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Automated Extraction of Serial Myocardial Borders
from M-Mode Echocardiograms

M. UNSER, G. PELLE, P. BRUN, anp M. EDEN

Abstract—This paper describes a method for the automated extrac-
tion of myocardial borders in M-mode echocardiograms. The succes-
sive steps of processing are: preprocessing for noise reduction, en-
hancement of border characteristics using a set of suitably chosen
matched filters, and final extraction of border points by searching for
optimal paths along the time axis. During the last step of processing,
the contribution of each elementary border element is characterized by
a normalized correlation coefficient. The optimal path—defined as the
one that maximizes the sum of all elementary contributions—is deter-
mined efficiently using dynamic programming. An alternative ap-
proach uses a maximum tracking procedure whose performance is im-
proved by exploiting a local model to predict the position of.the next
border point. Experimental examples are presented and the perfor-
mance of both border extraction algorithms is compared.

I. INTRODUCTION

CHOCARDIOGRAPHY is a noninvasive method for

monitoring ventricular function and evaluating myo-
cardial hypertrophy in patients with heart disease. Since
the information displayed in two-dimensional echocardi-
ograms (2-D) is usually the most useful for diagnostic
purposes, most of the current development of computer-
ized methods has been directed towards the analysis of 2-
D data [1]-[3]. However, estimation of wall thickness
using 2-D remains relatively inaccurate and one-dimen-
sional or M-mode echocardiography, due to its greater re-
liability, is widely accepted as the reference method for
measuring thickness [4], [5]. This latter parameter is cru-
cial in myocardial volume computation. Measurements are
usually obtained on strip-chart recordings and wall bor-
ders are sometimes digitized manually and transferred to
a minicomputer [6]-[9]. To facilitate these determina-
tions and to minimize potential errors, automatic analysis
is conceivable, but paradoxically only few attempts have
been reported so far [1], [10]. The purpose of this paper
is to describe an improved system that achieves reliable
detection of cardiac boundaries. The work of Kuwahara
et al. [10] is particularly relevant and will be used as a
basis for comparison.

The signal in M-mode echography is obtained from the
time sequence of a one-dimensional signal locating an-
atomic structures from their echoes along a fixed axis of
emission. These measurements are usually represented as
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an image (cf. Fig. 1) in which the abscissa and ordinate
represent time and depth (or distance), respectively. The
gray-level value of each pixel is a function of the reflected
ultrasound energy. The cardiac borders, which are indi-
cated in Fig. 1, have a periodic translational movement
with time. Due to the high level of noise. the presence of
chordae, or the intermittent appearance of highly mobile
structures such as valves in the exploration axis, the au-
tomated detection of these borders is by no means a trivial
task to be solved by standard image processing tech-
niques, e.g., gray-level thresholding, segmentation, or
edge detection [11]. Consequently, it was necessary to
design specific processing methods tailored to the prob-
lem and make the best use of physical and physiological
constraints.

As with most pattern recognition systems. the proce-
dure described here comprises a preprocessing unit, a
template-matching feature extraction module, and a de-
cision unit that extracts cardiac borders and makes ex-
plicit use of problem-related constraints. These compo-
nents, which are successively considered in the following
sections, are represented schematically in Fig. 2. The part
of the system most particularly related to the problem is
the detection of myocardial borders for which alternative
approaches are presented in Section III. In Section IV, we
show some experimental results and compare the perfor-
mance of various border extraction algorithms.

II. PREPROCESSING AND TEMPLATE MATCHING

A digitized one-dimensional echocardiogram is repre-
sented as a two-dimensional image {x;,}. where the first
index k represents the time variable and the second index
| the depth along the axis of ultrasonic emission. The sam-
pling intervals along the time and spatial dimensions are
At and Al, respectively. Physically, the gray-level value
X, is a measure of the ultrasonic received energy re-
corded at time 7, + kAt. It corresponds to a layer located
at a distance / - Al from the source of emission. In the
following, we will focus our attention on the two first steps
of processing, namely preprocessing and feature extrac-
tion.

A. Preprocessing

Most echocardiograms have a relatively high noise level
because of intrinsic limitations in the measurement de-
vice. Substantial noise reduction with minimal informa-
tion loss is achieved by smoothing the data selectively
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Fig. 1. A typical M-mode echocardiogram with the definition of myocar-
dial borders. () Right border of interventricular septum. (2) Left border

of interventricular septum. (3 Posterior wall endocardium. (3) Posterior
wall epicardium.
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Fig. 2. Block diagram of a general system for sequential border detection
for M-mode cchocardiograms.

along the time direction. More specifically, it was found
that a few iterations (typ. 3) of a particularly simple 3 X
1 directional moving average filter.

Ver = (o1 + X+ x0)/3 (1)

significantly improved the smoothness of the time trajec-
tories without losing resolution noticeably in the depth
direction. This procedure takes advantage of the rela-
tively slow displacement of cardiac structures with time
and tends to preserve edges characterizing cardiac bound-
aries. This preprocessing has an effect somewhat similar
to increasing the temporal width of the reference tem-
plates used later on for border detection.

B. Reference Template Extraction

Each of the four cardiac borders (right and left borders
of the interventricular septum, endocardium, and epicar-
dium, respectively) is characterized by a one-dimensional
reference profile or template in the spatial direction
{ri(l1)},i =1, 4, defined on a support of length
N (typically, N = 15). In the present implementation, the
reference templates are either specified interactively and
extracted as a portion of the signal centered on a position
fixed by the operator or predetermined in a training phase.
In this latter case, a cardiologist is asked to draw the four
myocardial borders on one or several echocardiograms.
The reference templates are then evaluated from the en-
semble average of elementary characteristic profiles cen-
tered on the reference border position at successive time
intervals. This method provides a set of templates that are
optimal in the sense that their average quadratic error with
all signal segments situated along the marked borders is
minimized.

C. Cross-Correlation

Feature extraction is based on template matching [12].
The successive time frames are cross-correlated with ref-
erence signals representing characteristic border profiles.
The output of such a system is maximized when the ref-
erence and test signals are most nearly similar to each
other, but it has the disadvantage of being amplitude de-
pendent. A more robust measure of goodness of fit is ob-
tained by computing the normalized cross-correlation
coefficient defined by

+N/2
0 ;?N/’ Yersnlri(n) = 7]
-1 = py = =1 (2)
NO’,IO'/\-.[
where
1 +N/2 1 +N/2 2
== 2 i —= 2 y,.). (3
Okt Nn=-N/2y,\‘1‘” <Nn—N/2'A‘I n> ( )

The quantities 7; and o,, denote the mean and standard de-
viation of the reference signal {r,(/), [ = =N/2, - - -,
+N/2}. This measure, defined for every (k, /), is in-
dependent of amplitude and baseline variation. The nu-
merator of (3) is the cross-correlation between the test and
reference signals. Since the spatial range over which this
criterion is to be evaluated is usually small (typically, less
than 30 pixels wide), this computation is most efficiently
implemented in real space. Computation time is de-
creased by updating o7, recursively and by noticing that
7; and o, need only be evaluated once.

I1I. BorDER EXTRACTION

Border extraction is the most delicate step of process-
ing. Difficulties arise from the fact that the observed time
trajectories of cardiac borders sometimes present discon-
tinuities and may not always correspond to well-defined
edges. Furthermore, most echocardiograms contain a cer-
tain number of irrelevant high contrast edges which are
sometimes located in close proximity to true cardiac bor-
ders. These parasitic traces are a result of moving struc-
tures such as chordae or valves.

In this section, we first list some specific constraints
that will be used to facilitate contour tracking. We then
describe a maximum tracking algorithm due Kuwahara er
al. [10] and suggest an improvement which makes use of
previously extracted data to predict the location of the next
border point. Finally, we propose an alternative proce-
dure that uses dynamic programming to determine an op-
timal trajectory which maximizes a global cost criterion
while satisfying a set of continuity constraints.

A. Specific Constraints

In the following development, the axial movement of a
cardiac border is characterized by a sequence of integer
values {/(k), k = 1, , K }. More specifically. as
illustrated in Fig. 1, we denote by {/,(k)}. {L(k)},
{L5(k)}, and {4(k)} the time trajectories of the right and
left borders of the interventricular septum, the posterior
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wall endocardium, and epicardium, respectively. The
search for a given border {/;(k)} is limited to an admis-
sible range /;; < /;(k) < I, where [;; and [;; are constant
for each cardiac edge. For example, in a recording such
as the one shown in Fig. 1, one can be confident in as-
suming that the interventricular septum will be located
somewhere between 2 and 5 cm deep. In our system, more
precise bounds can be specified interactively by the op-
erator, which has also the advantage of decreasing com-
putation time substantially.

Some simplifications are possible by using the fact that
the border trajectories are not independent. This obser-
vation is essential since, for a typical echocardiogram as
with the one shown in Fig. 1, finding the posterior wall
epicardium and lower (left) septal border is usually much
easier than finding the posterior wall endocardium or up-
per (right) septal border. It seemed to us that it would be
judicious to extract the better defined borders first and to
use conditional constraints to facilitate subsequent edge
detection. A particularly simple constraint is to specify
the minimal and maximal widths for the interventricular
septum and the posterior wall

Ay < [lin(k) = L(k)] = 4y (i=1,3) (4)
where A; and A,; are two positive integers. For example,
we may choose (A}, = 2.5 mm and A,; = 15 mm) for

the interventricular septum, and (A3 = 2.5 mm and A,;
= 20 mm) for the posterior wall which is usually wider.
A rather interesting property observed on most echocar-
diograms that we have seen so far is that the range of the
various cardiac boundaries do not intersect. Therefore, we
have that

max {,(k)} < min {L,(k)}.  (i=1,3). (5)

Any of these relationships can be used to restrict the search
area for subsequent edge extraction once a first boundary
has been detected. The use of either of these constraints
also prevents cardiac borders from merging.

Most of the time, the outer and inner borders of a car-
diac wall move in the same direction. It is thus reasonable
to assume that their displacements are correlated and that
the corresponding trajectories can be predicted approxi-
mately from one another using the linear relationship

Lik) = alin(k) + 8 (i=1,3). (6)

The parameter 8 < O represents a simple offset corre-
sponding to the width of the cardiac wall when o = 1.
The use of a multiplicative factor &« = 1 + A« allows the
modeling of variations of wall thickness. The parameters
of this model may not be constant during the whole cycle
but can reasonably be assumed to be stationary within a
small time interval (e.g., shorter than half a cardiac
cycle).

B. Maximum Tracking Algorithm (MTA)

The system described by Kuwahara et al. {10] is based
on a search algorithm that traces gray-scale maxima cor-

responding to each relevant cardiac internal structure
along the horizontal time axis. Although this algorithm
was initially designed to be applied to the data directly
without use of preprocessing or border enhancement based
on matched filtering, it can also be used in our system in
which the detection of cardiac edges is to be based on the
position of the maxima of a cross-correlation function with
a reference template. After a brief review of the two mo-
dalities of this algorithm, we present an extension that
uses a prediction of the next border point based on pre-
viously extracted structural information.

1) Basic Algorithm: The basic procedure uses the fact
that the movement of a structure from one time frame to
another is restricted to a relatively narrow region. A start-
ing point is first determined, typically by searching for the
global maximum in an admissible range for k = 1. Then,
assuming the present position of the cardiac border to be
I, the algorithm searches for the point with maximal in-
tensity in the next vertical line in a window centered
around the previous position (! + w). This point is then
taken as the next position of the structure. This procedure,
which is illustrated in Fig. 3(a), is iterated until all K
frames have been considered.

This simple approach follows a single path guided by
locally optimizing the sum of the signal values (or in our
case, the correlation coefficients) along the trajectory. It
usually allows a satisfactory detection of the posterior wall
epicardium, but generally fails in detecting the endocar-
dium or the boundaries of the interventricular septum.

2) Kuwahara Algorithm (KMTA): Kuwahara et al.
suggest searching for the endocardium by reference to the
epicardium that has already been detected. Their algo-
rithm uses the same principle as their first procedure ex-
cept that the position and extent of the search window at
a given time k is also a function of the relative displace-
ment of the reference structure Al (k) = (k) — .(k —
1). The reference position is now given by /(k — 1) +
Al (k), where [(k — 1) denotes the previously detected
position of the structure. Furthermore, the width of the
search window is increased in an asymmetric way, de-
pending on the sign of Al(k), as illustrated in Fig. 3(b).
Broadening the search window in the expected direction
of movement is designed to compensate for the greater
velocity of the endocardium in systole and early diastole.
A similar algorithm may also be used to detect the inter-
ventricular septum.

3) Predictive Algorithm (PMTA): The major weakness
of the procedure described above is its dependence on a
single quantity A/, (k) which may be quite unreliable be-
cause of local fluctuations in the reference boundary. A
more robust approach should incorporate significantly
more data. To overcome this limitation, we have adopted
a predictive approach specifying the position of the search
window by the model given in (6). For a given k, the local
parameters of the model «; and 8, are determined from
the N' most recent pairs of border points on the current
and reference structures { (/(k — k'), [,(k — k")), k' =
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Fig. 3. Different modalities of the maximum tracking algorithm. (a) Basic
approach (MTA): (b) Kuwahara algorithm (KMTA): (c) predictive al-
gorithm (PMTA).

1, - -+, N'}. The minimum mean square error estimates
of these parameters are given by

kgl [l(k - k/) - m"][17(k - k’) - mrk]

2 [l — k) - m]’

and
Bi = my — aypmy (7)

where m; and m, are the average values of the current
and reference border, respectively,

1 Y
mA,:FEI/(k—k)

and

i

My

I
N E] Lk~ k") (8)

and where N’ is the size of the running estimation win-
dow. A direct measure of the goodness of fit of the model
is provided by the variance of the prediction error. As
illustrated in Fig. 3(c), the position of the search window
is now centered on the predicted value computed from (6)
and the next border point is chosen as the one with max-
imum correlation. With this formulation, the width of the
search window need not be constant but can be set pro-
portional to the standard deviation of the residual error of
the model.

C. Sequential Optimization Based on Dynamic
Programming

The approaches described so far are strictly local and
suffer from the drawback that as they proceed to find edges
sequentially from k = 1 to k = K, they cannot correct
detection mistakes once they are made. In contrast, the
method that is presented next considers all possible paths
to reach any given point and makes a final decision based
on the optimization of a global cost function. Such an ex-
haustive search can be carried out efficiently because of
the discrete character of quantized data which limit the
number of allowable trajectories, and because of the use
of a cost function that can be decomposed as a sum of
independent elementary contributions. This approach im-
plicitly relies on the fact that when the ultrasonic beam is
oriented correctly, the major property distinguishing car-
diac boundary trajectories from those of other moving
structures is that they are rarely interrupted during the car-
diac cycle. It also incorporates physical continuity con-
straints that restrict maximal spatial movement from one
time frame (echo obtained from a single ultrasonic pulse)
to another.

Let the sequence 7 = {I(1), -+ - ,I(k), - -+, I(K)}
define one of the allowable time trajectories. In addition
to restricting the search to some admissible range, we also
require that |/(k) — I(k — 1)| = A (for example, A =
2) which limits the maximal border displacement during
a sampling interval. A particularly simple figure of merit
is the sum of all elementary correlations with a reference
profile along this path

K
§r = kgl Ph.iky (9)

The optimal trajectory is then defined as the one that max-
imizes £7. By taking advantage of the fact that &7 is de-
fined as a sum of elementary contributions only depending
on the previous transition, this problem is solved effec-
tively through dynamic programming. This technique uses
the Bellman principle of optimality [13], which, in the
present case, may be restated as follows. If the best path
goes through a given point /(k), then the best path in-
cludes, as a portion of it, the best partial path to the grid
point /(k). Accordingly, it is sufficient to restrict the
search to subtrajectories that are partially optimal.

1) The Dynamic Programming Algorithm (DPA): The
principle on which the algorithm is based is summarized
in Fig. 4. The main loop considers all values of k succes-
sively. For each of these values, the algorithm iteratively
determines £, ,, the optimal cost for reaching / (k) starting
from k' =1,

K
£y = max { 2 pAL/(k’)}
{i(h - akyy (K=

for all allowable values of /. The determination of the par-
tially optimal figure of merit is done by considering all
possible predecessors and selecting the most favorable

(10)
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Fig. 4. State transition for border detection algorithm based on dynamic
programming optimization (DPA).

transition. This calculation uses the dynamic equation
displayed in Fig. 4. This expression was derived using a
slight modification of the correlation values in (9) and a
maximal allowable displacement of two pixels in any di-
rection from one time frame to another. In this conven-
tion, a given time trajectory is represented by an 8-con-
nected contour where the correlation value associated with
each value of k is given by the mean value along the cor-
responding vertical segment. Using the mean rather than
the most extreme correlation value as was the case in (10),
tends to favor small vertical displacements, thereby im-
proving the continuity of the overall trajectory. At the end
of the cycle, the optimal cost function is found by search-
ing for the maximum of {&,_x,. [ = 1. - .} The
optimal trajectory is then retrieved using a backtracking
procedure.

2) Storage Requirements: In order to facilitate the re-
trieval of the optimal trajectory starting from its terminal
node with cost &7, it is advantageous to keep track of the
predecessors of all grid points. This is achieved by storing
at each step of the algorithm the most favorable prede-
cessor of any grid point (k, /) in an auxiliary bidimen-
sional array. The storage of all partial figures of merit
{ £}, however, is not necessary. Since for a given k only
the values at k — 1 are required, it is sufficient to store
these quantities in a temporary one-dimensional array that
is updated at each increment of k.

3) Specifying Constraints: The dynamic programming
procedure described above is readily adapted to cases in
which certain grid points are required to be on the path.
Such constraints may be provided in particularly difficult
situations for which the unconstrained algorithm has
failed. In such a case, the global trajectory is divided into
subsections, each of which is specified by a start and end
node prescribed by the operator. with no other con-
straints. Optimization is then performed for each segment
independently. Specification of a start point (k', [") is
taken into account by appropriately restricting the allow-
able predecessors of all nodes that are scanned succes-
sively by the algorithm. The specification of an end point
(k" 1”) is straightforward since the optimal cost to reach
this point is given by & ,-. It should be pointed out. how-
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ever, that the use of start and end points is rarely neces-
sary and that the algorithm is capable of fully automated
border extraction.

IV. RESULTS AND DISCUSSION
A. Material Description

For experimental evaluation. we used typical M-mode
echocardiograms recorded in the short axis direction of
the left ventricle. These measurements were performed by
a single operator using a mechanical sector scanner (Dia-
sonics DRF400) on normal patients in the left lateral de-
cubitus position. The M-mode echo signals were recorded
on videotape and later digitized with 6 bits /pixel. The
horizontal and vertical sampling intervals were Ar =
1/75 s and Ax = 1/16 cm, respectively. The algorithms
were implemented in Fortran on a VAX 11/780.

No deliberate effort was made to choose high quality
images. Further, the use of video recording and 6-bit
quantization tends to degrade the quality of the data. Ac-
cordingly, it is reasonable to expect better algorithmic
performance on directly digitized echographic signals.

B. Results

Typical examples of processing are presented in Figs.
5 and 6. In both cases, the reference profiles (N = 15)
were created by selecting characteristic points of the
cycle. Initial upper and lower limits for the searching of
a given cardiac structure (e.g.. /;; and [y with i = 1.
-+« . 4) were also entered in the program from the max-
imal displacement of a tablet. The results of cross-corre-
lation with the reference border profiles are displayed in
Figs. 5B and 6B. The effect of this step of processing is
to improve the signal-to-noise ratio.

The three algorithms (DPA. KMTA, and PMTA) de-
scribed in Section 1II were used for border extraction and
the corresponding results are displayed in Fig. 5C and D
and Fig. 6C and D. In all cases. the borders were ex-
tracted in the sequence {/;(k)}.i = 4. - - . 1. starting
from the posterior wall epicardium. In addition to the ini-
tial constraint /;, = /;(k) = l;». the search range for the
extraction of subsequent edges was restricted by (5). Ad-
ditional constraints, such as specification of start or end
points were not necessary. In the case of MTA. the basic
procedure was used to detect the epicardium which was
then used as a reference. Unfortunately, this simple ap-
proach was unsatisfactory in detecting the other cardiac
borders: these were therefore extracted using the more so-
phisticated KMTA or PMTA. Following some explora-
tion, the width parameter of the MTA was adjusted to a
globally optimal value which in the present case was w =
4. The detection of the upper border of the interventric-
ular septum ({/,(k)}) in Fig. 64 was not attempted be-
cause this area contains heavy reverberatory noise so that
reliable visual localization of this structure was unsatis-
factory.

A quantitative performance evaluation is obtained by
computing the error between the extracted borders and the
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Fig. 5. Example of processing. A: original 232 x 160 M-mode echocar-
diogram. B: cross-correlation functions within four search arcas. C: de-
tected borders with DPA. D: detected borders with KMTA. E: detected
borders with PMTA.

Fig. 6. Example of processing. A: original 226 x 170 M-mode echocar-
diogram. B: cross-correlation functions within three search areas. C: de-
tected borders with DPA. D: detected borders with KMTA. E: detected
borders with PMTA.

true borders as defined by a cardiologist. For this purpose,
we used the root mean square error

K gk 2

= s 11
€i Ko K (11)

where {/;(k)} denotes the borders extracted by the al-
gorithm and {/F(k)} is the reference myocardial border
as drawn by the cardiologist. Typical values of e obtained
with the various border extraction algorithms are given in
Table I. These numbers were computed for an example
similar to the one displayed in Fig. 54, for which all al-
gorithms performed reasonably well. In this particular ex-
ample, the four reference templates (N = 15) were de-
termined in training phase based on the borders specified
by the cardiologist. The epicardial edge is always very
well-defined and is detected without any problems by all
modalities. The corresponding value of € (¢ = 1.2) may

TABLE 1
RoOT MEAN SQUARE ERROR BETWEEN THE BORDERS EXTRACTED BY
VARIOUS MAXIMUM TRACKING ALGORITHMS AND THE REFERENCE
STRUCTURES SPECIFIED BY A CARDIOLOGIST ON A TypicAL M-MODE
ECHOCARDIOGRAM

Right Left
Septal Septal Endocardial  Epicardial
Algorithm Edge Edge Edge Edge
Regular procedure e =283 =226 e =938 e =122
with MTA® >
Regular procedure e=216 =300 e = 3.46
with KMTA" "¢
Regular procedure e=170 =282 e =154

with PMTA* ¢
Regular procedure e=148 € =097 e=1.53 €
with DPA®* "¢

It
to

“Preprocessing (1 iteration).

"Four optimized correlation templates (N = 15).
“Maximum tracking (w = 4).

“Dynamic programming with no constraint.

be regarded as typical of the deviation between a noise-
free edge and the physician’s ability to trace it. For most
other myocardial edges, the error obtained with the var-
ious versions of the MTA is substantially above this
threshold. On the other hand the DPA performs equally
well for all borders. The basic MTA is suitable for the
extraction of the epicardial and left septal edges but is not
applicable to the detection of the endocardium.

On the evidence of these examples, the DPA is capable
of accurately extracting the left ventricle borders and pro-
duces the most satisfactory results. As a consequence of
the restriction of the maximal displacement from one bor-
der point to another, the extracted borders are signifi-
cantly smoother than those obtained with the other algo-
rithms. The property is also reflected by the error measure
(cf. Table I) that is consistently smaller than that of all
the other methods. The MTA detects the epicardium
throughout the sample. The detection of the other struc-
tures using the KMTA and PMTA is adequate for certain
time intervals but the traces can present a certain number
of artifacts. Most detection errors are introduced by
neighboring high contrast edges usually associated to
valve leaflets and chordae. The tracking performance of
PMTA is always slightly superior to KMTA, which in-
dicates an improvement over the original scheme. The
most striking example is given by the endocardium in Fig.
6 which is perfectly detected by the DPA and PMTA (Fig.
6C and 6F ) but is missed in part by the KMTA (Fig. 6D)
which became temporally locked on a chorda tendinea.

In another series of experiments, we investigated the
sensitivity of the proposed method to changes in the steps
preceding border extraction. An important issue was to
assess the usefulness of the cross-correlation unit. For this
purpose, we used two different sets of correlation tem-
plates as well as no correlation at all. The first set was
determined in an optimal fashion (as described in the sec-
ond half of Section II-B) for this particular patient and
was the same as used in Table I. The second set was based
on another patient and simply obtained by extracting four
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TABLE 11
ROOT MEAN SQUARE ERROR BETWEEN THE BORDERS EXTRACTED UNDER
Variots CONDITIONS OF THE AUTOMATED PROCEDURE AND THE
REFERENCE STRUCTURES SPECIFIED BY A CARDIOLOGIST ON A TYPICAL
M-MODE ECHOCARDIOGRAM

Right Left
Septal Septal  Endocardial Epicardial
Algorithm Edge Edge Edge Edge
Regular procedure® "¢ ¢ =141 €¢=0.97 ¢=146 =121
No preprocessing™* e=160 e=102 e=154 =125
No cross-correlation®* e =651 ¢e=654 ¢¢=466 e=3.64
Nonoptimized e=197 ¢e=120 =172 =172
templates® "¢
“Preprocessing (1 iteration).
*Preprocessing (4 iterations).
"Four optimized correlation templates (N = 15).
*'Four user defined correlation templates (N = 15).

‘Dynamic programming with no constraint.

separate signal segments performing no averaging over
time. The corresponding results are summarized in Table
II which corresponds to the same echocardiogram as Ta-
ble 1. In all cases, we used the DPA border extraction
algorithm with no start or end constraint. Preprocessing
is not essential but improves slightly the continuity of the
trajectories. The best results are usually obtained after 3-
4 iterations of a 1 X 3 moving average. The error is pro-
hibitively large when no cross-correlation is involved but
remains within an acceptable range when nonoptimized
templates are used.

C. Discussion

In the approach described by Kuwahara et al. [10], the
maximum tracking algorithm is applied to the data di-
rectly with no preprocessing or cross-correlation with ref-
erence profiles. From our experience, it appears that this
technique is applicable only to echocardiographic record-
ings of excellent quality. Furthermore, it has been estab-
lished that it is the leading edge of the echo, and not nec-
essarily the most pronounced signal maximum, that
corresponds most closely with the position in space of the
structure giving rise to it [14]. For typical echocardi-
ograms, such as the one displayed in Figs. 5 and 6, the
direct approach is applicable only for the detection of the
epicardium and invariably fails for other cardiac struc-
tures (cf. Table II). This result reinforces the importance
of preprocessing and particularly template matching
which, as illustrated in Figs. 5B and 6B, allows for much
easier and more reliable cardiac border location. Cross-
correlation based detection is generally more robust and
noise resistant since it is not based on a single signal value
but takes into account the morphology of the signal in the
neighborhood of the structure of interest. An important
aspect illustrated in Table II is that the procedure is not
overly sensitive to small differences in the correlation
templates. There is usually only a slight decrease in per-
formance when using nonoptimized templates. How well
the shape of the characteristic waveforms is preserved
during the whole cardiac cycle as well as across different
patients is still an open question.
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The major drawback of all maximum tracking algo-
rithms, which is clearly illustrated in Fig. 6D, is their
inability to correct for previous detection mistakes. The
decision at every step is dependent on the previous detec-
tion and uses local information exclusively. This problem
is avoided in the DPA where all possible paths are con-
sidered and where the final decision is based on a global
cost function. As a consequence, the DPA is generally
more robust and has a lesser tendency to detect irrelevant
(usually partially interrupted) high contrast edges, as il-
lustrated in our examples.

An essential parameter of the various versions of the
MTA is the size of the search region (w). On the one
hand, w must be reasonably small to maximize the con-
tinuity of the time trajectory and to avoid jumps to neigh-
boring edges. On the other hand, w should be large enough
to allow tracking of large border displacements and, more
important, to allow resynchronization following detection
of an irrelevant or incorrect structure. Some typical events
of this character are quite visible in Fig. 5D and E and
Fig. 6D and E. The difficulty in satisfying both of these
requirements simultaneously (continuous trajectory and
good tracking ability) is a serious limitation of this par-
ticular type of algorithm. Fortunately, this is not the case
for the DPA, which is capable of progressively resyn-
chronizing after a large boundary displacement, even
when the range of allowable transitions is comparatively
small.

In summary, the DPA appears to be generally superior
to the other maximum tracking algorithms that have been
considered. Cardiac boundary detection is usually much
more accurate and has fewer artifacts. Furthermore, DPA
produces myocardial borders that are reasonably smooth
as a result of the restriction placed on allowable transi-
tions. Finally, DPA is better suited for interactive pro-
cessing since it allows for the specification of start and
end contour points for any segment of the cycle. The only
drawback is in the increased amount of computation, cur-
rently of the order of a few seconds (1-3 s) per cardiac
boundary on a VAX 11/780, whereas the response of the
other algorithms is almost instantaneous.

V. CONCLUSION

A general approach to the automated detection of car-
diac structures in M-mode echocardiograms has been pre-
sented. Initially, the data are preprocessed for noise re-
duction and robust border localization is achieved by
cross-correlating the successive time frames with a set of
reference profiles characterizing the different cardiac
structures. The cardiac borders are finally extracted by
searching for correlation maxima along the time axis.

Two border extraction algorithms have been consid-
ered. The first is an extension of a sequential maximum
tracking algorithm initially proposed by Kuwahara et al.
In this modified version, the detection of endocardium is
improved by using the previously extracted epicardium as
a reference and updating the parameters of model in order
to predict the position of the next border point. The sec-
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ond uses dynamic programming and computes an optimal
time trajectory by maximizing a global cost function. Our
experimental comparison indicates that the performance
of the dynamic programming approach is generally su-
perior. This technique has fewer detection errors and pro-
duces border trajectories that are more nearly continuous
and have fewer artifacts. In addition, DPA permits the
specification of beginning and end point constraints for
any segment of the cardiac cycle.

The algorithm has been tested on a limited number of
cases and satisfactory results have almost always been ob-
tained. As a next step of this research, we would propose
a systematic performance evaluation based on a large
population of normal subjects and patients with myocar-
dial hypertrophies. We are currently adapting our soft-
ware for a microcomputer which is to be interfaced to the
echograph and which should allow an on-line evaluation
of the proposed algorithms in a clinical environment.
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