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algorithm, nowadays one of the most popular because of its superior
performance. We believe that the coding effort for the system shown
in Fig. 2 is minimal and that there is a substantial reward in algorith-
mic performance when compared to previous implementations.

Another application is the use of second order R-filter as a Gaussian
filter. This substitution is computationally very attractive, especially
for larger standard deviations. The quality of the approximation to
a true Gaussian, which should be sufficient for most applications
(cf. Fig. 1), can be further improved through the use of repeated
convolutions (a consequence of the central limit theorem). Such an
approach is suitable for the generation of multiresolution or scale-
space signal representations [20], [21]. It is certainly an interesting
alternative to other suggested approximation methods [22].

Our implementation of R-filters is fully recursive and some care
has to be taken to avoid propagation of roundoff errors. The simplest
approach, which is the one that we selected, is to use floating point
arithmetic. In image processing applications where it is often neces-
sary to save memory storage, it is sufficient to use one auxiliary 1-D
real array to store intermediate filtering results. The final output of the
row or column filters can be truncated and stored in standard byte or
integer format. Fixed point realizations are also conceivable, provided
that an error analysis be performed to determine the appropriate
number of bits per sample needed to maintain the error within an
acceptable range [23].

Finally, we would like to mention that the availability of fast
R-filtering techniques is crucial for the design of a new class of
iterative algorithms for solving linear and space variant regularization
problems. It is the investigation of such filtering-based algorithms that
initially motivated the present study. We are currently studying the
convergence properties of such schemes. They appear to be superior
to the conventional Gauss—Seidel approach, particularly for large
values of A. Further, a problem that could benefit from this approach
is the area-based estimation of optical flow in the Horn and Schunk
formulation [11].

V. CONCLUSION

In this correspondence, we have investigated the properties of R-
filters, a special class of smoothing operators with an adjustable scale
parameter A. These operators provide a convenient way of solving
approximation problems with certain regularization constraints. We
have developed general analysis and design techniques and applied
them to the study of R-filters associated with the first and second
difference operators. These filters have been fully characterized in
terms of their impulse response, equivalent window size, and filter
coefficients, expressed as functions of the regularization parameter A.

The R-filters that have been described here have two essential
features:

1) they can be implemented recursively with a small number of
operations per sample value (2n operations for a one-dimensional nth
order R-filter);

2) their smoothing window can be tuned to any scale through a
single parameter with no effect on execution speed.

Due to these properties, R-filters stand as attractive alternatives to
standard moving average and Gaussian smoothers currently used in a
wide variety of image processing and computer vision applications.
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Fast B-Spline Transforms for Continuous
Image Representation and Interpolation
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Abstract— This correspondence describes efficient algorithms for the
continuous representation of a discrete signal in terms of B-splines (direct
B-spline transform), and for interpolative signal reconstruction (indirect
B-spline transform) with an expansion factor m.Expressions for the z-
transforms of the sampled B-spline functions are determined and a
convolution property of these kernels is established. It is shown that both
the direct and indirect spline transforms involve linear operators that are
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translation invariant and are implemented efficiently by linear filtering,
Fast computational algorithms based on the recursive implementation of
these filters are proposed. A B-spline interpolator can also be charac-
terized in terms of its transfer function and its global impulse response
(cardinal spline of order n). The case of the cubic spline is treated in
greater detail. The present approach is compared with previous methods
that are reexamined from a critical point of view. We conclude that,
contrary to the claims of several authors, B-spline interpolation correctly
applied does not result in a loss of image resolution and that this type of
interpolation can be performed in a very efficient manner.

Index Terms—B-splines, continuous representation, image reconstruc-
tion, interpolation, polynomial splines, recursive filter, transform.

I. INTRODUCTION

Image interpolation plays a central role in many applications [1],
[2]. 1t is required for resolution conversion to adapt to the charac-
teristics of a particular display device. Efficient scaling mechanisms
are needed on modern display workstations to allow users to vary the
size of images interactively, to concentrate on some detail, or to get
a better overview. Image interpolation is also used in some coding
schemes [3]. Other utilizations include geometrical transformations
[1] and image registration [4], [5] where it is necessary to resample
the image to an undistorted or reference coordinate system.

The principle that is common to all interpolation schemes is to
determine the parameters of a continuous image representation from a
set of discrete points. The simplest approaches are the 0 order (nearest
neighbor) and 1 first order (bilinear) interpolations [1]. A more refined
technique is the cubic B-spline interpolation method introduced by
Hou and Andrews [6]. Because of its computational complexity,
researchers have suggested several alternative cubic convolution
techniques [7}, [8]. Chen and deFigueiredo have proposed generalized
spline filters based on partial differential equations [9].

B-spline interpolation methods have not been very popular for
two principal reasons. First, the algorithms for the determination of
the spline coefficients described in the signal and image processing
literature are relatively inefficient. Second, it is commonly believed
that the use of B-splines causes image resolution degradation [1],
[2]. This misinterpretation is in essence a consequence of incorrect
implementation. In some instances [1], [2], an image interpolation
function is obtained by substituting the initial pixel values for the
B-spline coefficients. The algorithm recently described in [10] is
another example of a flawed implementation scheme that produces
blurring.

The purpose of this correspondence is to present a theoretical
analysis of B-spline signal representations from a signal processing
point of view. The main advantage is that both the direct spline
transform (the process of determining the expansion coefficients) and
the indirect spline transform (the process of reconstructing the original
sampled values with an optional interpolation) can be interpreted
as simple filtering operations. We can derive fast computational
algorithms by studying the recursive structure of these filters. We will
also describe simple procedures to characterize a B-spline interpolator
of any order in terms of its impulse and frequency responses. These
concepts will be illustrated by the design of recursive filters for
direct and indirect cubic spline transform. We will also compare our
algorithm with previous approaches and highlight some of the points
that have been a common source of misinterpretation. In particular,
we will show that the method of Sankar et al. does not produce

a signal interpolation satisfying the B-spline representation and that -

it is in effect equivalent to simple spatial smoothing by an iterated
moving average.

II. B-SPLINES BASIS FUNCTIONS

The essential property of B-splines of order n is to provide a basis
of the subspace of all continuous piecewise polynomial functions
of degree n with derivatives up to order n — 1 that are contimious
everywhere on the real line [11], [12]. In the case of equally spaced
integral knot points, any function ¢" () of this subspace can be
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Fig. 1. Convolution property of the continuous B-spline functions. (a) Zero
order spline, (b) first order spline, (c) quadratic spline, (d) cubic spline.

represented as

2.1)

where 3"(z) denotes the normalized B-spline of order n, defined
below; n is also the degree of the piecewise polynomials that
are connected at the knot points. The function ¢™(x) is uniquely
determined by its B-spline coefficients {c(¢)}. It is essentially the
smoothness property of these functions as well as the compact support
of the basis functions that make the use of B-spline representations
attractive. The crucial step in B-spline interpolation is to determine
the coefficients of this expansion such that ¢™ (z) matches the values
of some discrete sequence {f(k)} at the knot points: o"(k) =
f(k) for (k= —o0,---,+c0). In the mathematical literature, this
problem is commonly referred to as the cardinal spline interpolation
problem. The existence and uniqueness of the solution, as well as
other fundamental mathematical results have been established by
Schoenberg [13], [14].
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In this section, we first recall the principal properties of continuous
B-splines. We then investigate the properties of a class of discrete
B-splines that are obtained by sampling continuous basis functions
subject to a uniform dilatation. These preliminary results will be used
extensively in Section III for the design of efficient algorithms for the
direct and indirect B-spline transform.

A. B-Spline with Equally Spaced Knots

The normalized B-spline functions of order n with n + 2 equally
spaced knots {0,1.2,,---,(n + 1)} are defined as [12, p. 135}

() = ZL‘E,L< : 1)@ S)eE—-i) @2

where u(z) is the step function

_f1 forx>0
”(I)_{O forx < 0

and where (";‘1) are the binomial coefficients:

("3 =a=m= () (1)

It is convenient to introduce a subscript notation to represent ex-
panded basis functions by a factor m: 3 (x) = 3"(x/m). These
functions satisfy the convolution property

3 (x) = %3,’:;1 * 30, () = L 3% %o x 30 ()
("

mn

(2.3)
n+1 times

as illustrated by Fig. 1. In some instances, it may be preferable to use
symmetric basis functions centered on the origin. This is achieved by
introducing the appropriate offset: xg = (n + 1)/2. We have chosen
here to stick with definition (2.2) because it simplifies subsequent
derivations. Most of our results are directly applicable to symmetric
basis functions by simply replacing all causal operators by their
shifted symmetric counterparts.

B. Discrete B-Splines

We define discrete B-splines by sampling continuous spline func-
tions. More specifically, the discrete B-spline of order n with a
horizontal expansion factor m is given by :

n Aok
brL (k) 2 3 (E)

1 n+l _1‘] 1
—m_'lz( n') (71'}‘ )(k—jm)”p(l'—jm)‘ 2.4)
=0 :

We will characterize these functions in terms of their z-transforms.
For this purpose, we first need to determine the transform of the
power series: {k";k =0.---.+2c}. Let us define

+oc +oc
Pr(z)=3 kR = Y R TR (k). (2.5)
k=0 k=—oc
It is straightforward to establish the recurrence equation
n P (z
P (z) = BT ( ). (2.6)
By using the fact that the z-transform of (k) is
1
0 - —
Pz = 1—z1

we are able to evaluate the transform of all subsequent power series
recursively. The results of these computations for n =0 to 5 are

summarized in Table 1. We can easily show that the general term has

the form
. A"(2)
P (3): (1—,:—1)"+1

where the numerator A"(:) is some polynomial in z~'. The
z-transform of (2.4) is found by making use of the shift theorem
and substituting the expression for " (z):

n+l

n _ 1 1 n+1\, L\ —jm A" (z)
Bm(:)_m"zn!( J >( b's (1—z-Hm

=0

By noticing that (—1)’ ™™ is also equal to (—z~™)” and recalling
that

n+l
1
(;r+1)"+1:z<n; )I}

J=0

we finally get
BL(:) = 1 Az (12" H
m(z) = m®  n! 1—z71 ’

An equivalent but more useful expression is given by

BIL(2) = B (=) (Bl ()" @7
where
ny. n+1
B = 2 = S 28
. k=0

is the z-transform of the discrete signal obtained by sampling the
B-spline at its knots and where

m—1

0 -2 =k
Bo(:)= 37— =2 ¢

k=0

(2.9)

is the z-transform of a rectangular pulse of length m. Equation (2.7)
clearly shows that we have a similar convolution relation as for the
continuous case, that is:

b (k) =

(08, % b0, %o x b ) # B (R).

(2.10)

m"
n+1 times

This relationship is illustrated in Fig. 2 for the discrete cubic
B-spline. Equations (2.7) and (2.10) are quite general and can be
shown to be also valid for shifted sampled basis functions, in
particular symmetrical ones. Comparison of (2.10) to its counterpart
for the continuous case (2.3) reveals an interesting difference. In
(2.10), there is an additional convolution with a normalized kernel
{b7 (k)}. This operation is required to guarantee that discrete B-spline
provide the same values as the continuous basis functions at the node
points, as shown in Fig. 2. Interestingly enough, the convolution
with {b7(k)} provides a weighting scheme of the type used in
the Newton—Cotes quadrature formulae for numerical integration by
summation [15]. For n = 2, we have the simple trapezoidal rule, and
for n = 3 we have the coefficients for Simpson’s rule of integration.
The need for such a correction is not so surprising if one recalls that
in the discretization process, all convolution integrals are replaced
by summations. Another interpretation of (2.10) is that a uniform
stretching of b7 (k) can be obtained by convolving this function
(n + 1) times with a moving average filter of size m where m is
the expansion factor (cf. Fig. 2).

The Fourier transform of the discrete B-spline of order » is obtained
by replacing z with e’2™f in (2.6), which after some manipulations,

yields
sin (rm £)\ "
<-—Sm - f>> L@

n+1

D bi (keI
k=0

1
mn

1B (F)l =
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Fig. 2. Convolution property for the discrete cubic B-spline with an up-sampling factor m = 2. The corresponding continuous cubic spline functions are
superimposed in solid lines when there is a perfect match and in dashed lines otherwise.

TABLE 1
z-TRANSFORMS OF POWER SERIES AND DISCRETE B-SPLINES FOR n =0 TO 5
+oo &
n(.) — n,—
. P (z)_kzz:ok z An(z) Bl(2)
0 A= 1 1
1—;—1)
1 Al -1 1
Gy ’ :
2 A% -1 -2 142!
e s b
3 Adz) -1 ~2 -3 2444271
oy AT A e

4 _"s__>l_g

A
(1-2=1)
A

(z_l + 2_2) (1 +10z71 + :_2)

21 426272 466273 4+ 26274 + 275

1427 (z+10+:71)
24z

224262466+262"'42=2
12023

III. SIGNAL REPRESENTATION AND INTERPOLATION

In this section, we describe fast algorithms for the determination
of the expansion coefficients in (2.1) (direct B-spline transform) and
for signal reconstruction and interpolation from its spline coefficients
(indirect B-spline transform). These algorithms are all based on
recursive filtering and will be analyzed in term of their impulse
response and transfer function.

A. Direct B-Spline Transform

Let us consider a discrete signal {f(k)} defined on k =
—00, -+, +00. We seek the interpolating function ¢" () of the form
(2.1) such that

+oo

fk)=9¢"(k)= Y ()b} (k - ).

i=—o0

(3.1)

This expression describes a convolution and can also be written as
F(k) =87 % c(k) 3.2)

where b7 (k) is the finite impulse response of the operator that we
shall refer to as the indirect spline filter of order n. By taking the
z-transform, we get

F(z) = Bl (2)C(2) (33)

where B'(k) is given by (2.8). This result suggests that the spline
coefficients {c(k)} can be determined simply by inverse filtering. The
corresponding linear space invariant operator {s"(k)} is called the
direct spline filter of order n. Its transfer function is given by

1

§™(z) = By (2) = .
> bi(k)e—k
k=0

(3.4
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TABLE 1I
TRANSFER FUNCTIONS OF SYMMETRIC DIRECT AND BASIC INDIRECT B-SPLINE FILTERS
n Indirect B-Spline Filter Direct B-Spline Filter Poles
0 1 1 -
1 1 1 -
2 2464271 _ 8 a =V8-3
24+6+2~1
a1 =1/
3 z4ate”! 6 ar=vV3-2
244421
as = 1/a1
a; = —0.01372
247624230+76z "' +2 2 I - SE
4 ST 2T 762+2304 762~ 1 +z—2 g = —0.36134
a3 =1/a1, ag =1/
a; = ~—0.04309
242654664262 L +z "2 120
5 I 224262 +66+26z L +2—2 ay = —0.43057

o3 = 1/01, Qg = 1/02

Clearly, S™(z) is the response of a recursive infinite impulse
response (IIR) filter. It is therefore important to check its stability
which amounts to determining the roots of Bi'(z) and verifying
whether or not these lie on the unit circle. By studying the operators
given in Table I, we see that only the filters corresponding to odd
orders are stable. For n even, we always have a pole at z = 1 which
makes the present approach unsuitable. We note, however, that this
problem is easily overcome by introducing a phase shift of 1/2 in
the definition of the sampled even B-splines, which is needed in the
case for the construction of symmetric basis functions. There is no
major difficulty in making this modification. For reference we present
in Table II the transfer functions of all direct and indirect symmetric
B-spline filters up to order five.

The explicit determination of the impluse response of the direct
B-spline filter can be obtained by decomposing S™(z) into simple
partial fractions. Such a decomposition can also result in efficient
filter realizations by expressing the transfer functions as a sum (or
a product) of a causal and anticausal system. These points will be
illustrated in Section III-E with the detailed analysis of the direct
cubic B-spline filter.

B. Indirect B-Spline Transform

The indirect B-spline transform governs the process of recon-
structing discrete signal values from the B-spline representation. In
most applications, one is interested in filling in a signal at a higher
sampling rate, which is one particular form of interpolation. The
indirect transformation or reconstruction method presented here uses
an integral up-sampling factor m. The requirement of m being an
integer is not a major limitation since any rational sampling rate
can be obtained from a succession of integral interpolations and
decimations, although this is not likely to be the most computationally
efficient technique.

Signal reconstruction or interpolation with an up-sampling factor
m amounts to determining the set of discrete values:

fm (K) =¢<k—/) = f ()bl (K = im).

m

(3.3)

1=—00

This operation can also be interpreted as a magnification with a

o

zooming or expansion factor m. A basic operation is the up-sampling
of a signal {f(k)} by a factor m which produces the new sequence
{[flim(k")} defined as

(flim (K') = {g(k)

By substituting [(:]Tm(k') in (3.5), we get the convolution equation:

for k' =mk - F(zm)'

3.6
otherwise (36)

fm (K') = b0 % [el . (K)- @7
Taking the z-transform and using (2.6) we find
Fu(2) = BY(2) i (Bh(2) " CG™) (38)

which clearly indicates that signal interpolation can be achieved from
a cascade of # + 1 moving average filters of size m and an indirect
spline filter {b7(k)}. When m = 1 this operation is the inverse of the
procedure described in Section III-A.

These results are also applicable to B-splines centered on the origin
(cf. Table II) provided that the appropriate phase shifts are introduced.
The easiest way to produce a global response that is symmetric is to
use individual convolution operators that are also symmetric. The
only difficulty arises when m is even, in which case we can combine
moving averaging filters in pairs to produce a globally symmetric
response (e.g., one moving average filter is centered on m/2 while
the other is centered on (m/2) + 1).

C. Global System Analysis

The block diagram of the global system performing this whole
sequence of operations is shown in Fig. 3. The spline coefficients are
obtained by prefiltering (direct B-spline transform). The next three
operations (up-sampling by a factor m, a multiplication by m, and a
moving average filter of length m) are in fact equivalent to performing
a 0 order signal interpolation, which amounts to simply repeating
the current sample value m times. The signal is then smoothed by
iterating a moving average filter (Mo (z) = B, (2)/m) n times. The
final operation is the postfiltering (basic indirect B-spline transform).

To facilitate the analysis, it is convenient to consider an equiv-
alent system where the initial input signal as well as the impulse
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Fig. 3. Block diagram of an nth order B-spline interpolator with an upsam-
pling factor m.

response of the direct spline filter are up-sampled by a factor m. The
whole succession of operations is then described by the convolution
equation

fm (kl) =bp, * [thm * [f]fm(kl) = hp, * [f][m(k,)

where global impulse response of the system h% (k') = b7, %
[s"];,,(K') is the sampled cardinal spline of order n (cf. Section
lIII-E). The global transfer function is given by

Wy Ba(x) _ 1 BR()(BL(G)"

H m(z) = Py = — - .

Bp(zm) B (zm)

The system may also be characterized by its frequency response
which is given by

(3.9)

(3.10)

mn

n+l .

b} (k)e727f
k=0
n+l

5 by ()erzmes
k=0

()] = —

mn

( S‘S’lln(?zf; ))HH. (.11)

As far as signal reconstruction is concerned, this filter should pro-
vide a reasonable approximation of a perfect lowpass filter which,
according to Shannon’s sampling theorem, is required for perfect
interpolation of a bandlimited signal.

It is interesting at this stage to investigate the computational
complexity of the system that we are proposing. The direct
B-spline filter has 2[n/2] + 1 coefficients' and can be implemented
recursively with a computational cost of 2[n/2] adds and 2[n/2]
multiplies per sample value, as illustrated for » = 3 in Section III-
E. This part of the algorithm should be performed using real (fixed
or floating point) arithmetics. The signal reconstruction, on the other
hand, can be evaluated using integer operations exclusively. In our
system, the moving average filter is implemented recursively using a
simple update strategy (e.g., two additions per moving sum) [16],
and the final normalization is only performed once. Accordingly,
the computational cost of the interpolation step is (3n + 1) adds and
2[n/2] + 1 multiplies per reconstructed sample point.

D. B-Splines in Higher Dimensions

Although all our results were derived for one-dimensional signals,
they are directly applicable to higher-dimensions through the use
of tensor product polynomial splines [12]. The corresponding basis
functions are obtained from the product of one-dimensional splines
defined for each index variable. Since all basis functions are sep-
arable, the corresponding linear direct and indirect transformations
are also separable [1]. This implies that the spline coefficients
can be determined by successive one-dimensional direct B-spline
filtering along the coordinates. The same strategy is also appli-
cable for signal reconstruction or interpolation by indirect spline
filtering.

E. Cubic B-Spline Filter

To illustrate these results, we consider the design of the direct
cubic B-spline filter. The z-transform of the sampled symmetric cubic

1[x] denotes the integer truncation of x.

- — 1

B-spline is

z4+44271
—s

The transfer function of the direct B-spline filter (the inverse filter)
can be factorized as

B(z) = (3.12)

6 —6a

5%(z) = PRIy (1= az"1(1 - az)

(3.13)

where & = /3 — 2 is the smallest (in absolute value) root of the
polynomial z% + 4z + 1; the other root is 1 /o due to the reverse
symmetry of the coefficients. $°(2) is the transfer function of a stable
symmetric infinite impulse response filter and is further decomposed
as

(3.14)

S = (l_jzz) ((1 - i) T —laz> - 1)

where the term with 2~ (resp. z) in the denominator is the transfer
function of a simple first order causal (resp. anticausal) filter. It
follows that the impulse response is given by

—6a |kt

ss(k) = (1—_72)(1

(3.15)
which is a symmetric decreasing exponential with an alternating sign
change. This filter is implemented efficiently using either (3.13) or
(3.14). In the latter case, the recursive filter equations are

(k) = £(k) + bie* (5 — 1),
c (k) = f(k) + bic” (k + 1),
c(k) = bo(c* (k) + ¢ (k) — f(k))

where by = —6a/(1 — o) and b; = a = —0.2679. In addition, we
have to impose some boundary conditions. For practical convenience
and to avoid discontinuities, we have chosen to extend the signal by
its mirror image. In this circumstance, we have the initial values

(k=2 ,K)
(k=K -1,---.1) (3.16)

ko
+ — fk—1]
(1) = kz=1a f(k) (3.17)
¢ (K) =c*(K)
where ko is such that /%! is below some prescribed level of
precision. Obviously, the indirect B-spline filter should use the same
type of boundary conditions to insure that the procedure is reversible.
We note that with these particular boundary conditions, we are
indirectly imposing a zero first order derivative at the end points.
A slightly more economical alternative is an implementation based
on the product decomposition (3.13):

d* (k) = f'(k) — ad*(k — 1),
oK) = =% (2d"(K) - f'(K))
(k) =ale(k+1)—d"(k+1)), (k=K-1,---,1)

(k=2 ,K)

(3.18)

with f'(k) = 6f(k) and d* (1) = 6c*(1). The second equation is bor-
rowed from the sum decomposition and is required to obtain a correct
initialization of the backward recursion. In this case, the number of
operations is two floating point additions and two multiplications per
sample point. An additional integer multiplication is also necessary
for proper scaling. We note, however, that scaling can either be
avoided through the use of nonnormalized basis functions, or at least
performed only once in a separable multidimensional implementation.
In terms of complexity, this approach has to be compared with
more standard numerical analysis methods for determining cubic
splines based on the solution of a corresponding tridiagonal system
of equations [11], [17]. An efficient solution through Gaussian
elimination or LU factorization requires at least four additions and
four multiplications per sample point, as well as some additional
intermediate storage for the matrix coefficients [17], [18, p. 156].
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Fig. 4. Comparison of the cardinal cubic spline function (solid line) and
ideal sinc interpolation kernel (dashed line).

Cubic B-spline interpolation is best understood by expressing the
interpolating function in terms of the initial sample values {f(k)}:

o™ (x) = i c@F(@—iy= Y fRn'(@-k) (319
i=—oc k=—oc

where 7*(z) is the global continuous impulse response of the system;
Lancaster and Salkauskas have referred to this function as the cubic
cardinal spline [19]. By recalling that c(k) = s°  f(k) and using
(3.15), it is rather straightforward to show that

+

—6a

7 (x) = o ¥ 3 - k). (3.20)

This function is shown in Fig. 4 and appears to be quite similar to a
sinc function that has been superimposed in dotted lines. The essential
interpolation property of these functions stems from the fact that they
are equal to zero at all the knot points except the origin. Clearly, the
cubic cardinal spline tends to vanish more rapidly indicating that
cubic B-spline interpolation is less influenced by distant data points.

We have implemented these algorithms in Fortran on a personal
computer for biomedical image processing applications. Fig. 5 illus-
trates the use of a separable direct bicubic spline filter on a standard
image. This operator computes the direct B-spline transform which
provides the coefficients for the bicubic spline functions centered on
each spatial location. The transform is slightly sharper than the initial
image because, as we have noted, the filter enhances high frequency
components. Thanks to the efficiency of the recursive algorithm,
the amount of computation is low. On our low-end workstation
(standard 16 Mhz Apple Macintosh II), the direct spline filtering
of a 256 x 256 image is performed in fewer than 8 s and the
indirect filtering in fewer than 5 s. For comparison, the CPU time
of three moving average iterations, which are required for image
magnification by bicubic spline interpolation, is of the order of 5 s.
We have tested the reversibility of the transformation and found the
absolute difference between initial and final pixel values to be less
than two gray level intensity values (full range 0-255), although the
processing results are truncated and stored in integer or byte arrays.
We note, however, that we have used an auxiliary one-dimensional
real array to store the intermediate 1-D recursive filtering results. We
have also tried to perform the normalization at the very end of the
computation.

IV. COMPARATIVE EVALUATION

A. Results

In Fig. 6, we show the result of several interpolation techniques
applied to the magnification of a detail of the standard girl image
with a zooming factor 8. The first two methods are the simple nearest
neighbor [Fig. 6(a)] and bilinear [Fig. 6(b)] interpolations, which are
equivalent to 0 and 1 order B-spline interpolation, respectively. The
other two images are obtained with our bicubic spline interpolation

Fig. 5. Direct cubic B-spline transform by recursive filtering. (a) Initial
208 x 222 girl image, (b) cubic B-spline transform.

Fig. 6. Compatison of interpolation algorithms for the magnification with
a zooming factor 8 of a 32 x 32 detail of the standard girl image. (@0
order interpolation, (b) bilinear interpolation, (c) bicubic spline interpolation,
(d) smoothing by indirect bicubic spline transform.

[Fig. 6(c)), and with the reconstruction part of the algorithm applied
to the input image directly [Fig. 6(d)] (indirect transform only).

The four image interpolations were displayed to a group of subjects
(adult male staff members of BEIP) to assess their quality. No special
pains were made to establish a consistent background or light level.
The subjects were placed 2.5 meters from a page of white paper
containing all four of the images (Fig. 6). The actual size of the
images were 11 cm. The viewing distance was chosen so that the
visual angle of ecach image (about 2.5°) was about the same as that
of the same scene (a segment of the girl’s eye) when the “girl” picture
is viewed at a distance of about 30 cm. The subjects were asked to
rank order the images in descending order of being “lifelike.”

The results for 20 subjects were unambiguous. All but one rated
image C first. The subsequent ranks in descending order were B (18
out of 20), D (14 out of 20), and A (14 out of 20). These rankings
were remarkably consistent. Several subjects pointed out that B was
exhibiting some noticeable striking artifacts along the image contours,
especially for diagonal lines. D was usually described as being blurred
with a loss of some details.

However, it should be noted that viewing distance is crucial. A
subset of subjects were shown the same set of images at a distance
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Fig. 7. Frequency responses of various discrete interpolation kernels (zoom-
ing factor 8). (a) First order interpolation, (b) cubic spline interpolation,
(©) quintic spline interpolation, (d) cubic spline smoothing.

of about 6 meters. In every case they commented that image A was
sharper. It seems plausible that at the shorter distance the quantization
edges of image A are very distracting. Of the other three, it would
appear that quality falls off with decreasing energy at high spatial
frequency.

The global vertical or horizontal frequency responses of the corre-
sponding interpolation operators are shown in Fig. 7. These were
evaluated from (3.11) (and (2.11) for the cubic spline smoother)
and correspond to the Fourier transform of the kernels obtained by
sampling the following functions: 1) cardinal spline (or B-spline)
of order 1 [Fig. 1(b)], 2) cubic cardinal spline (Fig. 4), 3) cubic
B-spline [Fig. 1(d)]. The response of the quintic B-spline filter has
also been included to illustrate the tendency of B-spline interpolators
to more closely approximate an ideal lowpass filter as n increases:
the attenuation in the stop band is increased by approximately
20 dB with each increment while the response tends to become
more nearly uniform in the bandpass region. On the other hand,
the indirect cubic B-spline filter used on its own produces the
greatest amount of smoothing in the pass zone, although its stop
band performance is relatively good. This observation stresses the
importance of prefiltering (direct spline transform) to counterbalance
the smoothing effect of the indirect spline filter.

B. The Sankar and Ferrari Approach

Sankar and Ferrari have recently proposed what they claim to be
an efficient algorithm for computing B-spline image representation
and interpolation [10]. The main feature of their algorithm is that
it uses additions only, which is a rather intriguing result. We have
analyzed their system in detail and note that it does not guarantee
precise signal reconstruction at the knot points.

The discrete basis functions used by Sankar et al. are wider than
the usual ones by a factor p and are different from those described in
Section II by reason of the omission of the correction kernel b7 (k) in
the convolution. It follows immediately that they do not even match
the continuous B-splines at the knot points. Sankar et al.’s Toeplitz
inverter is in fact equivalent to the digital filter with the transfer

function
1 1 - Z_l n+l
TBY T T (1 - ) ‘

Their reconstruction algorithm with a zooming factor m is obtained
from a sequence of (z + 1) moving average filters of size (p x m).
Therefore, the impulse response of the global system, which should
be compared to (3.11), is

S'(2) .1

H'(z) = ca§'(z™)(Bhm(2))" ™
1—-z"m

n+l 1— ,~mp n+l
= Cn
1—z—mp 1—2z71

—— 11—
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where ¢, is some constant normalization factor. Obviously, the terms
. _ 1 L
in ( 1-z "””)'l+ cancel and the global response simplifies to

) n+1

It follows that the system that they are describing is simply per-
forming n + 1 moving averages of size m, a procedure that can
be carried out more directly. These authors are obviously correct
when they conclude that their cubic B-spline filter induces blur in the
resulting interpolated image. Clearly, this approach does not preserve
the initial signal values at the knot points and does therefore not
qualify as a valid interpolation algorithm. Incidentally, this method is
very similar to that of applying our indirect B-spline transform to the
initial signal values instead of applying it to the B-spline coefficients
[cf. Fig. 6(d)].

1—-z""

H'(z) = cn (1_—

21

@2

C. Discussion

We believe our results show that a higher order B-spline interpo-
lation correctly applied does not produce increased signal blurring.
This is a point that has been overlooked by some authors and has
been treated incorrectly in several text books or papers [1}, [2]. It
appears that the higher the order of the spline interpolator, the better
it approximates an ideal reconstruction filter (sinc). Increasing » has
the effect of amplifying the frequency attenuation in the stop band,
which reduces aliasing. At the same time, as a result of prefiltering
(direct B-spline transform), the frequency is flattened in the bandpass
region which appears to minimize the loss of resolution.

Our reason for including the cubic spline smoothing method
[Fig. 6(d)] in the comparison is that this particular approach is often
referred to, incorrectly, as the bicubic spline interpolation [1], [2].
In the early paper by Hou and Andrews [6], this technique was
proposed as an alternative to the full procedure, mainly because
these authors did not have an efficient way of determining the
spline coefficients. They were relying on a method using matrix
multiplication and requiring the explicit inversion of a tridiagonal
Toeplitz matrix, which turns out to be a rather time consuming
task. In their comparison of various interpolating methods, Parker
and Kenyon have mistakenly used the frequency response of the
cubic B-spline [cf. Fig. 7(d)] to characterize the performance of
the cubic B-spline interpolator {2]. Consequently, they conclude
incorrectly that B-spline interpolation induces excessive smoothing
and that therefore other cubic convolution schemes [7], [8] should be
preferred. Obviously, their reasoning applies only to the method used
to produce Fig. 6(d) and not 6(c). A correct analysis should consider
the cardinal cubic B-spline (cf. Fig. 4) as the interpolation kernel
and base its conclusions on the examination of the global frequency
response of the system [Fig. 7(b)].

To the best of our knowledge, the present recursive filtering
approach for the direct B-spline transform has not been described
before. It is essentially this part of the algorithm that makes the use of
B-spline interpolation practical for image processing. From this point
of view, our algorithm is a substantial improvement in efficiency over
the method of Hou and Andrews which relies on an explicit matrix
multiplication for determining the cubic spline coefficients. Their
reconstruction algorithm is essentially the same as ours, although
they limited their considerations to the case of cubic splines. In
Section III-E, we have also shown that the recursive algorithm for the
cubic spline coefficients (3.18) offers a reduction of the computational
complexity of approximately a factor of two over a carefully designed
matrix approach using Gaussian elimination or LU factorization to
efficiently solve the corresponding system of tridiagonal equations.
For higher order splines, the gain of the present approach is even
greater: 4[n/2] flops/sample for the recursive filtering approach, as
opposed to 2n[n/2]° flops/sample for the LU factorization alone
plus 8[n/2] flops/sample for the subsequent solution of the banded
system of equations using forward and backward substitution [18,
pp. 150-151.]
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Recent work by Toraichi et al. [3] provides a detailed analysis of a
two-dimensional quadratic B-spline interpolator that is consistent with
our results. The major difference is that they combine the coefficient
estimation and interpolation tasks. They approximate the resulting
interpolation kernel by a finite impulse response filter, which is
computationally less satisfactory than the present approach.

The basic design technique described in Section III-E is directly
applicable to the direct symmetric quadratic spline filter (cf Table 1I)
by simply replacing o by v/& — 3. It can also be used with minor
modification for higher order splines, the only difference being
that simple exponential impulse responses are replaced by weighted
sums of exponentials. As the coefficients of the characteristic filter
polynomial are all positive, the roots (if they are real) will always
be negative. It follows that the cardinal spline of order n will always
have an alternation of positive and negative cycles with a decaying
amplitude, which establishes its similarity to a sinc function. From
Table II, it is also clear that the computational complexity of the
direct spline filters of order 2n and 2n + 1 are essentially the same.
It is therefore more advantageous from a practical point of view to
use odd order splines that provide better interpolation performance
for approximately the same computational cost (the overhead is one
additional moving average iteration for image reconstruction when
m>1).

From our results, we conjecture that the cardinal spline of order
n should approach an ideal interpolation sinc function as n tends
to infinity. This proposition, however, remains to be demonstrated.
Conversely, if there is a B-spline interpolation equivalent to the ideal
interpolation procedure, it must be a spline of “infinite” order. This
simply follows from the fact that an ideally reconstructed signal
is bandlimited, which also implies that the function is analytical.
Consequently, all its derivatives must be continuous everywhere.
Clearly, this last condition is satisfied only for a spline of “infinite”
order.

V. CONCLUSION

In this correspondence, we have described fast algorithms for the
evaluation of the direct and indirect (with an upsampling factor m)
B-spline transforms. The main result is that these transformations
can be expressed as filtering operations that are most efficiently
implemented recursively. The major advantage of these algorithms
is their simplicity and their ease of implementation. It should make
them attractive in a variety of image processing applications.

Our analysis shows, contrary to the claims of several authors,
that B-spline interpolation does not result in a loss of resolution.
Generally, increasing the order of the spline improves the quality of
the interpolation in the sense that the resulting filter more closely
approximates the ideal (sinc) interpolation function. However, the
performance of the cubic spline interpolator, which guarantees the
continuity of the function up to its second order derivative, seems to
be sufficient for most practical applications.

Although we have considered the use of B-splines in the context
of image interpolation, there are other potential applications. Dealing
with a continuous image representation may facilitate the conception
of other image processing algorithms. These could be designed to
operate directly in the space of the B-spline coefficients. It is for
example relatively easy to compute quantities such as gradients,
Laplacians, or directional derivations, which are usually not well
defined for discrete images, but that are very useful for tasks such
as edge detection. B-splines also provide a simple way of translating
many of the concepts of differential geometry for the study of digital
images.
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Abstract— Small sample error rate estimators for nearest neighbor
classifiers are reexamined and contrasted with the same estimators for
three-nearest neighbor classifiers. The performance of the bootstrap
estimators, e0 and 0.632B, is considered relative to leaving-one-out and
other cross-validation estimators. Monte Carlo simulations are used to
measure the performance of the error rate estimators. The experimental
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