
Signal Processing 20 (1990) 3-14 3 
Elsevier 

IMPROVED RESTORATION OF NOISY IMAGES BY 
ADAPTIVE LEAST-SQUARES POST-FILTERING 

Michael UNSER* 
Biomedical Engineering and Instrumentation Branch, National Institutes of  Health, Bethesda, MD 20892, U.S.A. 

Received 10 July 1989 
Revised 30 October 1989 

Abstract. This paper describes a class of post-filtering algorithms that adaptively compute a linear combination between a 
noisy image and a restored version of it obtained by linear filtering. A set of optimal weighting coefficients is derived by 
minimizing the quadratic error between the output of this system and a noise-free signal. The only a priori information that 
is required is the noise variance. The local application of this optimization principle leads to the definition of the constrained 
and non-contrained adaptive least-squares filters (ACLSF and ALSF, respectively). These algorithms, and particularly the 
ACLSF, can be implemented in an extremely efficient way by using a fast recursive updating strategy. We then consider the 
particular case of a moving average as the initial filter and compare this application of the ALSF and ACLSF with Lee's 
adaptive noise filtering algorithm [Lee, 1980]. We also present some simulations and experimental examples illustrating the 
capability of these algorithms to reduce noise efficiently while preserving image details. 

Zusammenfassung. Eine Klasse von Nachfilterungs-Algorithmen wird beschrieben, die adaptiv eine Linearkombination eines 
verrauschten Brides und einer durch linear Filterung erhaltenen restaurierten Version berechnet. Ein Satz optimaler 
Gewichtskoeffizienten wird gewonnen, indem der quadratische Fehler zwischen dem Ausgangssignal dieses Systems und dem 
rauschfreien Bild minimiert wird. Als einzige Vorinformation wird die Varianz des Rauschens benrtigt. Die lokale Anwendung 
dieses Optimierungsprinzips fiihrt auf die Definition adaptiver LS-Filter mit und ohne Nebenbedingungen (ACLSF, bzw. 
ALSF). Diese Algorithmen, insbesondere der Typ ACLSF, krnnen auf 5uBerst effiziente Weise mit Hilfe schneller rekursiver 
Nachfiihrstrategien realisiert werden. Dann betrachten wir den Sonderfall der gleitenden Mittelung als urpriingliches Filter 
und vergleichen ALSF und ACLSF in dieser Anwendung mit Lee's adaptivem Rauschfilterungs-Algorithmus [Lee, 1980]. 
Wir stellen auch einige Simulationen und Versuchsbeispiele dar, um zu illustieren, wie diese Algorithmen Rauschen 
wirkungsvoll unterdriicken und gleichzeitig Bilddetails erhalten krnnen. 

Rrsumr. Cette correspondance drcrit une classe d'algorithmes de post-traitement 6valuant de fagon adaptive une combinaison 
linraire entre une image bruitre et une version restorre de celle-ci. Les coefficients de pondrration sont obtenus en minimisant 
I'erreur quadratique entre la sortie du syst~me et le signal non-bruitr. La variance du bruit est la seule information a priori 
requise. L'application locale de ce principe d'optimisation donne lieu ~t la drfinition de filtres adaptifs aux moindres carrrs 
avec ou sans contraintes (ACLSF et ALSF). Ces filtres, en particulier ACLSF, peuvent @tre rralisrs de fagon tr~s efficace par 
remise ~ jour itrrative. Le cas particulier d'un filtrage initial par moyennage local est considrr6 et les versions correspondantes 
des ACLSF et ALSF sont comparres avec l'algorithme de filtrage adaptatif de Lee [Lee, 1980]. Des exemples simulrs et 
exprrimentaux illustrent la capacit6 de ces algorithmes de rrduire le bruit tout en prrservant les drtails dans une image. 

Keywords. Adaptive noise smoothing, noise filtering, image restoration, least squares estimation. 

1. Introduction 

Diminishing noise is a fundamental task in 
image processing. This problem has been studied 

* Permanent address: INSERM, Unit6 U-138, Hrpital 
Henri-Mondor, 94010 Crrteil, France. 

by many researchers and numerous noise filtering 
techniques are now available [12, 13]. These 
approaches can be broadly classified into optimal 
(or model driven) and heuristic methods. Two- 
dimensional extensions of the well-known Wiener 
and Kalman filtering techniques fall into the first 
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~ategory. Early methods concentrated on non- 
recursive techniques implemented in the Fourier 
domain [ 13], while more recent work has centered xk,~ 
on two-dimensional recursive implementations of 
the Kalman filter [17, 18]. Their effectiveness 
depends heavily on the validity of a particular 
image model. 

The second category includes methods perform- 
ing nonlinear (mostly adaptive) smoothing in the 
spatial domain. Typical examples are the various 
generalizations of median and rank order filtering 
[2, 4, 11], the K-nearest neighbor averaging [3], 
gradient inverse weighted smoothing [16], sigma 
filtering [10] and Lee's adaptive algorithm for 
additive noise [8, 9]. They have become increas- 
ingly popular, mainly because of their ease of 
implementation, computational efficiency, concep- 
tual simplicity, and their ability to diminish the 
effect of noise while preserving sharp edges. 
Among these approaches, Lee's adaptive filter 
appears to be particularly efficient [12]. It com- 
putes a linear weighted sum of the noisy image 
itself and the output of  a moving average filter, 
which provides an estimate of the local mean. 
Recently, Kuan et al. [7] have shown that this 
procedure approximates a minimum mean square 
error filter when the signal satisfies a particular 
form of non-stationary mean Gaussian image 
model initially proposed by Hunt and Cannon [5] 
and is corrupted by additive white Gaussian noise. 
Although these theoretical results are noteworthy, 
we remark that such an image model goes against 
our intuitive perception of noise in that it considers 
an uncorrelated Gaussian random component as 
an intrinsic part of the signal itself. These authors 
also make the assumption that the signal is locally 
ergodic and stationary, which allows them to use 
local image statistics to estimate unknown 
ensemble statistics. 

In this paper, we extend the idea underlying 
Lee's algorithm to that of computing a signal esti- 
mate from a weighted sum of  the observed (noisy) 
signal and the output of an arbitrary initial restora- 
tion filter; that is, after the image has been trans- 
formed in a way judged to be appropriate to the 
Signal Processing 

Restoration ~ ~  zk'~ ~ filter 
Fig. 1. General  structure o f an  adaptive post-filtering algorithm. 

class of images being processed. This procedure, 
which is illustrated in Fig. 1, is called postfiltering 
and is aimed at improving the image quality 
obtained in the preliminary step. It is clear that 
the merit of  this technique is heavily dependent 
on the performance of the initial restoration filter, 
the choice of which is important but is not con- 
sidered further in this paper. What we want to 
emphasize is that this system is capable of correct- 
ing some of the initial filter's shortcomings, for 
example, excessive edge smoothing. An important 
feature of the system shown in Fig. 1 is that the 
weighting coefficients are optimized locally and 
that the algorithm has the potential of achieving 
better performance than conventional space 
invariant filtering techniques (e.g. the Wiener 
filter). 

In contrast with previous work, the present 
approach makes no assumptions about the signal 
but looks at a particular filter structure. This point 
of view naturally leads to the derivation of weight- 
ing coefficients that are optimal in the least squares 
sense. We show that this solution can be imple- 
mented efficiently based on a knowledge of the 
noise statistics alone. An interesting result is that 
Lee's adaptive filter is very similar to a particular 
version of our algorithm, but is sub-optimal 
because of  differences in the evaluation of local 
statistics. 

2. The least squares regression equations 

Our method is applicable to the restoration of  
a signal, {/~,j}, corrupted by zero mean additive 
~tationary noise {n~.j}: 

xi,2 =/~i,j + ni,2 (1) 
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with known variance or 2= E{n~j}. As with most 

restoration techniques, the signal and noise com- 
ponents are assumed to be mutually decorrelated. 
The observed noisy signal, {xi, i}, is initially 
restored by means of a suitably chosen operator, 
which for convenience, is assumed to be a linear 
space invariant filter: 

yi, j = xio * hi,j = Iz ~,j + n'i,j, (2) 

whose impulse response {hi j} has a spatial sum 
that is normalized to unity to provide an unbiased 
signal estimate whenever/xi, j = const. The knowl- 
edge of  {hi, j} and the noise second order moments 
(autocorrelation function) allows the determina- 
tion of  the residual noise correlation coefficient 
which is defined as 

p = E{n idn ' id} / t r  2, (3) 

where n~,~ denotes the filtered noise component.  
For additive white noise, it is straightforward to 
show that p = ho_o. 

tOur goal is to attempt, in a post-processing 
phase, to provide a better signal estimate, zio, by 
constructing a weighted sum of  the original noisy 
signal and its filtered version: 

zi.j = ai,~xi, j + bi, jYi, j (4) 

as shown in Fig. 1. The motivation of this operation 
is the following. The filter is usually chosen to 
improve the signal-to-noise ratio in most parts of 
the image. However, in areas of heavy signal 
activity such as edges or texture, filtering may tend 
to degrade the signal more than it actually reduces 
noise and one would be better off keeping the 
original noisy measurement. In this respect, (4) 
has the potential of making the best use of  both 
worlds. In the particular case where the initial 
restoration filter is chosen to be the Wiener filter, 
we obtain an algorithm that is similar to the signal 
equivalent approach of  Abramatic and Silverman 
[1]. The essential difference is that these authors 
determine the weighting coefficients using an 
empirical masking function whereas the present 
approach is based on a well-defined least squares 
principle. 

5 

Although the coefficients a and b are allowed 

to vary as a function of  the spatial index (i , j ) ,  we 
first consider the case where these quantities are 
constant over a given region R in an image, and 
determine the values that provide the best approxi- 
mation of [£k.l in the least square sense. This is 
achieved by minimizing the quadratic error: 

1 2 =  T (:k,, --  k.i) 2, (S) 
(k,l)~R 

where NR is the total number of pixels in R. These 
basic results are then used in Section 3 to derive 
the structure of the adaptive filter. We note that 
these equations can be readily extended to less 
restrictive conditions (initial non-linear restoration 
and non-stationary noise) provided that the noise 
variance and residual correlation coefficient are 
known over the entire image. 

2.1.  B a s i c  so lu t i on  

By substituting (4) in (5) and setting the partial 
derivatives with respect to a and b to zero, we find 
that the optimal coefficients are given by the fol- 
lowing matrix equation: 

Syy ,.i 

The notation S~ is used to designate a normalized 
sum of  squares defined as 

1 
= u ~ , , v k , , ,  (7) 

Suv NR (k,l)~R 

where u and v stand for either x, y or/~. Of course, 
/~k,l is not known so that Sx~, and Sy~, cannot be 
computed from (7). Instead, we will make use of  
our a priori knowledge of  the noise statistics to 
compute estimates of these quantities. This point 
is discussed in Section 3. 

2.2.  C o n s t r a i n e d  so lu t i on  

A useful constraint is to require that 

a + b = l ,  (8) 

which essentially guarantees that E{ZLt}=IZk,/ 
Vol. 20, No. 1, May 1990 
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whenever E{yk, t} =/Xkj. The minimization of the 
quadratic approximation error subject to this no- 
bias condition leads to the slightly modified system 
of equations: 

= S x y S y y l  Sylz , 

1 1 Ol t l J  

(9) 

where A is a dummy Lagrange multiplier. 
A good stability criterion for our system would 

be to require that Zk.I is always between Xk.l and 
yk, t, independently of these values. It can be shown 
that this requirement is equivalent to (8) plus the 
additional constraint: 0 ~< a <~ 1. 

These quantities are estimated by replacing the 
unknown terms of the right-hand side of (11) and 
(12) by their expected values: 

S,,~ ( i , j )  = S,,,,( i , j )  - E{n 2} 

= S ~ ( i , j ) - t r  2, (13) 

Sy~, ( i , j )  = Sxy( i , j )  - E{/~'n} - E{nn'} 

= S x y ( i , j ) - p o  "2. (14) 

Note that the condition that the noise and signal 
are decorrelated is necessary so that E{/~n} = 0 and 
E{/~'n } = 0. Finally, by replacing these expressions 
in (6) and evaluating the matrix inverse, we find 
that the regression coefficients in the non- 
constrained case are given by 

3. Fast adaptive implementation 

In our adaptive filter implementation, R is a 
(2r + 1) x (2s + 1) estimation window centered on 
the current pixel index ( i , j ) .  T h e  optimal 
coefficients a~,j and b~.j are computed from (6) (or 
(9)) for every position of the estimation window 
and the output of  the filter is evaluated from (4). 
Accordingly, (7) can be rewritten as 

1 
suo(i,j) - 

(2r+ 1)(2s + 1) 

X ~ ~ Ui+k,j+,Vi+kj+t. (10) 
k = - r  I=--s 

The Suo( i , j )  are computed by applying a moving 
average filter to the image product: {u~jvi.j}. T h e  
running average may be implemented efficiently 
with 4 operations per pixel by using an updating 
algorithm that is successively applied to the rows 
and columns of the image [15]. 

Using (1) and (2), Sx~( i , j )  and S . . ( i , j )  can be 
decomposed as 

Sx~, ( i , j )  = Sxx( i , j )  - Sx . (  i , j )  

= S x x ( i , j ) - S . ~ ( i , j ) - S ~ . n ( i , j ) ,  (11) 

Sy~. ( i , j )  = Sxy( i , j )  -- Sy . (  i , j )  

= S x y ( i , j ) - S ~ , , , ( i , j ) - S n , n ( i , j ) .  (12) 

Sxx( i,j)Syy( i , j ) -  S2xy( i,j) -o'2Syy( i,j) + po'2Sxy 
a,,j = Sx:,( i,j)Syy( i , j  ) _ S2xy( i,j ) , 

(15) 

tr2 Sxv ( i, j ) - ptr2 Sxx 
b~j - Sxx( i , j )Syy(  i , j )  - S2xy( i , j )"  (16) 

These equations defined the so-called adaptive 
least squares filter (ALSF). In the constrained case, 
these quantities take the much simpler form: 

(1 - - p ) o  "2 

ai, j = 1 P ( i , j )  ' (17) 

bi.j = 1 - a~j, (18) 

where P ( i , j )  is given by 

e (  i , j )  = Sxx( i , j )  + $ , , (  i , j )  - 2Sx,,( i , j )  

= S(x_y)(x_y)( i , j  ) > 0, (19) 

which is a local estimate of the variance of the 
difference between the noisy and filtered signal 
which we will refer to as the residue. This leads 
to the particularly simple implementation of the 
adaptive constrained least square filter (ACLSF) 
shown in Fig. 2. Some insight into the way this 
filter operates is gained by noticing that ( 1 -  p)tr 2 
is the variance of the residue when filtering does 
not modify the signal component, that is, when 

_ ! ~'~k,I - -  [£k,I and the residue variation is due to noise 
Signal Processing 
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Xkl 1 ~~~'4" ~ ak'l + Zk,l 

i t - -  - - W T  + 
-fi(le-r ..... [ [ " k ~  

Fig. 2. Efficient implementation of the adaptive constrained 
least squares filter (ACLSF). 

value of P ( i , j )  which is associated to a (2 r+  1)x  
( 2 s + l )  window centered on the current spatial 
index: 

P(i , j ;  r, s) - 
(2 r+  1)(2s+ 1) 

~ (Xi+k,j+l--Yi+k,j+l) 2" 
k= r l=-s 

(21) 

alone. Therefore, whenever the residue energy is 
small and close to this reference value, our adaptive 
scheme will give a predominant  weight to the 
filtered signal. Conversely, when the residue energy 
is greater than this threshold the weight is progres- 
sively shifted to the unfiltered signal with the 
extreme being no filtering at all. This is consistent 
with the fact that an abnormally large value of  
P( i , j )  is an indication that filtering tends to 
degrade the signal. Since there is no justification 
for a value of  ai, j lower than zero other than errors 
due to statistical fluctuations, it is legitimate to clip 
this quantity to zero which slightly improves the 
robustness of  the algorithm. 

P(i , j ;  r, s) is computed by averaging the squared 
residual signal that can be stored in an auxiliary 
bidimensional array. The unconstrained algorithm 
requires the use of  at least three such auxiliary 
arrays for the evaluation of Sxx(i,j) ,  Syy(i,j)  and 
Sxy(i,j).  The question is whether or not the use of 
this latter scheme, which results in a threefold 
increase in computational complexity, could have 
some practical benefits. 

To address this issue, we consider the simplified 
case of  the filtering of a constant signal {/xi,~ =/x}, 
corrupted by additive white noise with variance 
o2. We also assume, for simplicity, that the extent 
of the estimation window approaches infinity so 
that the sums of  squares can be replaced by their 
expected values: 

4. Case study: improving upon the moving 
average filter 

In this section, we consider the particular case 
where the initial restoration filter is a simple 
(2m + 1) x (2n + 1) moving average filter: 

n 

1 ~ Xi+k,J +1' 
Y i 3 - ( 2 m +  l ) (2n+  l)  k=--m l ~'n=-- 

(20) 

which is characterized by the residual noise 
correlation coefficient p = [(2m + 1)(2n + 1)] -1. 

S~x = p2 + o.2, (22) 

0.2 

S y y = l , , 2 + ( 2 m + l ) ( 2 n + l ) = t . z 2 + p o -  2, (23) 

Sxy = / . L  2 -~-/90 "2, (24) 

P = Sxx + Syy - 2Sxy = (1 - p)o2. (25) 

For the unconstrained case, substitution of these 

quantities in (15) and (16) yields 

2 /x 
au = O, bu =/~ 2 + po-:, (26) 

4. I. Constrained versus unconstrained algorithm 

From the previous section, it is quite apparent 
that the ACLSF is much simpler to implement than 
the ALSF. For the former, the coefficients of the 
adaptive filter are entirely determined from the 

and the corresponding minimum mean square 
error is given by 

_( o2)( ,2 
min{e 2} - p ~tzz-~--po-~} = po-Zb u . (27) 

Vol. 20, No. I, May 1990 
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Similarly, for the constrained case, we find that 

a t = 0 ,  b c = l  and min{e 2}=po2. (28) 

In both cases, the estimation oftlae signal is entirely 
based on the output of  the averaging filter, which 
is a reasonable result. The difference between both 
approaches is only significant when the signal 
energy (/x 2) is small and of  the same order of 
magnitude as the variance of the residual noise 

component  (po-2). As expected, the estimation 
error is somewhat smaller for the ALSF. What is 
less satisfactory is that this improvement of  per- 
formance is achieved at the cost of  a biased signal 
estimate. On the other hand, the ACLSF is non- 
biased. Furthermore, its performance does not 
depend on the magnitude of  the signal component,  
which is a desirable property in image processing. 

4.2. Comparison with Lee' s adaptive filter 

When {y~,j} is defined by (20), the ACLSF is 
very similar to the filter described by Lee [8], with 
the difference that for the latter, the coefficient that 
is applied to the observed signal is determined 
from the following equation: 

0.2 
' - 1 (29) aia - Q(i , j)" 

where 

Q(i, j)  = 
( 2 m + l ) ( 2 n +  1) 

M ~, ~ (Xi+k,j+l--Yi, j)  2 
k=-m I=-n 

( 1 

( 2m+  1 ) ( 2 n + l )  

x k=-,,, ~ ,=-,,~ (Xi+k.j+t)2)--y,aj. (30) 

The complementary coefficient {b~j} is also com- 
puted from (18). The similarity between (17) and 
(29), as well as between (21) and (30), calls for 
the following comments. 
Signal Processing 
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(i) In Lee's initial formulation, Yi.i and Q(i, j)  
are local statistics used to estimate the a priori 
mean (~i,j =/zi, j) and variance (E{[x~d-~i,j]2}) of 
xi, j; the signal is assumed to be locally stationary 
so that these ensemble statistics can be approxi- 
mated by spatial averages. As a consequence, there 
is no distinction between the averaging kernels in 
(20) and (30) and the author only considers the 
case where m = r and n = s. In our formulation, 
{y~,j} can be an arbitrary filter and there is no 
conceptual connection between the extent of  its 
impulse response and the (2r + 1) x (2s + 1) estima- 
tion window over which the least squares estimates 
of  {a~,~} and {b~,j} are computed. In fact, it is r and 
s (and not m and n) that determine the adaptability 
of  our algorithm. 

(ii) When m = r  and n=s ,  Q(i , j)  and 
P(i , j ;  m, n) are equivalent only when yi, j is con- 
stant over the estimation window. This is generally 
not the case and Q(i, j )  will probably be greater 
than P(i , j ;  m, n). Kuan et al. [7] suggest modifying 
Lee's algorithm by replacing Q(i, j)  by a modified 
variance estimate equivalent to P ( i, j ;  m, n), which 
is in much closer agreement with (17). They argue 
that the use of  this particular estimate gets rid of 
the constraint of a locally stationary mean and 
they present some evidence of improved perform- 
ance. We remark, however, that this argument is 
contradicted by their use of  (20) to estimate ~,j. 

(iii) The additional difference between (29) (or 
the modified algorithm described by Kuan et al.) 
and (17), is the presence of  ( l - p )  in the 
numerator. As remarked earlier, (1-p)0 .2  is the 
variance of (x~.j -Y~d) as well as the expected value 
of P(i,j; r, s), when filtering does not distort the 
signal component.  Therefore, comparing 
P(i , j ;  r, s) against 0 .2 instead of  (1 -/9)0. 2 tends to 
bias the filter towards using a value of  a~.~ that is 
slightly below the one prescribed by the con- 
strained least squares solution. For instance, when 
considering the simplified case studied in Section 
4.1, neglecting p in (17) leads to the weighting 
coefficients a'= - p / ( 1  - p )  and b'= 1/(1 - p ) ,  and 
results in a somewhat increased estimation error: 
e 2 = p0.Z/( 1 - p)2. We note, however, that the corre- 
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sponding loss of performance is significant only 
when p is large, that is, when the spatial extent of 
the filter is small (e.g. 3 x 3). 

4.3. Experimental examples 

To support the observations made in the two 
preceding sections, we first consider simulation 
experiments allowing an objective quantitative 
performance assessment. The original mandrill 
image is shown in Fig. 3a. This image was degraded 
with various levels of additive independent 
Gaussian noise and initially processed using both 
3 x 3 and 5 x 5 moving average filters. The degraded 

image with 0-2=225 and its filtered version 
obtained using a 5 x 5 averaging kernel are shown 
in Fig. 3b,c. We then applied the ALSF and ACLSF 
using various estimation window sizes, as well as 
Lee's adaptive filter. The results of this processing 
are summarized in Table 1 in terms of the quadratic 
signal-to-noise ratio (QSNR) computed using the 
original image (Fig. 3a) as reference. This perform- 
ance criterion is defined as 

K L 

k = l  1 = 1  

%~ ~ 1"~ 1"% - -  K L 

E E (Yk.,--I~k.,) 2 
k = l  1 = 1  

(31) 

Fig. 3. Adaptive noise filtering example. (a) Original 256 x 256 image; (b) degraded image using white Gaussian noise with cr 2 = 225, 
QSNR = 12.36 (10.9 dB); (c) initial filtering using a 5 x 5 moving average, Q S N R =  9.17 (9.62 dB); (d) ACLSF with input images 

(b) and (c) using a 7 x 7 estimation window, Q S N R =  25.00 (13.9 dB). 

Vol.  20, No.  l ,  M a y  1990 
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Table 1 

Quadratic signal-to-noise ratio for various post-filtering algorithms using different 
parameter settings 

m = n = 3  m = n = 5  m = n = 3  m = n = 5  
tr 2 = 100 tr 2 = 100 tr 2 = 225 tr 2 = 225 

initial 27.79 27.79 12.36 12.36 
mov. ave 12.93 9.32 12.13 9.177 
Lee 40.44 39.49 23.04 23.08 
r = s = 3  

ACLSF 43.61 (43.34) a 41.26 24.09 (24.15) 23.11 
ALSF 42.43 (41.95) 41.49 22.90 (22.88) 22.97 

r : s : 7  
ACLSF 45.22 (45.01) 43.44 25.77 (25.55) 24.92 
ALSF 45.70 (45.33) 43.71 25.87 (25.56) 25.01 

r = s = l l  
ACLSF 45.39 (44.74) 43.08 25.98 (25.55) 25.00 
ALSF 45.54 (45.20) 43.34 26.00 (25.72) 25.07 

r=s=17  
ACLSF 44.84 (44.15) 42.35 25.77 (25.32) 24.61 
ALSF 44.95 (44.68) 42.50 25.79 (25.53) 24.68 

r=s=65  
ACLSF 42.20 (41.90) 39.36 24.48 (24.14) 22.89 
ALSF 42.28 (42.15) 39.39 24.52 (24.31) 22.93 

a The  va lues  in  pa ren theses  co r r e spond  to the a p p r o x i m a t i o n  p = 0. 

where /z  is the average gray level value o f  the noise 

free image:  {tzk,/(k= 1 , . . . ,  K ;  l =  1 , . . . ,  L)}. All 

adapt ive  algori thms provide  a substantial  increase 

o f  the QSNR.  This is quite remarkable  consider ing 

the fact that  the initial moving  average filter per- 

forms very poor ly  at the global level and tends to 

degrade the subjective image quality more  than it 

actually reduces  the noise. We also notice that  the 
various versions o f  the LS algori thm always pro-  

vide an improvement  over  Lee's  initial scheme. 
The A L S F  is slightly super ior  to the ACLSF,  which 

is in accordance  with our  predict ions,  except  for  

small w indow sizes where the use o f  a const ra ined 

solut ion makes the A C L S F  somewhat  less sensitive 
to errors due to r a n d o m  fluctuations. For  m = n - 
3, there is a slight advantage  in using p =  

1 / ( 2 m + l ) ( 2 n + l )  instead o f  p = 0 ;  the Q S N R  

values cor responding  to this latter case are given 

in parentheses.  However ,  there is no not iceable 
difference for  larger averaging kernels. It is also 

interesting to see that  for  a given noise variance 
there is an opt imal  est imation window size that  

Signal Processing 

does not  seem to be related to the size o f  the 
averaging kernel (m x n). For  o -2 = 225, the opt imal  

window size is approximate ly  9 x 9 and the corre- 

sponding  image obta ined using the A C L S F  with 

a 5 x 5 moving average filter is shown in Fig. 3d. 

The improvement  over the moving average filter 
(Fig. 3b) is striking in the highly textured areas 

(hair) and for  small image details such as the eyes. 

Similarly, a close inspect ion o f  uni form regions 

such as the nose reveals significant noise reduct ion 
when compared  to the initial noisy input. Figure 

4 displays a series o f  rectified residual noise images 
coresponding  to the case m = n = 3 with o-2 = 100. 
It is quite apparen t  that  the moving average filter 
(Fig. 4b) tends to globally degrade the signal more  

than it actually reduces the noise. The  areas in 

which the restorat ion filter performs well (e.g. cen- 

tral region o f  the face) are clearly identified by the 

A C L S F  which leads to appreciable  noise reduct ion 
(Fig. 4d). The residual noise componen t  for  Lee's  
adapt ive filter (Fig. 4c) has also been included.  

The qualitative compar i son  of  Figs. 4c and  4d is 
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a 

Fig. 4. Rectified residual noise components. (a) Initial noise component with o "2 = 100; (b) residue of the noisy filtered image using 
a 3 x 3 moving average; (c) residue of the noisy filtered image using Lee's algorithm; (d) residue of the noisy filtered image using 

the ACLSF with a 7 x 7 estimation window. 

clearly in favor of  the ACLSF, although the per- 

formance improvement  as measured by the QSNR 
is not dramatic. 

Figure 5 shows an application of this post- 
filtering technique to the improvement  of  high 
resolution electron micrographs. The original 
image represents coated vesicles isolated from 
bovine brain [14]. It was obtained on the Brook- 

haven scanning transmission electron microscope 
(STEM). This micrograph is noisy due to the use 
of  low-dose techniques designed to preserve 
insofar as possible the integrity of  the specimen. 
In a preliminary stage, the noise variance was 
estimated from a small 32 x32 area of  uniform 
background.  The electron micrograph was then 

filtered with a 5 x 5 moving average filter and pro- 
cessed by means of  the ACLSF using a 7 x 7 estima- 
tion window. The quality of  the restored image 
(Fig. 5c) is subjectively superior both to the 
original noisy observation and its smoothed ver- 

sion. The comparison between these images is 
made easier by looking at the enlarged 6 4 x 6 4  
sub-regions in Fig. 5d. The noise has been substan- 

tially reduced in the background area where 
the output of  the filter is close to the smoothed 
image. On the other hand, the sharpness of  the 
specimens is preserved. This is due to the fact that 
for regions of  high signal activity the output 
of  the filter is closer to the noisy observa- 
tion. 

Vot. 20, No. I, May 1990 
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Fig. 5. Processing of a noisy electron micrograph. (a) Original 256 x 256 micrograph (initial variance estimate o -2 = 36;) (b) initial 
filtering using a 5 x 5 moving average; (c) ACLSF with input images (a) and (b) using a 7 x 7 estimation window; (d) 200% enlargement 

of a 64x64 region from images (a), (b) and (c). 

5. Discussion 

The various adapt ive post-filtering algori thms 

that  have been considered have a simple structure 

and yet pe r fo rm very efficiently, as illustrated by 

these examples.  The most  interesting p roper ty  o f  

this app roach  is that  the final restored image has 
a signal-to-noise ratio that  is greater than any o f  
the inputs o f  the algorithm. 

The computa t iona l  requirement  is minimal ,  par-  

t icularly for  the ACLSF,  which in the present  

implementa t ion  requires no more  than 8 opera-  
t ions per  pixel. For  a 256 x 256 image such as the 
ones shown in Figs. 3 and  5, the full restorat ion 
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using a 3 x 3 moving average and the ACLS takes 
no more  than  26 s on an Apple  Macintosh  I I  com- 

puter  (7 s for  the moving average and 17 s for the 

ACLSF) .  This time is independent  o f  the size o f  

bo th  smooth ing  (n x m) and estimation (r x s) win- 

dows. The A L S F  is not  as fast and takes about  45 s 
o f  CPU.  

Al though  the basic structure o f  the A L S F  or  
A C L S F  is very close to Lee's  adaptive filter for 

additive white noise, the approach  taken here is 

conceptua l ly  quite different. Ins tead o f  assuming 

a par t icular  signal model  as is the case in [7, 8], 

our  starting point  is the part icular  filter structure 
shown in Fig. 1 and the a priori knowledge o f  the 
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noise statistics. We then derive the optimal filter 

coefficients that locally minimize the mean square 
error. This approach is less restrictive since it is 
applicable to all kinds of  signals. Furthermore, 
there are no approximations involved such as the 
replacement of  the a priori mean and signal vari- 
ances by estimates provided by local statistics. The 
major benefits of  this new formulation are the 
following. 

(i) The initial filtering (typically, moving 
average) and the adaptive least squares estimation 
process are fully decoupled. This means that any 
restoration filter or procedure can be applied in a 
preliminary step and that there is no reason to 
limit ourselves to the use of  a simple moving 
averaging filter. The only prerequisite is that the 
restoration filter performs well--meaning that it 
reduces noise more than it degrades the signal--in 
at least some regions of  the image. Furthermore, 
the size of the estimation window is not necessarily 
equal to the size of the initial smoothing kernel 
and can be adjusted for optimal performance. 

(ii) The ALSF and ACLSF compute a signal 
estimate that is locally optimal in the least squares 
sense. This explains the increase of performance 
over Lee's initial adaptive filter. A closer com- 
parison between (17) and (29) shows that the 
ACLSF is essentially a refinement of  this latter 
scheme, that is, it improves the already excellent 
performance of Lee's algorithm [12]. The deriva- 
tions given in this paper also suggest using this 
type of approach with any type of noisy signal, 
regardless of the underlying model. 

The size of  the estimation window determines 
the adaptability of our post-filtering algorithms. 
From our  experiments, it appears that there usually 
is an optimal window size whose performance is 
related to intrinsic image properties as well as to 
the level of  noise. Using a small estimation window 6. Conclusion 

will improve the adaptability of  the algorithm 
which is very good in non-stationary image regions 
(edges). However, it will also make the filter 
coefficients more sensitive to statistical errors and 
degrade performance in stationary image regions 
(uniform or texture). Consequently, there is a corn- 
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promise to be found which depends on the noise 
statistics. We remark, however, that even the choice 
of the largest possible estimation window (the size 
of the picture itself) should not produce a result 
that is worse than either the initial noisy picture 
or its filtered version. 

We have considered two different post-filters, 
namely the ALSF and ACLSF. The ALSF, which 
is unconstrained, usually performs somewhat 
better than the ACLSF but not enough to justify 
the added computational complexity. As shown in 
Section 4.1, it also has the disadvantage of provid- 
ing a signal estimate slightly biased towards zero. 
Therefore, the ACLSF seems to be a better choice 
for most practical applications. 

The use of  this post-filtering technique is not 
restricted to the restoration of  images corrupted 
by additive white Gaussian noise. It is applicable 
to any type of  stationary noise (gaussian or non- 
gaussian, correlated or non-correlated) provided 
that the variance of this noise is known. This 
approach may also be used indirectly with certain 
types of  signal dependent  noise that can be trans- 
formed into signal independent noise through the 
use of an appropriate variance stabilizing transfor- 
mation [6]. For example, Poisson signals can be 
processed by using a square-root transformation 
to produce a sequence of random variables that 
are approximately Gaussian with constant vari- 
ance: 2=41.  The final signal estimate is then 
obtained by applying the inverse transformation 
to the filtered data. 

Finally, we note that the use of p = 0  in (17) 
instead of  the value prescribed by (3) usually does 
not degrade performance in a significant way pro- 
vided that the averaging kernel is sufficiently large. 

In this paper, we have considered the design of  
post-filters that recursively compute a weighted 
sum between the output of  an initial restoration 
filter and the noisy image itself. These filters have 
the potential of  improving the signal-to-noise ratio 
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a n d  the sha rpness  o f  the  r e s to red  image.  We have  

de r ived  two a d a p t i v e  a lgor i thms  tha t  p e r f o r m  an 

op t i ma l  c o m p u t a t i o n  o f  the  filter coefficients over  

a loca l  s l id ing  window.  This  p rocess  requi res  the  

spec i f ica t ion  o f  the  no ise  s tat is ics  but ,  un l ike  some  

p rev ious  a p p r o a c h e s ,  m a k e s  no a s sumpt ions  a b o u t  

the  signal .  

To i l lus t ra te  these  results ,  we have  c o n c e n t r a t e d  

on the pa r t i cu l a r  case where  the  ini t ia l  r e s to ra t ion  

filter is a s imple  mov ing  average  filter. We  have  

c o m p a r e d  ou r  a p p r o a c h  with  Lee ' s  adap t ive  noise  

f i l tering a lgo r i t hm and  e m p h a s i z e d  the m a j o r  

differences.  Desp i t e  the  s imi lar i t ies  be tween  the  

s t ruc ture  o f  these  filters, we f o u n d  a cons is ten t  

p e r f o r m a n c e  i m p r o v e m e n t  over  this la t ter  s cheme  

which  we a t t r ibu te  to ou r  more  r igorous  and  more  

genera l  der iva t ion .  A n  i m p o r t a n t  filter p a r a m e t e r  

is the  size o f  the  e s t ima t ion  w i n d o w  which  governs  

the  a d a p t a b i l i t y  o f  the  a lgo r i t hm to local  image  

s t ructures  a n d  which  shou ld  be  chosen  in an  

op t i ma l  fashion .  

The  cons t r a ined  a lgo r i t hm ( A C L S F )  has  a par-  

t i cu la r ly  s imple  s t ructure  a n d  can  be i m p l e m e n t e d  

in a very efficient way. I t  is a lmos t  as efficient as 

the  u n c o n s t r a i n e d  filter (ALSF) .  Due  to its s im- 

p l ic i ty  and  its c o m p u t a t i o n a l  economy ,  this  

a p p r o a c h  shou ld  be useful  in m a n y  image  process -  

ing a p p l i c a t i o n s  such as the  res to ra t ion  o f  h igh  

reso lu t ion  e lec t ron  mic rog raphs .  
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