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Abstract. This paper presents several improvements to an approach that corrects for spatial distortion in quasi-periodic 
structures in order to achieve noise reduction by averaging. The warping function is represented by quasi-hermite two- 
dimensional polynomials, a representation that allows great flexibility in the choice of fiduciary points. The estimation of 
the warping function is refined iteratively. At each iteration, the polynomial coefficients are evaluated from the current position 
of the reference points; the latter are then relocated by a cross-correlation technique. This procedure is intended to maximize 
a global signal-to-noise ratio criterion. Experiments with electron micrographs of thin sections of muscle fibers indicate a 
significant improvement in signal quality when compared with a previous approach. The new method is also shown to be 
insensitive to the initial position of the reference points, 

Zusammenfassung. Der Beitrag beschreibt mehrere Verbesserungsvorschl~ige fiJr ein Verfahren, das r/iumliche Verzerrungen 
in quasiperiodischen Strukturen zu kompensieren und iiberlagertes Rauschen mit Hilfe einer Mittelwertbildung zu reduzieren 
gestattet. Die Entzerrungsfunktion wird durch quasi-Hermite'sche zweidimensionale Polynome dargestellt. Diese Darstel- 
lungsform gestattet eine hohe Flexibilit5t in der Wahl der Orientierungspunkte. Die Bestimmung der Entzerrungsfunktion 
erfolgt iterativ. Beijeder Iteration werden die Polynomialkoeffizienten aus der aktuellen Position der Referenzpunkte berechnet; 
letztere werden anschliej3end dutch ein Kreuzkorrelationsverfahren genauer positioniert. Das Verfahren hat das Ziel, global 
das Signal-Rausch-Verh~iltnis zu verbessern. Versuche mit Elektronenmikroskopaufnahmen diinner Schnitte aus Muskelfasern 
ergaben eine signifikante Verbesserung gegeniiber dem friiher gew~hlten Ansatz. Das neue Verfahren ist dar/iberhinaus 
unempfindlich gegeniiber den Anfangslagen der Referenzpunkte. 

R6sum6. Cet article apporte des am61iorations notables fi une m6thode ant6rieure permettant la compensation de d6formations 
spatiales pour des structures quasi-p6riodiques en rue d'une r6duction du bruit par cumulation. La fonction de d6formation 
est repr6sent6e par une juxtaposition de polyn6mes bidimensionels permettant une grande flexibilit6 dans le choix des points 
de contr61es. L'estimation de la fonction de d6formation s'effectue de faqon it6rative par maximisation d'un rapport signal 
sur bruit global. Lors de chaque it6ration, les coefficients polyn6miaux sont 6valu6s fi partir de la position courante des points 
de contr61es, ces derniers 6tant ensuite reposition6s par corr61ation. Cette nouvelle approche est appliqu6e fi la restoration 
d'images microscopiques de filaments musculaires et montre une efficacit6 sup6rieure. I1 apparait 6galement que les perform- 
ances sont tr6s peu sensibles fi la position initiale des points de contr61es. 

Keywords. Noise reduction, restoration, periodicity, geometric distortion correction, electron microscopy, image registration. 

1. Introduction 

It is we l l  k n o w n  tha t  no i sy  p e r i o d i c  s ignals  m a y  

be  e n h a n c e d  by f i l ter ing ou t  the i r  n o n - p e r i o d i c  

c o m p o n e n t s .  Th is  o p e r a t i o n  is i m p l e m e n t e d  e i t he r  

in the  F o u r i e r  d o m a i n  by  m a s k i n g  ou t  the  n o n -  

h a r m o n i c  c o m p o n e n t s  o f  the  s p e c t r u m ,  o r  in real  

space ,  by  a v e r a g i n g  spa t i a l ly  a l i g n e d  uni t  cells.  

Th is  t e c h n i q u e  is c o m m o n l y  u s e d  in the  ana lys i s  

o f  e l ec t ron  m i c r o g r a p h s ,  p a r t i c u l a r l y  in s t ruc tu ra l  

i nves t i ga t i ons  o f  b i o l o g i c a l  m a c r o m o l e c u l e s  in 

o r d e r e d  a r rays  [6]. 
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However, even slight departures from exact crys- 
tallinity may result in a loss of resolution from the 
averaged or filtered image, and naturally repetitive 
structures are often subject to imperfections. These 
structures may be considered as ideal periodic 
lattices that have been geometrically distorted. In 
a previous paper, we have described a computa- 
tional approach that uses a set of reference points 
to estimate a spatial warping function represented 
by separable two-dimensional polynomials [10]. 
The spatial deformation is then compensated by a 
geometric transformation. A somewhat related 
approach has been proposed by Volet et al. for the 
synthesis of natural structured textures [13]. 

Although the performance of our previous 
method was found to be quite promising [7, 8, 10], 
it suffers from certain limitations. First, its applica- 
bility is restricted to cases where the reference 
points for the undistorted lattice are located at the 
nodes of a rectangular grid; i.e. their spatial coor- 
dinates must be chosen as (x~j, Yo) = (x,, xj), where 
i = l , . . . , n x  and j =  l , . . . ,  ny. This constraint 
usually implies that the fiduciary points must be 
chosen as the four corners of a unit cell, making 
use of additional points almost impossible. 
Second, to avoid excessive undulation of the 
resampling grid, the degree of the polynomials 
should not exceed five. Therefore, the area of the 
image to be processed at each step cannot contain 
a number of unit cells greater than 4 x 4. Finally, 
the method is quite sensitive to the initial choice 
of reference points. 

The purpose of this paper is to describe an 
improved system that overcomes these limitations. 
First, it allows the choice of an arbitrary number 
of fiduciary points that can be placed at any spatial 
location. The estimation of the warping function, 
which is discussed in Section 2, uses quasi-hermite 
piecewise polynomials that are known to be com- 
putationally stable and quite flexible for interpola- 
tion [1]. The dependence on a set of initial para- 
meters is decreased by using an iterative relocation 
procedure that progressively improves the position 
of the fiduciary points. This technique is described 
in Section 3 and the issue of performance evalu- 
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ation is discussed in Section 4. Finally, the efficacy 
of the method is illustrated by considering experi- 
mental results obtained with micrographs of thin 
sections of muscle filaments. 

2. Unwarping as an interpolation problem 

The effect of spatial distortion is described by a 
one-to-one mapping between the spatial coordin- 
ates (x, y) of a gray level value in an ideal coordin- 
ate system and its corresponding location (~,)7) in 
the distorted lattice. We may therefore conceptual- 
ize ~ and )7 as bivariate functions of the reference 
spatial coordinates: ;[ = f ( x ,  y) and )7 = g(x, y).  It 
is sufficient to consider the sampled values of the 
horizontal and vertical location functions because 
our data is discrete: 

Xk, l = f ( k  AX, I Ay), 

)7~ = g(k  Ax, 1Ay), 
(1) 

where Ax and Ay are the horizontal and vertical 
sampling steps in the x - y  plane. 

The determination of the warping functions is 
based on a set of M fiduciary points: (x~,y,)~--~ 
(xi,)7i), where i = 1 , . . . ,  M. This set of constraints 
specifies the value o f f ( x ,  y) and g(x, y) at some 
particular points in the x - y  plane. It follows that 
the extrapolation of the warping functions over 
the entire plane is in essence an interpolation prob- 
lem which can be approached in different ways. 
The essential difficulty is that the values of the 
functions are known for irregularly distributed 
data points and that conventional sampling theory 
is therefore not applicable. In addition, we would 
like the mapping between both coordinate systems 
to be as smooth as possible in order to provide a 
good approximation of an elastic or "rubber-band- 
type" deformation. 

The bivariate interpolation method for 
irregularly distributed data points due to Akima 
is particularly well suited to this problem as it 
represents surfaces by piecewise polynomials 
which are continuous in their first-order derivatives 
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[1]. In this approach, which we are applying to 
the determination of both f (x ,  y) and g(x, y), the 
reference points are used to divide the x - y  plane 
into triangular regions. Within each triangle, the 
interpolating function is a two-dimensional poly- 
nomial which is entirely determined from the 
values of the function and its first- and second- 
order derivatives at the vertices of the triangle. 

2.1. Triangulation 

An optimal triangulation requires that any point 
within a triangle is closer to the triangle's vertices 
than to vertices of any other triangle. One approach 
for its determination uses an iterative application 
of the max-min angle criterion [4]: when a set of 
four points are vertices of a quadrilateral with no 
internal angle greater than ~r, one chooses the 
triangulation that maximizes the minimum interior 
angle of the two obtained triangles. More recently, 
Green and Sibson have proposed a more efficient 
algorithm based on the Dirichlet tesselation of the 
set of points [3]. Dirichlet tesselation defines a 
region for each point of the set with the property 
that the points within this region are closer to the 
specified point than to any other set point. Triangu- 
lation is then obtained by joining neighbors of the 
Dirichlet tesselation. 

2.2. Piecewise polynomials 

The x - y  coordinates of the reference points 
define the vertices of triangular cells that divide 
the x - y  plane. For each of these vertices, the value 
of the horizontal or vertical location function (e.g. 
f (x ,  y) or g(x, y)) is known and its first-order and 
second-order partial derivatives (Sf/Ox, Of~by, 
O2f/ax2 ' O2f/Oy2, O2f/OxOy ) are estimated locally 
by determining tangent planes to the surface and 
to its derivative based on the function values at 
neighboring points. In addition to these con- 
straints, the partial derivatives in the direction 
perpendicular to each side of a triangle are 
required to be polynomials of degree three, at most, 
which guarantees continuity of the interpolating 
function and its first-order derivatives on each side 
of the triangle. For each triangle, the value of the 
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function is then interpolated by a bivariate fifth- 
degree polynomial: 

5 5 - p  

f (x ,  y) = 2 • apqxPy q, (2) 
p-O q=O 

whose coefficients are uniquely defined by a set of 
21 constraints. The surface obtained by using this 
approach is smooth in the sense that the interpolat- 
ing function and its first-order partial derivatives 
are continuous. An implementation of this 
algorithm is presented in Algorithm 526 of the 
ACM [1]. 

2.3. Spatial unwarping 

Once the polynomial coefficients are found, the 
two-dimensional arrays {Xka} and {)7ka} are deter- 
mined over the whole area of interest from (1) and 
(2). Unwarping is then achieved by appropriately 
resampling the original data. Let {Wka} denote the 
discrete preprocessed image to be unwarped and 
{w(Y, )7)} its corresponding continuous representa- 
tion, The unwarped image { Uk.t ; k = 1 , . . . ,  K ' and 
l=  1 , . . . ,  L'} is computed as 

Uka = u(kAx, lAy) = W(Xk, t, fika), (3) 

where w(Y, )7) is determined by interpolating {Wka}. 
Usually, it is sufficient to use bilinear interpolation 
which evaluates w(Y, )7) in terms of its four closest 
sampled values. 

3. Iterative refinement of fiduciary points 

In our initial method, the estimation of the coor- 
dinates of reference points used a standard cross- 
correlation technique [10]. Reference templates 
are usually constructed from a model of the struc- 
ture being investigated, and the positions of the 
fiduciary points are determined from the maxima 
of the corresponding cross-correlation function. 
The major shortcoming of this technique is that 
the template is not corrected for spatial deforma- 
tion and that the detected fiduciary points are 
therefore not always localized very precisely. 
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To overcome this limitation, we have developed 
a procedure by which the position of these points 
is refined iteratively. A cycle k of this algorithm is 
described by the following succession of 
operations: 

(a) Unwarping. Based on the current set of 
fiduciary points {()~Ik),ylk)), i = 1 , . . . ,  M}, the 
structure of interest is unwarped according to the 
procedure described in Section 2. 

(b) Cross-correlation. The positions of all 
fiduciary points are re-determined by searching for 
the closest maximum of the cross-correlation of 
the lattice image with the corresponding reference 
template. This computation is performed on the 
geometrically corrected structure in close proxim- 
ity (typically within 3 pixels in each direction) of 
each reference position (xi, yi) and yields a set of 
displacement vec to r s  {(AX~ k), Aylk)), i = 
1 , . . . ,  M}. These quantities are determined with 
sub-pixel accuracy by locally fitting a two- 
dimensional second-degree polynomial to the 
computed correlation values and solving for the 
maximum of this function. 

(c) Updating. The positions of the fiduciary 
points are then mapped back into the initial coor- 
dinate system according to the equation: 

;Ik+'> _ ;Ik~ 

+ a (fCx, + Axl k), y, + Ayl k)) - ;Ik)), 

+ a (g(x, + Ax+ k), Yi + AY+ k)) - )TSk)), 
(4) 

where f ( x ,  y)  and g(x, y)  denote the current esti- 
mates of the mapping functions between the distor- 
ted and the normalized coordinate systems. The 
procedure is iterated until the end condition: 
[ ( A x l k ) ) 2 + ( A y l k ) ) 2 ] < e  2, is met for all i =  

1 , . . . , M .  
The constant ot in (4) is a damping factor which 

is usually assigned a value slightly below 1. When 
a = 1, this set of equations puts into correspon- 
dence (J~l k+l), y l  k+l)) and the current estimate of 
the position of the reference point on the unwarped 
lattice: (x~ + Ax~ k), y~ + Ay~k)). At the next cycle 
of iteration, the warping functions are recomputed 
Signal Processing 
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by using the correspondence between 
(~I k+l), )71 k+l>) and (x+, y,-) which should have the 

effect of better repositioning the fiduciary point. 
Note that the choice of the displacement vectors 
( Ax  l k >, A y l k ) ) that maximize the cross-correlation 
function tends to minimize the mean square error 
between the correctly positioned reference tem- 
plate and the unwarped structure. This property 
can be demonstrated in the particular case in which 
the resulting incremental geometric correction can 
be locally approximated by a simple translation. 

4. Noise reduction and performance assessment 

After compensation of the spatial deformation, 
the periodicity of the signal in the two principal 
directions are K and L, respectively. The 
individual unit cells s+ (i)/ where i = 1, N, are l ~ k ,  l J ~  • . . , 

extracted from the unwarped signal as 
(i) 
k , I  : l ' l k - k i , l - l i ,  

( k = l , . . . , K , l = l , . . . , L , i = l , . . . , N ) ,  
(5) 

where (k ,  l+) is the spatial index of the upper left 
corner of unit cell i. The average of these unit cells 

1 N /(i) 
k , l ~  t3k., = "~ i=~t (6) 

provides an estimate of the underlying signal while 
the variance of the noise is reduced by a factor N. 
The efficacy of this restoration is assessed by 
estimating the signal-to-noise ratio on the rectified 

lattice: 

SNR = a~/t~ 2, (7) 

where ^2 o-s is an estimate of the signal mean energy 

O-s = ~  (~,,)~, (8) 
k=l I=1 

and ^2 tr, an estimate of the noise variance 

-2_ 1 ~ ~ ~, (V~+--~k,,) 2 (9) 
<7. N -  1 /=1 k=l I=1 K L  " 

The SNR measures the proportion of signal energy 
that is truly periodic and is therefore a direct 
measure of the success of our rectification tech- 
nique. Since our iterative algorithm tends to 
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minimize the mean square difference between the 
registered signal and the reference template, it will 
also tend to minimize the residual noise variance 
provided that the reference templates used for 
cross-correlation and the underlying signal are 
sufficiently similar. Alternatively, we may also 
choose to recompute our reference templates at 
each iteration based on the current averaged signal. 

An important characteristic of the restored sig- 
nal is its spatial resolution which can be assessed 
quantitatively by means of the spectral signal-to- 
noise ratio (SSNR) criterion [11]. The evaluation 
of the SSNR is similar to that of the global SNR 
given by (7)-(9). The essential difference is that 
the signals are replaced by their discrete Fourier 
transforms and that spatial summation is replaced 
by a series of summations over concentric annuli 
in Fourier space corresponding to increasing radial 
frequencies. 

5. Experimental results 

This restoration technique has been applied to 
the analysis of electron micrographs showing the 
lattice structure of the "thick", myosin-containing 
filaments and the "thin",  actin-containing 
filaments in skeletal muscle [7, 8]. These images, 
which are similar to those used in our previous 
study, were obtained from cryosections of speci- 
mens preserved by rapid freezing in vitreous ice [5]. 

The data was acquired on a Phillips EM400 
electron microscope at a magnification of 15 200x, 
using low-dose techniques, and scanned with a 
Perkin-Elmer 1010MG to give an effective samp- 
ling step of 1.25 nm. 

5.1. Comparative evaluation 

A first series of experiments was conducted to 
compare the performance of our previous method 
[ 10] with the new algorithm. The initial extraction 
of the reference points was performed by an 
operator and was based on the detection of the 
maxima of the cross-correlation functions of the 
original micrographs and two rescaled templates 
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corresponding to the myosin- and actin-containing 
filaments. These templates were generated by pre- 
multiplying a reference 44 × 76 hexagonal unit cell 
with two circular symmetric Gaussian windows 
(tr~ = 12.5, ~r2 = 7.5) centered on the thick and thin 
filaments, respectively. The reference unit cell was 
obtained based on the data available from previous 
analyses [7,8]. The unwarping functions were 
designed to map an originally hexagonal lattice 
into an ideal square lattice with 44 x 44 pixels per 
unit cell. 

With our original unwarping method, the results 
of which are shown in Fig. 1, the choice of the 
reference points was restricted to the thick filament 
centers. The original micrograph is displayed in 
Fig. l(a). The unwarping function, which corre- 
sponds to the superimposed grid, is modelled by 
two-dimensional separable polynomials of degree 
three whose coefficients are determined from the 
initial position of 16 reference points. The results 
of the unwarping of this area of 3 x 3 unit cells is 
displayed in Fig. l(b). This image was further 
decomposed into its residual noise and periodic 
components, as shown in Figs. l(c) and l(d). The 
extracted signal, {Vk, t}, was finally reconverted into 
a hexagonal lattice and is displayed in Fig. l(e) 
as the final rescaled result of processing. The 
signal-to-noise ratio as computed by (7)-(9) on 
the square lattice is 0.608. 

Since the new algorithm puts no constraints on 
the position of the fiduciary points, we used the 
centers of both actin- and myosin-containing 
filaments. An initial unwarping function was com- 
puted using the procedure outlined in Section 2 
with a total of 34 fiduciary points for this particular 
example. The polynomials were extrapolated in a 
15 pixel wide area surrounding the extracted unit 
cells to facilitate the relocation of border points. 
Both reference templates were mapped onto the 
rectified square lattice and cross-correlated with 
the geometrically compensated structure to refine 
the position of all reference points iteratively. Ax 
and Ay were clipped to a maximum of 3 sampling 
intervals in each direction and the damping factor 
in (4) was set to: a = 1. The procedure converged 
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Fig. 1. Processing results obtained with the previous approach. (a) Preprocessed micrograph with superimposed sampling grid. 
(b) Unwarped unit cells with 44 x 44 pixels per cell. (c) Stochastic component with 62n = 524.7. (d) Periodic component with 6~ = 319.2. 

(e) Periodic component displayed in a hexagonal lattice with fully adjusted dynamic range. 

Fig. 2. Processing results obtained with the new approach. (a) Preprocessed micrograph with superimposed sampling grid. 
(b) Unwarped unit cells with 44 x 44 pixels per cell. (c) Stochastic component with 62 = 390.5. (d) Periodic component with 6~ = 333.6. 

(e) Periodic component displayed in a hexagonal lattice with fully adjusted dynamic range. 

Signal Processing 



M. Unser et aL / Restoration of distorted periodic images 

in 1 iteration and the final sampling grid is rep- 

resented in Fig. 2(a). The results of unwarping as 
well as the decomposition in stochastic and peri- 
odic signal components are displayed in Figs. 2(b)- 
(d). The final result of the analysis, which has been 

mapped back into a hexagonal lattice, is shown in 
Fig. 2(e). The measured signal-to-noise ratio is 
0.856, which is an improvement of more than 30% 

over the previous approach. 
A visual comparison between Fig. l(e) and Fig. 

2(e) suggests the second method produces a shar- 

per image. This observation is confirmed quantita- 
tively by the analysis of the S S N R  1 c u r v e s  in Fig. 

3. In this example, the SSNR due to the second 
method is always above that of the first one, which 
is a strong indication of improved spatial resol- 

ution [11]. An operational value of spatial resol- 

ution is usually obtained from the cut off point 
where the SSNR falls below an acceptable limit 
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Fig. 3. Spectral signal-to-noise ratio curve as a function of  the 
normalized spatial radial frequency. O: averaged hexagonal 
unit cell in Fig. l(e); Q: averaged hexagonal unit cell in 

Fig. 2(e). 

The spectral signal-to-noise ratio (SSNR) is measured using 
44 x 76 rectangular images (Ax, Ay = 0.85 nm), each containing 
a single hexagonal unit cell, which is repeated periodically to 
fill the available space. This quantity has been multiplied by 
N (the number of images) since it is associated to the average 
image. For comparison, the global signal-to-noise ratios of  the 
corresponding averages obtained using both methods are 
SNR = 6.876 and SNR = 9.99, respectively. 
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of 4, which in the present case occurs at f4=  
1/12.8 nm -~ and f4=  1/10.2 nm 1, respectively. 

Note that these resolution values are very likely to 
improve when the number of individual unit cells 

included in the global average is increased. 

5.2. Convergence study 

To test the robustness of the iterative relocation 

procedure, the initial reference points were ran- 

domly displaced according to the equation: 

.,~I °) = ~ + A~, 
(10) 

:~I °~:  £ + A~, 

where AE and Af are Gaussian random variables 

with a zero mean and an adjustable standard devi- 

ation cr. Under these conditions, the behavior of 

the algorithm with the same parameters as in the 

previous experiment is shown in Fig. 4. These 

curves represent the signal-to-noise as a function 
of the number of iterations for different values of 
o~. When ~r is less than 3 pixels, convergence occurs 
after 1 or 2 iterations. Beyond this point, there is 

a slight residual oscillation because our determina- 
tion of the displacement v e c t o r s  ( A x l  k), Ayl  k)) with 

1 0 ]  

" ~  ~,o~ ~ e ~ ' ~  s 

0.61./ ..... I 
i O °. , ,  , , . s  

s o s ~" 

__~ 0.4 mr 
"[J [ " " 

C ...... ,~. .... o'=1 
-~  r I ..... ~-- 0.=_2 
O )  0 2  1 I . . . .  " 0-=-3 

t I '=' 
0.0 I • , , , , 

0 1 2 3 4 
N u m b e r  of i terations 

Fig. 4. Signal-to-noise ratio as a function of the number of 
iterations for various standard deviation of  the initial dis- 
placement errors (o-). Updating parameters: a = 1 and Ax~ k), 

Ay~ k) <~ 3. 
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subpixel accuracy is only approximate. These 

oscillations can be suppressed by decreasing a, 
which in turn will reduce the rate of convergence 
slightly. When tr is greater or equal to 3, the 

algorithm seems to be trapped in a local optimum 

and is not capable of correctly placing some of the 
reference points. This effect is attributable to the 
fact that, in the current setting, the search in the 
determination of Axl k) and Aylk~ is only performed 

over a distance of 3 pixels in each direction. The 
performance, however, is still better than that of 
the first method in the previous section. 

In order to be capable of better handling larger 
displacements, it is appropriate to increase the 

neighborhood in which the cross-correlation is 

evaluated. Accordingly, we chose to set the search- 

ing distance to twice the value of the standard 
deviation tr. This led to a significant performance 

improvement as illustrated in Fig. 5. With this 
adjustment, the performance of the algorithm only 

breaks down when (r/> 5, an extreme situation in 
which the initial error for the positioning of some 

reference points is more than 30% of the distance 

to the next reference point. 

0 1 . 0 ~  
0.8 

"~ 0.6 , : /  

"~ 0.4 / • ¢r=l 

f//  I - z l  
V I "''''~-'" °=-31 

o.21 ~ I----'--- °=41 

t I - - ' -  
0 . 0 ~  

0 1 2 3 4 5 

N u m b e r  of  i t e ra t ions  

Fig. 5. Signal-to-noise ratio as a function of the number of 
iterations for various standard deviation of the initial dis- 
placement errors (or). Updating parameters: a = 1 and Ax~ k), 

Ay~ k) <~ 2or. 
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5.3. Discussion 

On this example and on all other micrographs 

that we have analyzed, the new method was always 

found to be superior to earlier ones. In most cases, 

the improvement in both SNR and spatial resol- 

ution is essentially due to the inclusion of a larger 
number of  fiduciary points. Compensation for the 
disorderly myofilaments is alway better as can be 
seen by comparing the amount of structural infor- 

mation that is still present in the so-called stochas- 
tic components in Figs. l(c) and 2(c). For the 

example discussed in Section 5.1 in which the 
initial positions of the fiduciary points were quite 

accurate, the improvement of  the SSNR due to 
iteration was only marginal (e.g. from SNR = 0.838 
to SNR = 0.856). However, in other less ideal cases, 
this feature of the algorithm turns out to be quite 

important, as was demonstrated in Section 5.2. 
Another advantage of the present scheme is that 

it places no contraints on the spatial organization 

of  the unit cells to be processed. These need not 
be organized in rectangular or trapezoidal patches, 

as was necessary for the previous method, nor are 
the cells required to be connected to each another. 

In Section 4, we introduced the SNR as an 
objective performance criterion. Its estimation is 

essential for it allows us to monitor the progress 

of the iterative algorithm which can be interpreted 
as an optimization procedure. For our test experi- 
ments, the convergence of the algorithm was found 

to be very good up to a certain level of misplace- 
ment of the fiduciary points. This type of behavior, 
however, is not guaranteed, as it is strongly data 
dependent. Fortunately, a lack of convergence or 
a lack of  periodicity is easily detected from the 
value of the SNR. Following data extraction, it is 
also advisable to identify non-consistent unit cells, 
for example, by using some outlier detection 
scheme such as the OMO algorithm [9], omitting 
the outliers from the final average. 

Our procedure relies heavily on the use of refer- 
ence templates to locate the position of reference 
points. Fortunately, the exact shape of the masks 
is not overly important as they are only used for 
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signal registration. What is required is that they 

provide a better match at the exact location of the 
fiduciary point than in the neighborhood of this 
point. Typically, the templates are created from an 
initial approximation of the reference unit cell 
which can be obtained as follows. The first time a 

new type of image is analyzed, the fiduciary points 
are determined first. These unrefined points are 
used to create what we call an "internal" reference. 

After refinement converges and unit cells are 

created, the best cells are averaged after removal 
of outliers. The average cell is then used as an 
"external" reference for subsequent refinement of 

additional images. When working with several data 
sets, we have found that using an "internal" refer- 

ence is usually satisfactory. However, whenever 
possible, it is preferable to use a single fixed "exter- 

nal" template, primarily because it guarantees that 
the data is globally registered. 

In our experiments, we have used a damping 

factor a = 1, which provides the fastest rate of 
convergence. Such a high value of a may occasion- 
ally produce oscillations, particularly when the 
signal-to-noise ratio is very low. These problems 

can usually be avoided by using a smaller damping 

factor, such as a --- 0.7, which will slightly increase 

the number of required iterations. 

While the technique presented here has been 
applied to myofilament thin sections, there are 
obvious potentialities for the restoration of  any 

deformed lattice structures. The piecewise poly- 

nomial model of spatial distortion presupposes 
that the lattice has been deformed in a smooth and 
continuous fashion. In particular, these assump- 
tions seem appropriate when spatial deformations 
are due to expansion, compression, or bending of 
a uniform structure, but not buckling, tearing and 
the like. 

Finally, the first part of  the method described 
in Sections 2 and 3 is also applicable to image 
registration which is the process of overlaying two 
images of  the same scene or object. Image registra- 
tion is particularly relevant in remote sensing [ 12], 
as well as in medical imaging where it is of  interest 

to map several PET, CT or MRI images onto a 
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common atlas to allow the comparison of measure- 

ments obtained from different patients [2]. 

6. Conclusions 

We have presented two improvements to a 
method that compensates for spatial distortions in 
quasi-periodic structures and allows efficient noise 

reduction by cumulative averaging or periodic 
filtering. The first concerns the modelling of the 

warping function by piecewise polynomials 

defined over elementary triangular regions and 
continuous up to their first order derivatives. The 
coefficients of these polynomials are determined 
locally from a set of reference points that can be 

placed at arbitrary spatial locations. The second 

improvement is an iterative procedure that pro- 
gressively re-adjusts the spatial coordinates of the 

reference points and substantially decreases per- 
formance dependence on their initial position. 

The main advantage of this new approach over 

the previous one is that it allows the use of a larger 
number of reference points per unit cell which 

greatly improves image restoration, as shown in 

our experimental examples. Finally, the method 

has been found to be very robust in the sense that 

it is tolerant of fairly large errors in the initial 
positioning of the fiduciary points (up to 1/3 of 
the distance to the next closest point). 

This improved method enables a significant 

restoration of high resolution micrographs of crys- 
talline or quasi-periodic structures such as found 
in muscle fibers, and should therefore provide a 

useful tool for the structural investigation of  organ- 
ized biological systems. 
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