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Nonlinear Operators for Improving Texture
Segmentation Based on Features Extracted
by Spatial Filtering

MICHAEL UNSER, MEMBER, 1EEE, AND MURRAY EDEN, FELLOW, IEEE

Abstract —An unsupervised texture segmentation system using texture
features obtained from a combination of spatial filters and nonlinear
operators is described. Local texture features are evaluated in parallel
by a succession of four basic operations: a) a convolution for local
structure detection (local linear transform), b) a first nonlinearity of the
form f(x)=|x|" c) an iterative smoothing operator, and d) a second
nonlinearity g(x). The Karhunen-Loéve transform is used to reduce the
dimensionality of the resulting feature vector and segmentation is
achieved by thresholding or clustering in feature space. The combina-
tion of nonlinearities f(x)=|x|* (in particular, a = 2) and g(x)=logx
maximizes texture discrimination and results in a description with
variances approximately constant for all feature components and texture
regions. This latter property improves the performance of both feature
reduction and clustering algorithms significantly.

1. INTRODUCTION

HE CHARACTERIZATION of texture plays two
important roles in computer vision. First, texture
properties can be used to classify homogeneous image
areas as sky, grass, clouds, etc. Second the identification
of regions of the same texture character can be an impor-
tant factor in segmenting images. Many computational
methods have been suggested and applied to problems
involving texture analysis, classification and image seg-
mentation [1], [2]. Commonly used texture measures in-
clude Fourier domain energy [3], densities of local ex-
trema [4], co-occurrence matrix and second-order gray
level statistics (5], [6], local orientation and frequency [7],
coarseness [8], spatial texture energy [9], [10], as well as
parameters of various random field models [11]-[13]. As
these methods have had somewhat different motivations
from the point of view of application, they tend to be
optimal for different properties or statistics.
Among the great variety of texture features, those
extracted by spatial filtering [9], (10], [14], [15]-[18] appear
to be well suited for texture segmentation based on clus-
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tering [19], [20]. In this context, visually distinct image
regions can be differentiated effectively by means of dif-
ferences in the average values of their feature vectors so
long as the feature values within the different regions
remain as nearly constant as possible.

Spatial texture energy measures are usually computed
in three steps [9], [10], [17]. First, the initial image is
convolved with a bank of N filters and the output of each
convolution mask is stored in a corresponding feature
plane or channel. This matching process may be thought
of as decomposing the local intensity map into a set of
elementary spatial patterns frequently referred to as pri-
mary features. At this stage, differences in the variances
of these initial features carry the information correspond-
ing to differences between texture regions. The next step
is to rectify or square the individual feature values; more
generally, to apply a nonlinear transformation. This oper-
ation has the effect of converting variance disparities into
mean values differences, an essential step if standard
clustering and classification procedures are to be em-
ployed. Third, these feature channels are smoothed to
furnish a set of so-called texture energy measures charac-
terizing certain local texture properties of the neighbor-
hood of a given pixel. This final averaging reduces the
feature component variances and results in clusters in
feature space that are more compact and easier to distin-
guish. Another motivation for this operation is that the
notion of texture is undefined at the single pixel level but
always associated with some set of pixels, which, in our
case, corresponds to a neighborhood specified by the
range of the averaging window.

This approach to feature extraction combines linear
neighborhood functions (filters) and nonlinear point func-
tions (rectifier or squarer). The behavior of the linear
filters is well understood as is the optimization of their
design [10]. On the other hand, the role of the nonlinear
operators is not nearly so transparent and in most in-
stances their selection has been empirically based. The
purpose of this paper is to examine this role by providing
a detailed analysis of the effects of a class of nonlineari-
ties (including the two cited) and by selecting operators
appropriate to the aim of optimizing the discrimination
between texture fields that have been determined to be
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Fig. 1. Block diagram of general segmentation system.

different by other criteria, e.g., visual inspection. As a
refinement, we introduce an additional nonlinearity fol-
lowing spatial smoothing. With a view of improving clus-
tering performance, we will also investigate the use of
transformations that standardize the variances of the
components of the resulting feature vector. The motiva-
tion behind this last step is to provide a feature space
with an Euclidean metric close to optimal for classifica-
tion. This last property greatly simplifies classification and
should substantially improve the system’s performance in
an unsupervised mode. The block diagram of the general
texture segmentation system to be analyzed as well as the
notation that is used throughout the presentation is shown
in Fig. 1.

As with most pattern recognition systems, the last two
elements of this block diagram are the linear feature
reduction component and the decision unit that assigns
individual pixels to one or another image region. In this
study, we will consider the simplest design for these steps:
a Karhunen—Logve transformation (KLT) foliowed by a
simple thresholding or clustering algorithm operating ina
reduced feature space to complete the classification.

Ultimately, our goal is to devise an unsupervised tex-
ture segmentation system that is easy to implement and
whose individual components are carefully selected for
optimal performance. The presentation is organized as
follows. In Section II, we look at the influence of each
processing step and derive the statistical distribution of
the individual feature components within a region of
homogeneous texture. In Section III, we show how to
select nonlinearities that provide texture features with
variances very nearly constant in all channels and all
texture regions. The statistics of the feature components
are then used in Section IV to quantify the system’s
performance (between-to-within variance ratios) for a
two-class texture segmentation problem. With the help of
a few simplifying assumptions, these results allow us to
compare several combinations of nonlinear operators and
to identify the most promising approach. Finally, in Sec-
tion V, we present some experimental results that support
our theoretical findings and illustrate the type of improve-

ment that can be achieved through the proper use of
nonlinearities.

1I. TuE SystTEM COMPONENTS

Each of the parallel channels of Fig. 1 is composed of a
succession of elementary units. Each component carries
out a specific task described below. We step through this
chain of operations in order to derive the mean and
variance of each feature vector. An important assumption
is that the input of the system is zero mean. This condi-
tion can be imposed by highpass filtering the image ina
preprocessing step. Such a process eliminates the gray
tone information which is not essential for texture seg-
mentation and will not be considered further in this study.

A. Local Linear Transform

For a statistical justification of the use of filtering
operators to characterize local texture properties and the
definition of optimal and sub-optimal operators, we refer
to [10]. The underlying principle is to characterize the
N-th order probability density function (PDF) of the pix-
els in a restricted neighborhood by a set of N first-order
PDF’s (or histograms) estimated along a set of suitably
chosen axes. The block diagram in Fig. 1 is comprised of
N feature channels that can be processed in parallel.

Let x(k,I) represent the initial image and h(k,[) the
finite impulse response of the ith filter. The output of this
operator is given by

yi(k’l)=x(kvl)®hi(k!l)=h;'rx(kvl) (1)
where ® denotes the convolution operator. The right
hand side of this equation has been expressed as the dot
product of a vector k; characterizing the impulse re-
sponse of the corresponding filter, and a local neighbor-
hood vector x(k,!) defined for every spatial location
(k, D). If all convolution masks are defined on the same
support of size N', the equation of the filter bank is given
by

y(k,1) = Hx(k,]) (2)
where y(k,[)=[y(k,1) - - - yp(k,D]" and H is an N X N'
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matrix defining a local linear transformation. In practice,
we will choose N'= N and select orthogonal convolution
masks. Therefore, aside from the conventional interpreta-
tion of convolution masks as local structure detectors, (2)
may be thought of as a rotation in local pixel space, or,
equivalently, as a transformation of the original coordi-
nate system. We wish to choose the matrix H so that the
channel histograms {p(y,), i =1, - -, N} provide the most
distinctive texture description. A compact texture charac-

terization is the set of variances of each histogram given
by

E{yiz} =a’= h{C,h, (3

where C, is the N X N spatial covariance associated with
a given texture.

The set of all channel variances provides a complete
description of the covariance structure of a given texture
field when H diagonalizes C,. A transform having this
property is the Karhunen-Loéve transform that was first
used by Ade for texture analysis [18]. We have shown
elsewhere that a similar property is required to discrimi-
nate maximally between any two textures and that it is
possible to determine optimal sets of convolution masks
for any explicit binary texture analysis or classification
problem [10]. We have also demonstrated that close-to-
optimal performance can be achieved using sub-optimal
separable masks associated with the basis vectors of the
discrete sine (DST), the cosine (DCT), the Hadamard
(DHT), or the real even Fourier (DREFT) transform. The
DST usually performs slightly better for odd dimensions
of the local neighborhood vector (33 and 5X5), while
the DHT (or DREFT) gives slightly better results for even
neighborhoods (2X 2 and 4% 4) [10], [21]. These subopti-
mal operators, structurally very similar to Laws’ initial set
of convolution masks [9], have some important advan-
tages, including simplicity of implementation, the avail-
ability of fast algorithms and finally the guarantee that
the performance is close to optimal for a large variety of
textures.

B. First Nonlinear Transformation — f(y)

At this point, we recall that all filtered channels are
zero-mean and that distinct texture regions are presumed
to differ mainly in the values of their channel variances.
Since most clustering methods are designed to distinguish
between classes with non-overlapping centroids, the pur-
pose of the first nonlinear transformation is to translate
differences in dispersion characteristics into differences in
mean value. To study the effect of such transformations,
we define the standardized filtered variable

i=1,,N (4)

which has zero mean and unit variance for each of the N
local linear features. The normalized density function,
{p(2)}, is characteristic of the shape of the channel his-
togram, independent of its dispersion. As such, it is repre-
sentative of a whole class of probability density functions.

z=y, /oy,
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For example, the normalized Gaussian density can be
used to characterize the class of textures for which the
joint PDF of x or y are multivariate Gaussian distribu-
tions; that is, the so-called Gaussian textures.

A natural choice for f(y) is a member of the class of
power functions of the form |y|* where « is some positive
constant, with the most obvious choices being a =1 [9]
and a = 2[10]. Let p, be the normalized moment defined
by

(5)

The expected value of the nonlinear transformed variable
u(k, )= f(y(k,D) is given by

ta= B2l = [ Iz (2) dz.

u;=E{u} =p,0° (6)
Similarly, we find that the variance of u,(k,!) is
04 =Var{u} = (uz, — 1)
2
(I-'-za - ""’a) _ _
= PR uizz')’(a)uiz (7)

and is proportional to the square of the expected value.

C. Spatial Smoothing

The purpose of the smoothing operator is to decrease
the variances of the feature vectors within the various
texture regions while preserving the inter-region mean
differences insofar as possible. Smoothing is usually
achieved by linear filtering. The impulse response of the
corresponding lowpass filter may be viewed as an estima-
tion window that is applied to the signal and that provides
a local estimate of E{f(y,)}, which is given by (6). The
choice of a Gaussian filter is particularly attractive be-
cause of its effective band rejection and good localization
properties, and also because it is the only circularly sym-
metric filter that is separable in the two principal direc-
tions. This operator can be implemented by means of a
succession of simple moving average filters, or by using a
method initially described by Burt that is based on the
cascaded convolution with a separable Gaussian-like ker-
nel that is progressively expanded and filled with zeros to
provide a full octave scale progression [22].

A smoothing operator is characterized by an equivalent
n X n window size. For a texture of a given type, it will
provide a noise reduction factor R(n?)= O(n?). We note
that for white noise, R(n?) is simply equal to n2. In all
cases, the expected value of the feature vectors within a
region of uniform texture should remain unchanged.

D. Second Nonlinear Transformation— g(x)

A second nonlinearity can be used to counterbalance
the effect of f(x) by taking g(x) = f(|x])~. It will provide
a feature value that is in the same units as the input signal
independent of the value of «. For a = 2, this amounts to
using the local standard deviation as a texture feature
instead of the variance. The motivation for such a choice
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is to make feature sets obtained for different values of a
more nearly comparable, thus facilitating the fine tuning
of the system. We note that the successive use of f(x)=
|x|* and g(x)=|x/"/* is analogous to determining a
weighted L, norm in order to measure distance in an
n-dimensional space. Another option, which will be con-
sidered later on, is to select a transformation that re-
moves the dependency between the feature variance and
its mean (cf (7). Before analyzing the effect that this may
have on texture discrimination, we will derive the approxi-
mate distribution of the resulting feature vector.

Due to the noise reducing effect of the smoothing
operation, the signal at the input of this operator is the
superposition of a constant (the expected value of f(y))
and a residual variation Au of the order of 1/n. We use
the Taylor series expansion

g, + Au) = g(,) + g'(#,)Au+O(1/n?)

where

©)

dg(x)

ax
For n sufficiently large, the terms in O(1/n?) are negligi-
ble and the expected value of the feature vector is simply

g'(x)=

E{v,} =g(4;) +g'(#,) E{Au} = g(u,). (9)
Similarly, we find that the variance is given by
g'(@,) o
Var {v;) = g'(&;)*Var{Au} = ————. (10
ar{u) = g/(7,)" Var (au) = = o (10)

As a consequence of the central limit theorem the output
of the smoothing operator tends to be Gaussian dis-
tributed. When » is sufficiently large (8) is essentially a
linear transformation. In such a circumstance, the PDF of
the feature component v,(k,/) can be approximated by a
Gaussian distribution with mean and variance given by (9)
and (10), respectively.

E. Linear Feature Reduction

A detailed discussion of feature reduction techniques
in the context of texture segmentation may be found in
[20]. The representation that discriminates maximally be-
tween different texture regions is obtained by using multi-
ple or generalized Fisher’s linear discriminant functions
[23], [24]. However, the use of this technique requires
a priori knowledge of the mean vectors and the covari-
ance matrices of the feature vectors in all texture regions.
It is applicable only for supervised image segmentation.

For unsupervised segmentation, a natural choice is the
KLT, the most commonly used feature reduction tech-
nique [24]. One drawback of the KLT is that features are
weighted according to their overall energy contribution
rather than their discriminatory efficiency. Its perfor-
mance in the task of texture segmentation can sometimes
be quite poor. A more satisfactory approach is the multi-
ple-resolution feature reduction technique proposed by us
carlier, which provides a much closer approximation to
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Fisher’s linear discriminants [20]. Alternatively, we may
want to keep the system as simple as possible and try to
improve the performance of the KLT through an appro-
priate choice of nonlinearities, which is the approach
taken here.

IHI. VARIANCE EQUALIZATION

As mentioned in the introduction, the texture segmen-
tation system shown in Fig. 1 can be refined by sclecting a
sequence of transformations with the property that the
variances of the feature components are nearly constant
for all textures and all feature channels. The search for a
class of texture features with an equalized variance is
motivated by a desire for Euclidean metric suitability in
feature space, which not only facilitates further process-
ing but should also improve the system’s performance in
an unsupervised mode. This goal can be achieved by
adjusting either the first or the second nonlinearity.

A. f(x)=log|x|

Instead of using a first nonlinearity of the form |x|%, we
may use the logarithmic transformation f(x)=log|x|. It is
straightforward to see that

(11)
(12)

where u,,, and alf,g are the mean and variance of log |z
where z is the standardized variable defined by (4).
Hence, feature vectors have a constant variance, apart
from some normalized shape factor. In Appendix A, we
derive the statistical distribution and the moment generat-
ing function of log|z| when z is Gaussian distributed. In
particular, we show that u,, = —0.6351--- and oy, =
2 /8, which is a result that holds for the class of all
Gaussian textures.

ui = lOgO’i + M iog

2_ 52 =
0, = Oy, = const.

B. Variance Stabilization for Power Functions

An important property shared by the power functions
considered in Section II-B is that the variance of a given
texture feature u, is proportional to the square of the
expected value (cf (7)). We can choose g(x) so that the
variances of the resulting texture features are approxi-
mately constant. This requirement may be rewritten as

Oy = g—‘/(—IZE——% =g'(u;)uy %:2)-) = const. (13)

which, assuming some constant values of R(n?) and y(a),
is equivalent to the differential equation:

_ Cy
dg(u;) = Edﬁi

where ¢, is some fixed constant. By integrating this ex-
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pression, we obtain

c
g(ﬂi):fu_ldﬁi‘_‘clk)g(ﬁi)"‘co (14)
which, once again, points towards the choice of the loga-
rithmic transformation.

IV. PERFORMANCE ANALYSIS

In order to compare the performance of various combi-
nations of nonlinear operators for texture segmentation,
we will consider the simplified problem of distinguishing
between two regions with distinct texture types: w; and
w,. Obviously, the discriminatory power of a given texture
feature will depend on the ratio:

A%=E{yi2|w1}/E{yi2|w2}=(Ui1 /"'iz)2 (15)

where g;; and o3 are the channel variances of the two
textures. We recall that these quantities are entirely de-
termined by the covariance structure of the underlying
texture fields (cf (3)).

A. Between-to-Within Variance Ratio

A commonly used measure of separability is the be-
tween-to-within variance ratio that for a given feature v,
and a K-class classification problem is given [24] by

K
Y Plo,-5,)
=+ (16)

K

2
E Pko.uik
k=1

where P, =Prob(w,), Ty = Elvlw), 0% =Var{v]e,,
and 7, is the overall average feature value:

K
Dio= L Py
k=1
For our two class classification problem, we will assume
for simplicity that P, = P, =1/2 and that the noise re-
duction factors for both image regions are the same. We
also denote by @, and o2,, (k=1,2), the mean and
variance of u; for both texture fields. By substituting the

expressions for the mean and variance given by (9) and
(10) in (16), we find that

B_: 1 [g(ﬁil)_g(l‘_‘ﬂ)]z
"T2R(n?) g'(uy) 202, + 8 (7,) 00

(17

This equation will be used for comparing various combi-
nations of nonlinear operators.

B. Comparison of Different Combinations
of Nonlinear Operators

Using (17), we can now attempt a theoretical compari-
son of the performance of the various combinations of
nonlinear operators that have been considered so far.
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TABLE 1
NORMALIZED MOMENTS p1,, (5) AND ASSOCIATED SHAPE FacTors k(a)
(18) as FUNCTION OF EXPONENT OF & FOR GAUSSIAN
AND LAPLACIAN DISTRIBUTION

Gauss Laplace

a He w(a) o w(a)
1/2 0.822 1.38 0.886 0.915

1 0.798 1.75 1 1

2 1 2. 2 0.8

3 1.596 1.84 6 0.474

4 3 1.5 24 —

6 15 — 720 —

8 105 — — —

This comparison is based on the two following assump-
tions.

1) the standardized (unit variance and zero mean) PDFs
of the primary features for both textures under considera-
tion are approximately the same, at least to the extent
that u, = E{|z|*|w,} = E{|z|%|w,). In particular, we note
that this condition is satisfied for the entire class of
Gaussian textures and that it also holds across all fea-
tures.

2) the noise reduction factor of the smoothing filter
R(n?) is the same for both textures under consideration
and for all nonlinear operators that will be considered.
Obviously, this condition is only satisfied exactly for white
noise. Otherwise, approximate equality can be considered
as an acceptable hypothesis whenever the equivalent size
of the averaging kernel is greater than the maximum
distance over which pixels are significantly correlated.

At this stage, it is convenient to introduce the distribu-
tion parameter

%l

«(a) = (18)
"

2a I'Lza
which, as it will turn out later on, is a direct measure of
the discriminatory power of the function f(y)=y|* for a
given class of distributions. The values of 1, and «(a) for
the standardized Gaussian and Laplacian (or exponential)
distributions are given in Table 1.

The explicit evaluation of (15) for various combinations
of nonlinear operators using the mean and variance val-
ues given by (6), (7) or (11), (12) and performing the
appropriate substitutions yields the following results.

* Case 1: f(x)=1|x|" and g(x)=x:

B; k(a)n(a,A;)

1
T 2R(n?)
(1-29)°
where 7n(a,A;)=—S—~

ey (19

* Case 2: f(x)=1logx and g(x)=x:

11 . R (logA,)?
ARG ) e 0=
(20)
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Fig. 2. Texture separation measures as function of A (ratio_of standard deviations) for various combinations of nonlinear

operators, (1) f(x)=|x|* and g(x)=logx. 2) f(x)= |x]*?
g(x)=1xI"*). (@) fx)=1x|* and g(x)=x.

e Case 3: f(x)=1x|" and g(x)=|x|"/*

1 (1- )‘i)z
B;= 2R(—nz)K(a)n3( A;) where m4(A;) = W
(21)
* Case 4: f(x)=|x|" and g(x)=logx:
_ (log ’\i)z
3i=mk(a)n4(/\i) where  71,(2;) =75
(22)

All these expressions have been expressed as the product
of three basic terms.

The first one, 1/ R(n?), is the noise reduction factor of
the smoothing filter intended to decrease the intraclass
variance of the texture features and which, to a first
approximation, can be assumed to be the same in all
cases.

The second term, «(a) (or 1/ 0y, for case 2), defined
by (5) and (18), characterizes the basic shape of the family
of underlying distributions and is independent of the
dispersion parameters that allow the separation of differ-
ent texture fields. For a Gaussian distribution, x(a) is
maximized when a =2 (cf Table 1) and is significantly
greater than 1/0p3, that is equal to 8/7*=0.81 (cf
Appendix A). The choice of a =1 is most appropriate for
the exponential family and can still be considered as
acceptable for Gaussian textures.

The third term, which satisfies the property n(A,)=
n(1/A,), is a texture separation measure that depends
only on the ratio of the standard deviations in the corre-
sponding channel, irrespective of the family of underlying
distributions. In particular, we note that n;(A) =
n{a=1,1;) and n,(1,) = n,A). In the two last cases, it
is interesting to note that the initial dependence of
n:a, A;) on @ has been removed through the appropriate
selection of the second nonlinearity.

and g(x)=x. (3) f(x)=|x| and g(x)=x (or f(x)=|x|* and

In Cases 2, 3 and 4, the three basic factors of B; are
fully decoupled and can be optimized separately. The
comparison between Cases 1, 3, and 4 is simplified as the
two first terms in (19), (21) and (22) are identical in all
cases. The essential result, illustrated by the graph in Fig.
2, is that for any value of A;, we have

n(2) = ali_l;no(nl(a7’\i)) >mla,A) = n(ay,d),

for 0z>a;>a, (23)
The intuitively pleasing result that m(a,A;) tends to
14(1,) in the limit is demonstrated in Appendix B.

Therefore, provided that the assumptions underlying
the derivation of (19)-(22) hold, the most favorable com-
bination of nonlinear operators is Case 4 and is indepen-
dent of a. It has the additional property of providing
features with variances approximately equal in all feature
channels and all texture regions (cf Section III-B). For
a > 1, the combination studied in Case 3 surpasses that of
Case 1, while for a <1 the reverse is true. We note,
however, that for A, close to one all curves in Fig. 2 are
almost indistinguishable and that methods 1, 3, and 4 are
essentially equivalent. This result points to the impor-
tance of choosing « appropriately so that equivalent
improvements in performance can be expected for the
last three of these methods independent of the value of
A;. Clearly, Case 2 appears to be the least favorable
because we usually have x(a)>1/0,. This observation
suggests that the approach to variance equalization con-
sidered in Section III-B is the most effective.

V. EXxPERIMENTAL RESULTS

The complete texture segmentation system has been
implemented on an Apple Macintosh Il personal com-
puter. We present here some processing examples and
provide an experimental evaluation of the performance of
various combinations of nonlinear operators.
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Fig. 3. Segmentation of generated white Gaussian noise with A = 2.
(al) 128X 128 test image. (a2) histogram. (a3) definition of image
regions. (bl) extracted Feature channel with f(x)=|x|> and n=>5
(b2) histogram. (b3) binary result of segmentation. (cl) extracted
feature channel with f(x)=\x!2, g(x)=logx and n=35. (c2) his-
togram. (c3) binary result of segmentation.

TABLE 11
EXPERIMENTAL BETWEEN-TO-WITHIN VARIANCE RATIOS FOR TWO
TEXTURES IN F1G. 2 UsING VARIOUs FEATURE EXTRACTION
METHODS APPLIED TO NONFILTERED
SIGNAL (A =2 AND n =5)

Case 1 Case 2 Case 3 Case 4
flx) |x]* log x [x]* [x]®
g(x) x x [x|'/ log x
a=1/2 3.505 2.342 3.235 3.453
a=1 4.160 2.342 4.160 4.379
a=2 3.454 2.342 4.695 4.78

A. White Noise

In a first experiment, we generated a test image com-
posed of two regions with zero-mean Gaussian white
noise, shown in Fig. 3(al). The ratio between the noise
variances was chosen to be 4 (A =2). As these random
fields have no spatial correlation, no initial spatial filter-
ing was used. Segmentation was based on a single local
texture feature evaluated using various combinations of
nonlinear operators and a 5X5 moving average filter. In
effect, this approach is equivalent to computing some
form of local estimate of the noise variance over a 5X5
window. The corresponding features obtained by using
f(x)=x? alone and in combination with g(x)=log x are
displayed in Figs. 3(b1) and 3(c1), respectively. The effi-
ciency of various feature extraction methods was com-
pared by computing the between-to-within ratio defined
by (17) using the mean and variance values estimated in
the reference regions shown in Fig. 3(a3). These values
are given in Table II. Not surprisingly, the combination
f(x)=1x> and g(x)=1logx is the most efficient by this
measure and is more than twice as good as the least
favorable one (f(x)=1logx). It can be verified that all

results are in good agreement with the predictions that
can be made from the equations in Section IV-B using the
theoretical values of «(a) for a Gaussian distribution
which are given in Table 1.

For examples of this type with only one-component
feature vector, final segmentation can be obtained by
simple thresholding. In the present context, it makes
sense to choose the threshold value leading to the parti-
tion with maximal between-to-within variance ratio. It is
the method described in [25]. The corresponding binary
segmentation obtained for the feature channels in Fig.
3(b1) and 3(c1) are shown in Fig. 3(b3) and 3(c3), respec-
tively. Obviously, this threshold selection technique per-
forms best with the combination f(x)=x? and g(x)=
log x, in which case the classification errors are fewest
and the most nearly symmetric in distribution. An expla-
nation lies in the fact that our unsupervised segmentation
method relies implicitly on the Euclidean metric for clas-
sifying individual pixels. According to the optimal
Bayesian decision rule under class conditional Gaussian
assumption, the use of a common metric is only optimal
when all classes have the same covariance matrix. This is
precisely the case in Fig. 2(c) because of the variance
stabilizing property of the logarithmic transformation. This
property is illustrated by comparing the histograms in Fig.
2(b2) and 2(c2). We have performed the same experiment
using various levels of noise and always obtained experi-
mental results in excellent agreement with the theory. In
accordance with our predictions, we also verified that the
log transform (Case 2 and 4) equalizes the variance of the
feature component independent of the amount of noise
initially present in the image regions.

B. Texture Segmentation Examples

To investigate how well our theoretical results were
applicable to “natural” textures, we created test images
with predefined texture regions created by combining
textures taken from [26]. The original images were digi-
tized and preprocessed to compensate for transducer
nonuniformities; their mean and variance were set to
prescribed constants: ¥ =0 and o, = 30, respectively. The
use of synthetic texture composites has the advantage of
allowing a precise performance evaluation. Texture prop-
erties were extracted using a bank of four filters associ-
ated to the 2X2 Hadamard transform: the first operator

(H i|) is a lowpass filter while the three others are

o ), horizontal (‘71 71|) and diagonal

(I _i ’i ‘) edge detectors, respectively. The filtered
channels were then processed using the sequence of oper-
ations outlined in Section II.

A first test image (a) created by combining two Brodatz
textures (bark and grass) is displayed in Fig. 4(a); the two
reference regions are shown in Fig. 4(a3). For this partic-
ular example, smoothing was performed using two itera-
tions of a 7X7 moving average filter that is roughly
equivalent to a 10X 10 window. The processing results for

vertical (‘ :
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Fig. 4. Segmentation of test image (a) with two texture regions (bark
and grass). (al) 128X 128 test image. (a2) histogram. (a3) definition of
image regions. (b1) first component of KLT for features computed
with f(x)=|x| and n =10 (two iterations of a 7X7 moving average
filter). (b2) histogram. (b3) binary result of segmentation. (c1) first
component of KLT for features computed with f(x)= X%, g(x)=
log x and n = 10. (c2) histogram. (c3) binary result of segmentation.

different combinations of nonlinear operators are summa-
rized in Table III in terms of the between-to-within
variance ratios evaluated for each feature component, as
well as for the first component of the KLT. We have also
included the B associated to the linear Fisher discrimi-
nant function, which can be considered an upper bound
on performance. We observe first that for either method
there are slight differences in performance depending on
the value of a. The tendency is more or less the same as
in Table IT but the differences in performance are not
nearly as important, which may be explained by the fact
that the underlying random fields are not exactly Gauss-
ian. The use of the logarithmic function alone is still the
least favorable approach. The results obtained in case 1, 3
and 4 are approximately equivalent although there is
usually a slight advantage in using the latter. This similar-
ity in performance is explained by observing that the
initial variance ratios in all channels are not very different
from one and correspond to values for which all curves in
Fig. 2 are very close. Overall, the best performance is
achieved with the combination of operators: f(x)= x?
and g(x) = log x. We have also found that for Case 4, the
KLT performs much the best, and that it approximates
the optimal linear discriminant function closely. This be-
havior is illustrated in Figs. 4(b) and 4(c), which show the
first component of the KLT and the corresponding seg-
mentation results using the absolute value alone, which is
the conventional approach and the combination of square
and logarithmic transformations. These two cases corre-
spond to the underlined values of B in Table III. The
weights for the first component of the KLT in Fig. 4(b1)
and 4(cl), given in the order we gave the 2X2 normal
basis functions, are (—0.91,0.25, —0.33, —0.004) and

TABLE 111
EXPERIMENTAL BETWEEN-TO-WITHIN VARIANCE RATIOS FOR TEST
IMAGE IN FiG. 4(al) For VARIOUS FEATURES DERIVED FROM
THE FOUR CHANNELS OF THE 2 X 2 HADAMARD TRANSFORM

f(x) fx|® |x]* | x| log x
Features g(x) x x|/ log x x
#1 a=1/2 0.37 0.37 0.37 0.29
#2 0.75 0.74 0.75 0.58
#3 1.63 1.60 1.62 1.32
#4 0.13 0.14 0.13 0.10
KLT 1 212 0.82 2.40 2.06
Fisher 1 2.64 2.60 2.62 2.17
#1 a=1 0.41 — 0.42 —
#2 0.87 — 0.87 —
#3 1.76 — 1.78 -
#4 0.16 — 0.16 —
KLT 1 w — 2.58 —
Fisher 1 2.87 — 2.92 —
#1: a=2 0.44 0.46 0.46 —
#2 0.95 0.98 0.98 —
#3 1.66 1.79 1.81 —
#4 0.16 0.17 0.17 —
KLT 1 0.55 1.20 ﬂ -
Fisher 1 2.86 3.07 3.11 —

(—0.36,0.46, — 0.76, —0.25), respectively. It is particularly
striking to compare the histogram in Fig. 4(b2) in which
both classes overlap substantially, and the one in Fig.
4(c2) that is clearly bimodal.

It may be argued that the joint PDFs of textures such
as the ones used in the preceding example are close to
Gaussian distributions, in which case the assumptions
underlying our derivations are well satisfied. We there-
fore devised a series of experiments using texture compos-
ites created by combining Brodatz textures that had their
grayscale histograms equalized to 32 levels and that were
therefore clearly non-Gaussian. The segmentation results
obtained with our second test image (b) using the same
parameters as before are shown in Fig. 5. A more de-
tailed performance assessment is provided by Table IV.
These results are consistent with the previous ones and
the same qualitative observations can be made. The two
texture regions are now differentiable primarily by their
proportion of vertical edge components (second feature
component). In order to check the reproducibility of these
findings, we processed 30 test images created by combin-
ing six equalized Brodatz textures (D17,D19,D24,D29,
D68, and D84) in all possible pairs. The segmentation
parameters were identical to those used in Fig. 5 and the
overall performance was assessed from the magnitude of
the within-to-between variance ratio of the first compo-
nent of the KLT. The results were unambiguous. In all
cases, the combination |x|* —logx significantly outper-
formed the squarer alone. The same pattern was also
observed in the comparison of combinations 1 and 4 for
f(x)=|x|, except for three cases in which the two methods
essentially performed the same. For all test images, the
KLT approximation of Fisher linear discriminants ob-
tained in Case 4 was excellent (within a few percent)
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Fig. 5. Segmentation of test image (b) with two texture regions (paper
and sand). (al) 128 X 128 test image. (a2) histogram. (a3) definition of
image regions. (b1) first component of KLT for features computed
with f(x)=|x| and n=10 (two iterations of 7x7 moving average
filter). (b2) histogram. (b3) binary result of segmentation. (c1) first
component of KLT for features computed with f(x)=1x]%, g(x)=
log x and n =10. (c2) histogram. (c3) binary result of segmentation.

while the results obtained in Case 1 (or 3) were highly
variable.

We also conducted experiments using larger sets of
texture features. Table V summarizes the results obtained
for the segmentation of test images (a) and (b) using nine
texture features derived from the 3x3 DST [10]. The B
values given for the optimal Fisher discriminant function
serve as a compact characterization of the performance of
the entire feature set. When compared with Tables III
and 1V, the performance is somewhat improved due to
the use of a larger number of features. As before, the
performance obtained by use of sequence 4 arc the best
in almost all cases. The combination f(x)=|x|* and g(x)
=1x'"? is also consistently better than the use of a
rectifier or a squarer alone. Surprisingly, the performance
of f(x)=1loglx| is not as bad as it was in the previous
experiments. As in all other examples, the first compo-
nent of the KLT provides a better approximation of the
optimal discriminant function when the variances of the
feature components are equalized through the use of a
logarithmic transformation.

The general pattern that is apparent in Tables II-V
and that is qualitatively consistent with our theoretical
findings has been observed with a variety of different
textures. It is also virtually independent of the average
kernel size. We have also used test images with as many
as four different textures and verified that the KLT
consistently performed the best for Case 4.

C. Discussion

The conventional approach to extracting texture fea-
" tures from a bank of convolution masks is to apply a
rectifier followed by some smoothing operator on each
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TABLE IV
EXPERIMENTAL BETWEEN-TO-WITHIN VARIANCE RATIOS FOR TEST
ImAGE IN FiG. 5(al) FOR VaRIOUS FEATURES DERIVED FROM
THE FOUR CHANNELS OF THE 2 X 2 HADAMARD TRANSFORM

flx) [xl® x| Jx|* log x
Features 2(x) X RE log x X
#1 a=1/2 0.15 0.15 0.15 0.14
#2 1.42 1.42 1.41 111
#3 0.03 0.03 0.03 0.01
#4 0.72 0.72 0.54 0.54
KLT 1 1.33 0.18 1.59 1.26
Fisher 1 1.75 1.76 1.74 1.36
#1 a=1 0.15 — 0.15
#2 1.56 — 1.56
#3 0.03 0.04
#4 0.85 — 0.86
KLT I 0.89 — 1.82
Fisher 1 1.94 — 1.95
#1 a=2 0.15 0.16 0.16
#2 1.53 1.57 1.56
#3 0.04 0.04 0.04
#4 0.93 0.95 0.96
KLT 1 0.33 0.18 2.05
Fisher 1 2.20 2.22 2.26

filtered channel. This concept is initially due to Laws who
used the so-called texture energy measures [9]. This ap-
proach has been investigated and refined by other re-
searchers, especially that part which deals with the choice
of proper convolution operators [10], [18]. With this study,
we have attempted to show from both a theoretical and
experimental point of view how further to improve Laws’
procedure through the careful use of additional nonlin-
earities. From our experimental results, the most promis-
ing approach seems to be the combination of a squarer
and a logarithmic transformation. The system that we are
proposing is flexible and can be tuned by changing the
exponent of the first nonlinearity to provide the best
performance for a particular application. For the class of
all Gaussian textures, the value a=2 is optimal, an
unsurprising result given that the sample variance of a
zero-mean Gaussian random variable is a sufficient statis-
tic.

Overall, there is good agreement between the theoreti-
cal and experimental results. For images with nonsyn-
thetic textures, however, the results agree only qualita-
tively. Again, this is not surprising because we had made
several approximations and assumptions in deriving the
formulas in Section IV-B. In particular, the distribution of
texture images is rarely precisely Gaussian and different
texture fields may have slightly different values of «(a).
Moreover, the noise reduction factor R(n?) is not pre-
cisely the same in all image regions. In our derivation we
have also assumed that n was sufficiently large to justify
the use of a local linear approximation to the second
nonlinearity.

Even though our theoretical results were derived for a
simple two-class classification problem, we have reason to
believe that our conclusions should apply as well to the
processing of images with multiple texture regions. From
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TABLE V
EXPERIMENTAL BETWEEN-TO-WITHIN VARIANCE RATIOS FOR TEST IMAGES () AND (b)
FOR FIRsT COMPONENT OF KL T AND FISHER’S OPTIMAL LINEAR
DiscRIMINANT FuncTioN UsING VARIOUs FEATURES SETs
DERIVED FROM THE NINE CHANNELS OF THE

3% 3 DST TRANSFORM
f(x) [ x|* |x|* |x|* log x

Features 2(x) it/ log x x
a=1

test image (a):
KLT1 2.12 — 2.89 2.73
Fisher 1 3.06 — 3.11 2.87

test image (b):
KLT 1 1.82 — 227 2.09
Fisher 1 3.04 — 3.00 247
a=2

test image (a):
KLT 1 0.87 2.19 2.88
Fisher 1 2.85 3.07 31

test image (b):
KLT1 1.14 2.00 2.30
Fisher 1 3.15 3.17 3.21

our experiments with four distinct texture regions, we
have found that the combination of operators |x|* —log x
performed somewhat better overall than the other
schemes and that the improvement of KLT in this particu-
lar case was even more striking as can be seen in Tables
I11-V. For such examples, however, the number of signifi-
cant components grows (typically, K—1 in a K-class
problem), and segmentation requires the use of cluster-
ing algorithms that are more sophisticated than simple
thresholding.

The combination f(x)=|x|* and g(x) = log x is partic-
ularly attractive because it stabilizes the variance of the
resulting feature components. Unlike Case 2, this is
achieved without sacrifice in performance. In this respect,
our theoretical results are quite general and not restricted
to the class of Gaussian textures alone. The sole require-
ment is that the normalized shape factor y(a) in (7) be
close to a constant across all channels and all texture
regions. Even if this condition is not precisely met, we
should not expect variance fluctuations greater than the
variation of this shape factor (cf (13)). This variance
equalization property has some very useful implications,
particularly in the final stages of processing. Following
logarithmic transformation, the feature vectors, apart from
differences in their mean values, are roughly identically
distributed across all feature channels and all texture
regions. This also implies that the simple (unweighted)
Euclidean distance between feature vectors is appropriate
for measuring similarity between patterns. The data are
therefore in a form suitable for the great majority of
unsupervised clustering techniques usually based on this
metric. As a consequence, these methods will tend to
work better on the logarithm-transformed feature vector
as illustrated in our first example (Figs. 3(b) and 3(c)).
Another benefit is that energy-based feature reduction
techniques such as the KLT will perform extremely well
(cf Tables ITI-V) because the percentage of energy repre-
senting within-region variation is about the same for each

feature vector component. It follows that the features
with the greatest energy contribution are also those that
are the most discriminating. The two last properties are
particularly relevant in an unsupervised setting and will
almost certainly improve the performance of the complete
system. These considerations are obviously less important
for supervised problems for which it is possible to use a
priori knowledge of the region statistics to design optimal
decision rules. In the latter case, the use of the second
nonlinearity is not necessary as it does not intrinsically
change the amount of available information but it does no
harm.

Finally, there are some practical considerations. First of
all, a prerequisite for the system to perform as described
is that the initial outputs of the filter bank are all zero-
mean. Usually, there is only one operator (the first one)
that is not a highpass filter and that has to be treated
carefully by removing the dc component before or after
filtering. Incidentally, this dc (or lower frequency) compo-
nent corresponds to the gray level part of the visual
information; it is not directly related to texture and as
such should be treated separately. There may also be
some roundoff errors when applying nonlinear transfor-
mations to images stored in byte or integer arrays. A
partial solution to this problem is to use scaling factors to
make best use of the available dynamic range.

V1. CONCLUSION

In this paper, we have considered a general texture
segmentation system using features extracted by spatial
filtering and two levels of nonlinearity. By making certain
plausible assumptions, we have been able to analyze the
effect of each stage of processing and quantify the system’s
performance for a simplified two class classification prob-
lem. The global performance of this system (between-to-
within variance ratio) has been expressed as the product
of three basic terms: 1) a distribution factor, x(a), charac-
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terizing the response to a particular class of normalized
probability density functions and which is a function of
the exponent of the first nonlinearity; 2) a noise-reduction
factor, 1/R(n?), describing the ability of the spatial
smoothing operator to decrease the within-region vari-
ances of the feature vector; and 3) a texture separation
term, n(A), which is a function of the texture energy ratio
in a particular feature channel (A?) and depends on the
combination of nonlinear operators used for feature ex-
traction. This decomposition allows the separate opti-
mization of each term. The most favorable computational
scheme combines a squarer and a logarithmic transforma-
tion. These results have been supported experimentally,
at least qualitatively.

In the context of unsupervised texture segmentation,
there are two separate but equally important issues re-
lated to feature extraction. The first one is obviously to
find a set of features that is maximally discriminative. The
second is to simplify subsequent processing (feature re-
duction and decision making). The latter can be achieved
by making sure insofar as possible that the variances are
the same for all components of the feature vector and
over every texture region. When this last requirement is
fulfilled, one has the guarantee that basic unsupervised
pattern recognition techniques such as the KLT or clus-
tering algorithms based on the Euclidean metric will
perform at their best. The system that we propose has
both of these properties and should therefore be useful in
many image processing applications.

APPENDIX A

Logarithmic Transformation of a Gaussian Random
Variable with Zero Mean

Let x be a Gaussian distributed random variable with
zero mean and variance o,”. The probability density func-
tion (PDF) of the normalized variable z = x /o, is

p(z) = ! exp(—22/2).
V27

The logarithmic transformation of x is defined by
y=log(lx]) =log(o)+log(lzl) =log(c)+u.

The PDF of u=log(|z) and log(|y]) are identical apart
from a constant difference in the mean. By applying the
principle of equal probability, which in this case implies
that p(u)du = 2p(z)dz, it is straightforward to show that

2 eZu
p(u)=\/2_ﬂ_e"exp(— 5 ) (24)

In order to determine the moments of this distribution,
we propose to compute the characteristic or moment
generating function, which is the Fourier transform of the
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PDF:
¢ (jo) = E{e}

o 2
=/0 Eexp(—zz/Z)exp{jwloglzl} dz.

By making the change of variable v = z? /2 and using the
fact the exp{jwlog v} = v/, we find that

2jw/2

Vi

¢, (jw) =

+oo )
f vV 2pie/20=0 gy,
0

1+jw)

= 2!1-)/2(§2

(3]

where the gamma function I'(x) is defined by, in [27,
p. 255, eq. 6.1.1]:

-+ 0o
= x—1,—x
I'(x) j(; t*le ™ dt
with the property that I'(1,/2) =+ . Since the derivatives
of log I'(x) have been tabulated and define the so-called
Psi function [27], it is more convenient to use the cumu-
lant generating function:

jo 1+ jw 1
log ¢,(jw) = 5 log2+log I‘(—z—) ~log F(E)

We now use the property that the mean and variance
correspond to the two first cumulants which are the first
and second derivatives of the cumulant generating func-
tion evaluated at w =0, respectively [28]. We therefore
have that

[6Iog¢u(jw)] log2 1 [Mogl"(x)]
po=|——] ==+ | ——
w=0 x=1/2

djw 2 2 ox

1 1 1
== =||= - =[y +log2] = —0.6351
2[10g2+‘['(2” 2[y og2]

where we use the change of variable x = (1+ jw)/2. ¥(x)
is the Psi or Digamma function and it is known that
¥(1/2)=—(y +2log2), where y=0.5772 is the Euler
constant [27, p. 258, eq. 6.3.3]. The mean of y=logx
therefore simply

1
#y = E(log x} = log(,) = 5 [y +log2].  (25)
Similarity, we find that

, 22[3210g¢u(jw)J
“o W(jw)* |, _,

112 9%log T(x)
—(E) ax? x=1/2
1

o 1.22370
4 (5)‘8_‘

where W¥'(x) is the tri-gamma function. From [27,
p- 260, eq. 6.4.5], we know that ¥'(1/2)= 72 /2.

(26)
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APPENDIX B

The task is to determine the limit:

(1-19)° . {(1—»:)2}

lim m = lim

a—0

2a?

lim A_(al
a—0 B(a) ’

We clearly have an indeterminate form 0/0. We can
therefore use 'Hopital’s rule and differentiate twice until
the indetermination is resolved:

lim Al) = lim f’(—a—)
«a—0| B(a) a—0|B'(a)

_ a_ y2a
_ lim{ log A;[ A2 = A ]}

a—0

It

2a

=Hm{@}
a0 | B ()
 (log 1)~ 2]
(e

a—0

= lim
a—0

log A;)°
=Qg2—’). (27)
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