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method extends a recently proposed procedure by Ohsmann [1] to
an order recursive solution. This method does not involve any di-
rect matrix inversion and solves the initial estimate by incorporat-
ing a lattice algorithm. We also derived a more accurate expression
for the convergence factor which indicates the convergence per-
formance of the iteration (4). The second method is a simplified
iterative procedure for situations where the input is known to be
white or nonwhite with a correlation coefficient of value a < 1/3.
This method does not require any matrix inversion and is compu-
tationally efficient. Simulation results indicate satisfactory perfor-
mance of both methods. Results have also been presented for iden-
tification in the presence of noise.

APPENDIX

From (16) we have the matrix Q = (,;., — D 'Ry). Let us
consider that the input x (k) has been obtained as a single pole
process x(k) = ax(k — 1) + w(k), where w(k) is a zero mean
white Gaussian process with unity variance and « is the correlation
coefficient. In this derivation, we assume that 0 < o < 1 without
any loss of generality. We shall also consider that the resulting
autocorrelation matrix Ry, is symmetric and Toeplitz. Therefore O
has zero entries along the principal diagonal. The characteristic
equation A, = | Q@ — Ny | = 0, can be written in the following
recursive form [7]:

A,(N) = —[2a% = X1 + a})]A,_((N)
— a1+ N A, AN, m=1,2- .M
(A1)
where A_;( \) = 1, by definition, and A,( A\) = —A. After a few
manipulations we can rewrite (A1) as

Asin(m + 1)x+a(1 + \)sinmx

An(N) = —[a(1+N)]" o

sinx
(A2)
Equation (A2) then yields M + 1 distinct eigenvalues given by {7]

o — wcos [P DT
M+ 2
M= -2
1 — 2« cos w al‘
M+ 2

m=0,1,2---,M. (A3)

The maximum eigenvalue corresponds to the case m = 0 in (A3)
and is given by

az—occos T >
M+2 2a

™ - -
1 -2 + a?
B

where we let M be large such that cos (/M + 2) = 1 in (A4).
The convergence condition requires that | \,,,,| < 1 which yields
the bound @ < 1/3.

(A4)

max T
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Weighted Averaging of a Set of Noisy Images for
Maximum Signal-to-Noise Ratio

MICHAEL UNSER anp MURRAY EDEN

Abstract—This paper considers the problem of estimating a signal
from a weighted average of N registered noisy observations. A set of
optimal weighting coefficients is determined by maximizing a signal-to-
noise ratio criterion. This solution can be computed by first standard-
izing each observation with respect to its first and second moments and
then evaluating the first eigenvector of the corresponding N X N inner-
product matrix. The resulting average is shown to be proportional to
the first basis vector of the Karh -Loeve transform provided that
the data has been standardized in an appropriate fashion. The low sen-
sitivity of this approach to the presence of outliers is illustrated by
using real electron micrographs of ostensibly identical virus particles.

I. INTRODUCTION

Given a series of noisy observations of an unknown signal, the
simplest and often most efficient noise reduction technique is av-
eraging [1, p. 434]. An interesting application of this technique is
correlation averaging, which is now used routinely for improving
signal-to-noise ratios of electron micrographs of quasi-periodic ar-
rays, or sets of images of ostensibly identical free standing parti-
cles [2]-[4]. In this approach, single unit cells or individual par-
ticle images are brought into translational and rotational alignment
[3]1-[5], analyzed using multivariate statistical methods to identify
subsets of similar particles and eliminate outliers [6], [7], and fi-
nally averaged. The quality of the restored signal is typically as-
sessed in terms of estimated signal-to-noise ratios [4], [8].

An important step in this whole procedure—although not usually
emphasized—is the preprocessing where the individual observa-
tions are normalized to compensate for varying acquisition param-
eters. This is usually achieved by simple linear rescaling of the
intensity distributions. In most applications, the weighting coeffi-
cients are chosen to standardize the range (min/max normaliza-
tion) or the first and second moments (moment normalization) of
the intensity distribution of each observation [9].

In effect, during this analysis the signal is estimated from a
weighted average of the initial registered noisy observations. Ob-
viously, there are many ways of selecting the weighting coefficients
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other than the two forementioned preprocessing techniques. In this
paper, we consider these weighting schemes in terms of their per-
formance for signal estimation. In particular, we derive the optimal
weighting coefficients that maximize a global signal-to-noise ratio
criterion. We then discuss the properties of this solution which is
different from a simple standardization and turns out to be closely
related to the Karhunen-Loéve transform. Finally, we illustrate the
use of this technique using simulated and real electron micrograph
data, and compare its performance with simpler normalization pro-
cedures.

II. THE OPTIMAL SOLUTION

The following method applies to the processing of a set of N
multidimensional registered noisy observations of a given signal.
For notational simplicity, these measurements are represented as
vectors in an M-dimensional feature space. This formulation re-
quires the choice of a one-to-one mapping between the discrete
coordinate system in the canonical representation (for example. the
raster scan of an image) and the components of these feature vec-
tors.

A. Statement of the Problem

Given a set of N noisy measurements, X = {x;, i = 1, - -+ |
N}, represented as M-dimensional vectors, we arc seeking coeffi-
cients {w;, i = 1, .N}and {b.i=1, . N }. such that
the linearly rescaled vectors

z=wlx, - bl]: i=1--- N (1
defineasetZ = {z;, i =1, - - - . N} that has a maximum signal-

to-noise ratio. In this expression, 1 is an M-dimensional vector of
all 1’s. The signal is estimated from the ensemble average

R L P S P TR E)
=13 M _N‘:lzl N id].
The mean signal value (or dc component) is given by:
M
1
VRIS 3
2 (3)

The quadratic signal-to-noise ratio (SNR) is defined by the series
of equations

L E.
SNR & N == (4)
M 2
E L X (5 - =27 - M7 (5)
1 M N 1 N
N N - 42 _— -
Eney 2 2lu-a) =5 2 -2z - 17
|y
=52l -zl (6)

In other words, E., and E, are the rescaled signal and residual
noise energies, respectively. The factor N in (4) accounts for the
fact that the noise is expected to be reduced by N in the final aver-
age. The operator **T"" denotes the transpose of a matrix and || . ||?
is the square norm of a vector. Note that the dc signal component
is not taken into account in the definition of the signal energy.

B. Optimal Additive Coefficients

Fortunately, the determination of the optimal additive and mul-
Upllcanve coefficients in (1) can be carried out independently. This
is a consequence of the followmg theorem.

Theorem 1: For any given set of weights {w;, i = 1, N},
the b;’s in (1) that maximize the SNR defined by (4)- (6) are given
by

1
b =X = — 2 x, f=1 .-
i X; MA:IX”” ! I, N (7)

and correspond to the average signal value of each vector.
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Proof: Lets us define the centered variables
-xl]; i=1.--+ N (8)

which are associated to the average signal u. It is simple to show
that

u; = w[x;

azﬁl"i=o

and to express the estimated signal z as
u=u+:zl (9)

By substituting this expression in (S), the signal energy may be
rewritten as

E, =z -z1] = af (10)

and is independent of the value of the b;’s. Similarly. by using (9)
and the fact that z; = u; + w;[x; — b;]1, the noise energy is equal
to

Eo=v 3 u—a+ (% - b] - S

Slncc the vectors u, .y, and u are all orthogonal to 1,
u!l = Mu; = 0, this expression is further decomposed as
N R M N 5

Sl -l + = 2 (wlx - bl —3) =E

1
Y= , + E,
o Ni:l Ni:I h 0

(11)

Clearly, E,, is independent of the b,’s. Therefore, for any given
weights {w;, i = 1, , N}, the SNR is minimum when Ej, is
minimum. It is now straightforward to show that the lowest pos-
sible value of Ey, namely E, = 0, is reached when the b,’s are
selected according to (7), which also results in 2 = 0. Obviously.
we can also add any fixed constant to the expression given by (7).

C. Optimal Multiplicative Coefficients

We now proceed to determine the optimum w;'s by replacing the
b;’s in (1) by their optimal values: X;. We define the N X N centered
inner product matrix

R, =[r;] with r; =x/x; — Mxx, (12)
and the corresponding diagonal matrix
Do = [d,] with |77 (13)
wo T i witl -
! dy=0. (i #j).

The main result of the paper is the following.

Theorem 2: For additive weights in (1) given by (7). the vector
of multiplicative coeflicients w = [w, - -+ wy]’ that maximizes
the SNR defined by (4)-(6) is the first generalized eigenvector of
the characteristic equation:

R.w = 8D, w. (14)
In other words, w is an element of the null space of (R,, — 8D,,).
with 3 the largest value such that there is a nonzero nul space.

Proof: By using (10), we show that the rescaled signal energy
is given by

=NV R (15)

Similarly. using the centered variables defined by (8), the total
energy is equal to

E, = (16)

1
N
and can be decomposed as

N

1 N
£ =y Bl -

w - al’ + 5] = £+

e

1
N

(17)
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Consequently, maximizing ( E.,/E,,) is equivalent to maximizing
(E.,/E.,). In addition, the SNR is independent of any global scal-
ing factor so that we can fix the total signal energy to some arbitrary
value:

1
E, = N w'D, w = const
and simply maximize E., = w' R,,w under this constraint. The so-
lution to this optimization problem is found by defining the auxil-
iary function

L(w, B) = wTR.\\w - B[WTD\.\W - COHSI]

(18)

(19)

where 3 is a Lagrange multiplier, and by setting its partial deriv-
atives with respect to w to zero, which yields (14).

The first eigenvector w, of (14) is the one that corresponds to
the largest eigenvalue:

B, = max { (W R, w)/(w'D,w)}. (20)
By decomposing the denominator of this expression into its signal

and noise energy components, we find that the maximum signal-
to-noise ratio is given by

max {SNR} = By

7N—_—Bl. (21)

D. Relationship With the Karhunen-Loéve Transform

The process of finding the optimal weights is simplified when
D,, is proportional to the identity matrix. This is precisely the case
for the normalized variables:

x —x1
=T
[lx = %1
where « is an arbitrary multiplicative factor, and x; the mean vector

value defined by (7). In this particular case, we show that (14) is
equivalent to

¥i (22)

R, v =\v (23)

where v denotes the vector of weights to be applied to the y;’s. The
optimal weights are given by the first eigenvector v, of the nor-
malized inner product matrix R,, = Y'Y, where ¥ = [y, - * + yy]
is the M X N normalized data matrix. In addition, we can show
that the optimally weighted average z can be directly determined
from the Karhunen-Log¢ve (or principal component) representation
of the normalized data. More specifically, we would like to em-
phasize the following properties.

Property 1: The projection of the data matrix on the first eigen-
vector of R, is proportional to z.

Proof:
N

le = ;l vy, = Nz

Property 2: 7z is proportional to the first eigenvector (or eigen-
signal) of the M X M scatter matrix §,, = Yy’
Proof: Using (23), we have that

Y'Yy, = N\,
which we multiply on the left by ¥
Y(Y'Y)v, = \\Yp,
(YY) (Yv,) = \(Yp)).
By using Property 1, this last expression is also equivalent to
(YY")z = Az

Property 3: The nonzero eigenvalues { \;, i = 1, -+ - , N} of
R, =Y"Y(or S, = YY) are directly proportional to the eigen-

values of (14) and the optimum SNR is given by

A
max {SNR} = <. (24)
PPN
Proof: Equation (22) may be rewritten as y; = aD3x; —
X;1], which directly implies that

R, = aD}’R. D'

Substitution of this expression in (23) and left multiplication by
(a™?D)/?) yields
R.D*v = (Mo )D'v = (M a®)D, D 0]
If we now define w = D '/?v, we find that
R.w = (N a*)D.w
which is equivalent to (14) provided that 8 = A/« . We then sub-

stitute this value in (21) and note that tr {R,,} = a’N =V N,
which finally yields (24).

E. Comments

The maximum signal-to-noise ratio scaling method (MSNRS)
was derived by maximizing a global SNR criterion that is entirely
specified by the data to be analyzed. This performance criterion,
which is only an approximation of the true signal-to-noise ratio,
has been used previously to assess the efficiency of correlation
averaging techniques [4], [8]. An important point is that the present
method makes no assumptions about the underlying signal model
and, in this sense, is nonparametric.

From the point of view of statistical estimation theory, a more
satisfactory signal estimate would be the one with minimum mean
square error (MMSE), which is briefly reviewed in Appendix A.
The major difference between MSNRS and MMSE averaging is
that the latter is parametric and requires the knowledge of the noise
statistics and the scaling coefficients for each image. The MMSE
estimation technique is therefore not directly applicable in practice,
unless the parameters a and C,, which appear in (A6) are estimated
based on some initial approximation of the signal. Despite this dif-
ference in philosophy, the equations defining either of these solu-
tions ((14) and (A9), respectively) are structurally very similar, as
emphasized in Appendix A.

III. EXPERIMENTAL RESULTS

A set of negatively stained capsomer images of herpes simplex
virus (HSV) [10] has been used to illustrate the application of our
algorithm. This data was obtained using high resolution electron
microscopy. The original micrographs were digitized with a Per-
kin-Elmer scanning microdensitometer with an effective sampling
step of 0.3 nm. Individual capsomer subimages were extracted and
brought into rotational and translational alignment using correla-
tion techniques [2]-[5]. Fig. 1 displays the subset of 30 such reg-
istered subimages that were used for our analysis. After compari-
son of the various weighting schemes for the analysis of this
particular data set, the extracted signal was used as a test object to
further investigate the performance of these algorithms using var-
ious levels of Gaussian noise.

A. Analysis of Experimental Electron Micrographs

The original data set was linearly rescaled using (1) with weight-
ing coeflicients determined according to the three following pro-
cedures:

1) Minimum/maximum normalization (MMN): The minimum
and maximum gray level values are constant across all images.

2) Moment normalization (MN): The mean gray level value and
energy are constant across all images which implies that the various
feature vectors have a constant norm.

3) Maximum SNR scaling (MSNRS).

The resulting averages (N = 30) are shown in Fig. 2 with their
corresponding signal-to-noise ratios estimated using (4)-(6). Al-
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Fig. 1. Set of 30 experimental 50 x 50 capsomer images of herpes

simplex virus type 11

Fig. 2. Comparison of differcnt signal estimation techniques. (a) Average
obtained using range normalization. (b) average obtained using moment
normalization, (¢) maximum signal-to-noise ratio average. (d) 5 first
eigen-images of the KLT for standardized images with their correspond-
ing relative energy contributions (eigenvalues).

though these averages are very similar visually. there are differ-
ences in the values of the signal-to-noise ratio. The worst results
are obtained using the min/max normalization. This is not very
surprising since the minimum and maximum values of an image
are known to be quite sensitive to the presence of noise. The mo-
ment normalization improves the SNR by 11.5%. The MSNRS
provides a further 4% increase which is consistent with our theory.
We also computed the Karhunen-Lo¢ve transform in the case of
the images standardized according to the second procedure. The
corresponding cigenimages are shown in Fig. 2(d). The first eigen-
image is identical to that of Fig. 2(¢) and is therefore also very
similar to the other averages. We can also verify that the value of
the maximum SNR predicted by (24) is identical to the value as-
sociated with the optimal average in Fig. 2(c).

B. Outlier Identification

The main advantage of the MSNRS is that it decreases the sen-
sitivity of the analysis to the presence of outliers. To illustrate this
effect, we analyzed our data using the odd men out (OMO) algo-

rithm [7]. This procedure uses a criterion of mutual statistical con-
sistency in order to rank the data from most to least reliable. Out-
liers are then identified by imposing an acceptability threshold on
this ordered list. Fig. 3 represents the optimal multiplicative
weights as determined by (22) and (23) as a function of the rank
produced by the OMO algorithm. The weights consistently de-
crease as a function of reliability. The Spearman rank correlation
is as good as p = —0.977 indicating that both methods are in ex-
cellent agreement. The last six images. which are identified as
numbers 14, 24, 28, 27, 23. 25 in Fig. 1. are distinguishable from
the bulk of the data in that they are given substantially lower
weights. These images probably correspond to outliers. which is
fully consistent with the outcome of the OMO algorithm.

The conventional approach to signal extraction using correla-
tion-averaging techniques is to identify outliers using multivariate
statistical analyses and to exclude those images from the final aver-
age [6]. [7]., [11]. For this particular example. the OMO algorithm
rejects precisely the 6 images identified above [7]. The signal cs-
timate obtained by averaging the remaining 24 images has an SNR
of 19.57. This value is extremely close to the one obtained by
averaging the full sct of 30 images using MSNRS. although the
two approaches are based on very different principles.

C. Simulation Experiments

To compare the performance of these algorithms in terms of a
fully defined model system, we used the average HSV capsomer
image in Fig. 2(c) and contaminated it with increasing levels of
noise. We performed two independent experiments using white
Gaussian and uniformly distributed noise. For this purpose. we
generated a sequence of 20 test images with a quadratic signal-to-
noise ratio o = 1/k*. where k is the rank of the corresponding
image. The first 5 of these images in the first experiment are dis-
played in Fig. 4. The averages obtained by using no scaling at all.
MMN, MN. and MSNRS. respectively. arc shown in Fig. 5. The
corresponding measures of the SNR obtained using (3)-(6) are
given in Table 1. For comparison. we also computed the true
signal-to-noise ratio () of these averages using the noncorrupted
signal (Fig. 2(b)) as reference. Clearly. the best results are ob-
tained for the MSNRS which tends to give the highest weights to
the less noisy measurements. The corresponding value of the true
SNR (@ = 1.257 and 1.29) are not too different from the theoret-
ical optimum (minimum mean square error estimate) that could. in
principle. be obtained by weighting the images by the inverse of
their true variance (o = 1.5962. as computed from (A8) in Ap-
pendix A). Otherwise, for all other methods. the quality of the sig-
nal estimatc is substantially below that of cven the least noisy im-
age of the set. All scaling algorithms performs cssentially the same
for Gaussian and uniform noise. with the exception of MMN which
is slightly less performant for the latter case.

For this particular example. it is interesting to note that the SNR
is a rather optimistic estimate of the true signal-to-noise ratio. par-
ticularly for those methods that perform very poorly. This follows
from the fact that a badly estimated signal tends to lie much closer
on average to the majority of noisy measurements than does the
uncorrupted signal. As a consequence. the residual noise variance
is usually underestimated leading to an SNR value that can be sub-
stantially above the true value. Not surprisingly. the more realistic
SNR estimate is obtained for the better performing method., namely
the MSNRS.

D. Discussion

In the first example. the averages obtained using either scaling
method are very similar perceptually. However. our quantitative
analysis shows that the result obtained using the MMN is the less
favorable one. The performance of the MN is generally quite
satisfactory and the decrement in performance with respect to our
optimal approach is only a few percent. We have also performed
this evaluation using different sets of micrographs such as the one
studied in [4] and [12]. and have obtained quite comparable results.
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Fig. 3. Maximum signal-to-noise ratio weights for standardized experi-
mental capsomer images in relation to the rank obtained with the OMO
algorithm.
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Fig. 4. First 5 images of a total set of 20 HSV capsomers overlaid with
increasing amounts of computer-generated Gaussian noise. Signal-to-
noise ratios: o = 1/k*, k=1, .20.

Fig. 5. Comparison of different signal estimation techniques for a gener-
ated data set with increasing levels of Gaussian noise. (a) Initial image
average, (b) average obtained using range normalization, (c) average ob-
tained using moment normalization, (d) maximum signal-to-noise ratio
average.

TABLE 1
PERFORMANCE ASSESSMENT OF VARIOUS SCALING METHODS FOR THE
AVERAGE OF 20 TEST IMAGES WITH INCREASING LEVELS OF
GAUSSIAN AND UNIFORM NOISE

Scaling method SNR criterion True signal-to-noise ratio (o)
(Gauss, Uniform) (Gauss, Uniform)

none (1.16, 1.21) (0.14, 0.15)

minimum/maximum

normalization (MMN) (1.53, 1.48) (0.53, 0.45)

moment normalization (MN) (1.57, 1.57) (0.55, 0.56)

maximum SNR scaling

(MSNRS) (1.96, 1.94) (1.26, 1.29)

In analyzing these data sets, we observed that the main advantage
of the MSNRS lies in its ability to handle outliers by decreasing
their relative contribution to the final average.

To further differentiate between these approaches, we have con-
sidered the simulated example of a signal corrupted by various lev-
els of Gaussian noise. For this extreme case, the MSNRS alone
resulted in satisfactory signal extraction, owing to the fact that it
weights the images approximately in proportion to their signal-to-
noise ratio. The performance of the other weighting schemes was
less than adequate, with a signal estimate that was even noisier than
the best image of the set. An important point brought out by this

example is that the relative increase of the true signal-to-noise ratio
may be substantially greater than the corresponding improvement
of the SNR criterion (cf. Table I). As pointed out earlier, this is
due to the fact that the noise component tends to be underestimated
for poor signal estimates. This result suggests that for real micro-
graphs such as those shown in Fig. 1, the improvement of MSNRS
over the other schemes may be even greater than that which may
be inferred from the relative values of the SNR criterion. This as-
sertion, however, remains speculative since there is no way to mea-
sure the true signal-to-noise ratio for real noisy data sets.

Based on these observations, it appears that the simpie MN is
adequate for analyzing reasonably homogeneous data sets; that is.
apart from some constant scaling factors, the individual observa-
tions are approximately identically distributed. The MSNRS is the
most useful in less ideal cases when the data at hand is likely to
contain outliers or when the individual observations are subject to
different levels of perturbation.

In contrast with the OMO algorithm [7] which operates on a
simple acceptance/rejection basis, the MSNRS treats outliers in a
graded manner and is closer to the principle underlying fuzzy set
theory. In this sense, the weight given to a particular image ex-
presses our confidence that it belongs to the main group. We also
remark that unlike the OMO algorithm our present derivation makes
no assumptions about the underlying signal model.

According to property 2, when the data has been properly nor-
malized the first eigenvector of the KLT is proportional to the max-
imum signal-to-noise ratio signal estimate. This result provides a
mathematical explanation for the great similarity that can usually
be observed between the first basis vector of the Karhunen-Logve
transform (or principal components) and the average of the data.
In fact, the difference between those two vectors is significant only
when the MSNRS clearly outperforms the MN. Conversely, for
very nearly homogeneous data sets (e.g. images with a common
mean and identically distributed noise), the first eigen-coordinates
should be essentially a constant across all images.

Finally, we remark that in many applications of KLT or princi-
pal components analysis the main group effect is intentionally fac-
tored out by subtracting the mean vector and performing the anal-
ysis on centered variables. Our study provides mathematical
evidence to justify the physical judgments that underly the use of
this factor.

IV. SuMMARY AND CONCLUSION

In this paper, we have considered the problem of estimating a
signal from a weighted average of N noisy observations or feature
vectors. In this approach, the intensity distribution of each obser-
vation is scaled linearly to compensate for varying acquisition pa-
rameters. The optimal weights have been derived by maximizing a
global signal-to-noise ratio criterion. The determination of the
MSNRS solution involves the standardization of the individual ob-
servations by subtraction of the mean intensity value and division
by the square root of the residual energy. The optimal weights are
then obtained from the components of the first eigenvector of the
corresponding inner-product matrix.

An interesting conceptual result is the link that has been estab-
lished between the first basis vector of the Karhunen-Lo¢ve trans-
form for normalized feature vectors and the average vector: both
of these vectors are estimates of the underlying signal with the for-
mer being the one with maximal signal-to-noise ratio.

The MSNRS provides an upper bound on performance for com-
parison with other simple scaling methods. We have shown that its
most interesting feature lies in its capacity to adjust to the presence
of outliers. It is also particularly suited for analyzing data sets of
uneven quality where the initial signal-to-noise ratio can vary sub-
stantially from one observation to another. Other than that, for rea-
sonably homogeneous data sets, a simple normalization (mean sub-
traction and constant norm) of the feature vectors prior to averaging
leads to a signal estimate that is only slightly suboptimal. The
MSNRS is therefore best suited for what we have referred to as less
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than ideal cases. A good example of application is high resolution
electron microscopy where it is difficult to collect images that are
fundamentally alike due to differences in the levels of noise, vari-
ation of viewing geometry, nonuniformity of staining, or other
structural perturbations.

APPENDIX A
MINIMUM MEAN SQUARE ERROR AVERAGING

In this Appendix, we derive the multiplicative weights for min-
imum mean square error averaging, assuming that the noise statis-
tics as well as scaling factors associated with each observation are
known. For simplicity, we consider the case of one-dimensional
feature vectors. The results are easily extended to higher dimen-
sions by replacing the w? by the norm of the signal vector and the
between-measurement covariance matrix C,, by the average of these
matrices across all vector components.

Given a set of N noisy measurements {x;} such that

E{x;} = au (A1)

where {a,} is a set of known constants, the problem is to determine
an estimation of the signal parameter y from the weighted sum:

N
o= Z Wix;

i=1

(A2)

with the requirement that
E{i} =n (A3)

such that the mean square error e = E{( & — 1)’} is minimized.
We note that this solution will also maximize the signal-to-noise
ratio defined as & = u*/e’. The first condition implies that

N
5
2 wia; = wa = 1

i=1

(A4)

where w = [w, - - - wy]"and a = [a, * * - ay]”. It is straight-
forward to show that the residual error is given by

2 =wC, w (AS)

where C,, = [c;] is the between-measurement covariance matrix
whose entries ¢;; are defined as:

G = E{(X, - E{x})(x — E{X/'})}'
Taking the partial derivatives of (A5) and (A4) with respect to w,
we find an expression that is consistent with standard results on

linear unbiased minimum variance estimation [13, ch. 5]:
w=2AC.a (A6)

where N is a Lagrange multiplier which should be chosen to satisfy
(A4). If the measurements are mutually uncorrelated, we get the
well-known result that the observations should be given a weight
that is inversely proportional to their variance:

wi = (a;\)/c;. (A7)
It is relatively easy to show that the corresponding maximum SNR
is given by:

a*=2a,

i=1

(A8)

where o; = (a;p)/c;; is the SNR associated to the random variable
x;. We now rewrite (A6) to bring out the similarities with (14). The

simplest form of (A6) is
C\v\w =N\
which, by noticing that aa’w is always in the direction of a, is also
equivalent to
(A9)
Equation (A9) is now in a form that is comparable with (14). In
particular, the matrix u>(aa” ), which is of rank 1. is the para-
metric equivalent of the matrix R,, in (14). For instance, the ex-
pected signal energy is given by:
2 ) 2
E{i} = w[p'(aa")]w = (pw'a) (A10)
which is similar to (15). We also note that [C,, + p?(aa’)] is the
parametric equivalent of D, since the total energy of the estimated
signal is given by
E{i’} = € + E{a} = w[C,, + p*(aa")]w

which is similar to (19).

w’(aa"yw = B[C,, + p(aa")]w.

(A1)
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