses may be assessed in terms of its stability 
with respect to variations in choice of reference 
particles, and to the selections made by different 
observers. 

6. Conclusions 

With the goal of defining methods of multi- 
variate statistical analysis that are optimal for use 
in correlation averaging, we find that: 

(1) The use of CMM (constant minimum and 
maximum) normalization introduces a substantial 
amount of scaling-associated noise, and CMV 
(constant mean and variance) normalization is 
definitely to be preferred. 
(2) The most appropriate choice of factorial rep- 
resentation depends on the noise statistics. With a 
set of micrographs of negatively stained protein 
molecules (experimental data, whose noise statis- 
tics are not well defined), correspondence analysis 
and principal components gave rather similar re- 
sults, suggesting that both procedures are com- 
parably effective with data of this kind. However, 
principal components did achieve a slightly better 
degree of discrimination between the two classes 
of images present. 
(3) Even with the best procedure, these two classes 
were not fully resolved in factorial space. The 
implication is that problematic levels of noise 
persist even when the images are mapped into the 
most advantageous factorial space. Such noise 
levels are sufficiently high to compromise the reli- 
ability of classifications that depend on fine de- 
tails, although such distinctions must be recog- 
nized if the goals of correlation averaging are to 
be fully realized. This appears to be a fundamen- 
tal limitation which, unless some solution can be 
found, may severely circumscribe the prospects for 
generally applicable methods of classification and 
correlation averaging as applied to electron micro- 
graphs of biological macromolecules. 
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Appendix. Factorial representation for maximal 
class discrimination 

In this appendix, we consider the problem of 
defining a factorial representation that is optimal 
in the sense that it maximizes class separation, 
More specifically, we are seeking a set of compo- 
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nents: { y,, = u~x, m = 1 . . . . .  M '  ) of minimal di- 
mension that maximizes the ratios defined by eq. 
(17). For this purpose, we assume that there are K 
distinct classes { w k, k = 1 . . . . .  K }. Each class ~0 k 
is characterized by an a priori probability P(~0k) 
(the overall fraction of images falling into this 
particular category), a mean vector E{x[¢0k} 
(which corresponds to the average image within 
this group), and an M x M covariance matrix C k 
that specifies the intra-class variability of the mea- 
surements relative to the class mean. We denote 
by E { x ) the expected global average image which 
is given by: 

K 

E ( x }  = Y'~ P(~k)E(xlo~k).  (A.1) 
k = l  

The basis vectors defining the optimal transforma- 
tion are found by maximizing the measure of 
discriminability: 
£,  = o~/Ow 2, (A.2) 

where 
K 

0 2 =  E P ( ~ k ) [ E { Y [ W k } - E ( Y } ]  2 (A.3) 
k = l  

K 

Ow E P(' K)e([Y-e{Yl k)121 k), 
k = l  

(A.4) 

are the expected inter-class and intra-class vari- 
ances of the factor y, respectively. Since y = uVx, 
this ratio can be shown to be equal to: 

= ( . T B . ) / (  . T w u ) ,  (A.5) 

where B is the M × M expected inter-class scatter 
matrix that characterizes the differences between 
the group means: 

K 

B= E 
k = l  

X [E{x I w k } - E { x } ]  x, (A.6) 

and where W is the M x M expected intra-class 
scatter matrix: 

K 

w= E 
k = l  

K 

k= l  

(A .7) 

which also corresponds to the weighted average of 
the individual covariance matrices. By differentiat- 
ing (A.5) with respect to u, it follows that the set 
of optimal basis vectors are obtained from the 
generalized eigen-solutions of the characteristic 
equation 

Bu = f lWu.  (A.S) 

This result can be related to the classical theory of 
discriminant analysis (e.g., ref. [13]). The interpre- 
tation of this equation is simplified if we express it 
in the space of the transformed variables x ' =  
W-1/2x with corresponding inter-class scatter ma- 
trix B'= (W I/2)vB(W ~/2) and an identity in- 
tra-class covariance matrix. When W is a diagonal 
matrix (which is certainly true for independent 
noise), this change of coordinate system is ob- 
tained by simple standardization, that is, by divid- 
ing the value of each pixel by its corresponding 
noise standard deviation. By making this change 
of variable and defining y = U'TX ', we find that: 

B ' u '  = f lu ' ,  (A.9) 

which is an expression that is very similar to the 
one defining the axes of the principal components 
representation (e.g., ref. [9]). This indicates that 
the optimal solution corresponds to a projection 
of the standardized data on the principal axes of 
the corresponding inter-class scatter (or mean dif- 
ference) matrix. In other words, the optimal repre- 
sentation is derived from the principal compo- 
nents of the standardized mean vectors. Based on 
this theoretical result, we can make the following 
observations: 
(i) From eqs. (A.6) and (A.1), we know that the 
rank of the matrix B (or equivalently B ' )  is at 
most equal to K -  1, where K is the total number  
of classes. This implies that there are at most 
K -  1 optimal factors with non-zero r-values. The 
expected values for /3 in all directions of the 
feature space that are perpendicular to this sub- 
space are zero. 
(ii) The simplest case occurs when the matrix W 
is proportional to the identity matrix. This condi- 
tion is clearly satisfied when the particles are 
corrupted with additive white noise. In this case, 
the optimal factorial representation is simply a 
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projection of the data on the sub-space of the 
group means. In particular, for a two class classifi- 
cation problem, there is only one optimal factor 
whose corresponding eigen-image, assuming that 
P (~I )  = P(°°2)= 1/2, is proportional to the dif- 
ference of the eroup means, that is: u = E{x[oa~ } 

E {x l  0a2}. 
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