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(i.e., std ( f ) greater than about 0.1 /T') for reasons discussed ear-
lier.

In the high SNR case defined by 3pSNR/N >> 1 we have from
)
0.1 *3°%

std(f)zW (4)

and the p dependence disappears. This corresponds to the lowest
curve segments on Fig. 1, which are severely flattened implying
little variation with p. Again the relationship to the CRLB is inter-
esting and is given by

std (f) 027 *3%%
CRLB (f) ~ NES

which says, surprisingly, perhaps, that the Burg technique in the
high SNR region deteriorates, though quite weakly, with both N
and SNR as can be verified by inspection of Fig. 1.

. N0.2 SNR(). 13

CONCLUSION

The standard deviation of the Burg frequency estimate has been
computed for the simplest case of a single noisy complex sinusoid
through a Monte Carlo simulation for a useful range of data lengths,
SNR’s, and model orders. These results have been shown to be
amenable to a fit by a simple expression which yields insight into
the behavior of the Burg algorithm particularly in that it clearly
demarcates regions of ‘“high SNR’’ performance and ‘‘low SNR”’
performance (though the precise definitions of these regions in-
clude model order and data length). Additional insight is gained
when this approximate expression is used in conjunction with the
Cramer-Rao lower bound. It is felt that these results may be useful
to those working in the general area of spectral estimation.
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Comments on ‘‘Classification of Natural Textures by
Means of Two-Dimensional Orthogonal Masks’’

Michael Unser

Abstract—The correspondence of Cohen ef al. describes a texture
analysis method that is a special use of the approach reported in [3].
Moreover, the derivation of the optimum set of masks presented by
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these authors is based on an incorrect assumption; the correct solution
should be the local Karhunen-Lo¢ve transform which is generally dif-
ferent from a 2 x 2 Hadamard transform (2 X 2 DHT). However, this
error has relatively minor effects from a practical point of view since
the ability of the 2 X 2 DHT to decorrelate real texture images is usu-
ally excellent.

In a recent correspondence, Cohen et al.' describe a texture clas-
sification technique using features derived from a set of 4 orthog-
onal masks applied to a 2 X 2 local neighborhood that is an exten-

sion of the sum and difference histograms method [1]. A technique

that is more general and subsumes the results of Cohen ez al. and
Unser [1] has been derived and is described in [2] and [3]. A pro-
cedure for deriving convolution masks that are optimal for texture
analysis and classification is contained in [3].

For texture analysis, the optimal solution is provided by the Kar-
hunen-Logve transform associated with the spatial covariance ma-
trix of the texture being analyzed. For a two class texture classifi-
cation problem, the set of masks providing maximal texture
discrimination is determined by simultaneously diagonalizing the
two corresponding covariance matrices. Since these solutions are
texture dependent, it has been suggested that suboptimal trans-
forms be used, e.g., the discrete cosine (DCT), discrete sine (DST),
discrete real even Fourier (DREFT), and discrete real odd Fourier
(DROFT), and discrete Hadamard (DHT) transforms. These re-
sults apply for rectangular neighborhoods of any size. In the par-
ticular case of a 2 X 2 neighborhood, these transformations are all
equivalent to the 2 X 2 DHT: the transformation used by Cohen et
al. It is reassuring to note that these authors have conducted ex-
periments, obtaining results that are virtually identical to those pre-
sented in [3]. This latter study reported on experiments carried out
with larger neighborhoods (3 x 3,4Xx 4, and 5 X 5), and with a
variety of different operator sets and textures features as well.

We also note that there is a mathematical error in the work by
Cohen et al. although, from a practical point of view, it is likely
to have minor effects. The general form of the spatial covariance
matrix associated with the four pixel neighborhood vector x;; =
[xi—l,j—lxi—l‘jxi,j—lxi,j]TWhere {xipi=1,-Lj=1,°"",
J)} is a realization of a two-dimensional stationary and ergodic
process, is
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in which 6% = var {x} is the image variance, and where py, pas.
P90, and py3s are the correlation coefficients in the four orientations
schematically represented in Fig. 1. This expression differs from
(2) in the correspondence by Cohen et al.; these authors have not
distinguished between left and right diagonal interactions, which
are not necessarily equal. It follows that R, is, in general, not ex-
actly diagonalized by the discrete Hadamard transformation (DHT),
contrary to what has been stated by Cohen et al. This condition is
only met when p35 = pys, in which case R, is dyadic, or when the
covariance is separable along the two principal directions, which
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Fig. 1. Pairwise interactions between the four components of the local fea-
ture vector.

is a slightly more restrictive constraint:
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We note that this latter case corresponds to the direct separable
extension of the results reported in [1], since the 2 X 2 DHT can
be constructed from the outer product of horizontal and vertical
one-dimensional sum and difference operators. The ability of the 2
X 2 DHT to decorrelate real texture images is usually excellent
and is sufficient for most practical purposes. For instance, it was
shown in [4] that the 2 X 2 DHT as applied to each of 12 Brodatz
textures of an experimental set almost identical to that used by
Cohen e al., reduces the nondiagonal energy of the covariance
matrix to less than 1% (with one exception at 2.2% ) of its initial
contribution.
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On Coefficient-Quantization and Computational
Roundoff Effects in Lossless Multirate
Filter Banks

P. P. Vaidyanathan

Abstract—FIR lossless transfer matrices have found recent applica-
tions in multirate analysis/synthesis systems having the perfect recon-
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struction property. It is shown in this correspondence that these loss-
less systems can be implemented such that regardless of coefficient
quantization, the lossless property (and hence perfect reconstruction)
can be retained. Such a result was shown to be true in the past only
for two-channel filter banks. This correspond also presents a noise
gain result for lossless systems which finds application in analyzing
roundoff noise in multirate filter banks.

I. INTRODUCTION

Multirate filter banks with the perfect reconstruction property
have received considerable attention recently (see [1]-[7] and ref-
erences therein). In this correspondence we are concerned with the
technique reported in [3]-[7], in which the polyphase matrix of the
set of analysis filters is FIR and lossless. Our purpose here is to
present two results, one concerning coefficient quantization and the
other concerning roundoff noise propagation.

Unless mentioned otherwise, the notations used are the same as
those in any one of the [3]-[7]. As a review, H; (z) and F; (z), 0
< k < M — 1 represent the M analysis and synthesis filters of an
M band maximally decimated filter bank [6, fig. 1]. The analysis
and synthesis banks are associated with two M X M matrices E(z)
and R(z) called polyphase component matrices [6, fig. 2]. The
methods employed in [3]-[7] are such that E(z) is (FIR and) loss-
less. This means that E(z) satisfies

E(z) E(z) = ¢, vz,

With E(z) satisfying this property, the maximally decimated sys-
tem has perfect reconstruction if and only if the synthesis filters are
chosen as F, (z) = oz "“H, (z) where & # 0 and L is an arbitrary
integer.

If ¢2 = 1in (1), we say that E(z) is normalized-lossless. Note
that losslessness can also be defined for rectangular matrices [5].
For M X 1 stable systems, losslessness is same as the power-com-
plementary property [7].

In order to design and implement filter banks with lossless E(z),
it is necessary to obtain a structure for M X M FIR lossless sys-
tems. Structures for arbitrary real-coefficient FIR lossless systems
were presented in [5] based on a state-space approach, with planar
rotations as building blocks. More recently, a method was devel-
oped in [6] which leads to a different representation of lossless sys-
tems. This method does not involve rotations, but is entirely in
terms of diadics (i.e., matrices of the form v»' where » in a col-
umn vector). This is simpler in terms of derivation as well as im-
plementation. Also, it covers both real and complex coefficient FIR
lossless systems. In this correspondence, we shall show that the
diadic based structure retains losslessness in spite of coefficient
quantization (for arbitrary M ), whereas such a property is not true
for the rotation based structure except in the M = 2 case.

It should be noticed that the above discussion does not take into
account errors due to quantization of signals (such as state vari-
ables) in the structure. The noise due to this must be separately
analyzed; thus in Section IV we present a result on noise amplifi-
cation by lossless systems, and indicate applications in filter bank
structures.

c real. (1)

II. COEFFICIENT QUANTIZATION IN ROTATION-BASED
STRUCTURES

First consider a degree-0 lossless system R (i.e., a constant
unitary matrix). The unitary property is equivalent to

RIR,=0, k=*m (2)
RR,=d>0 (3)

where R,, is the mth column of R. Such matrices can be expressed
in terms of planar rotations [8]. For example, in the 3 X 3 real-
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