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Recursive Regularization Filters:
Design, Properties, and Applications

Michael Unser, Akram Aldroubi, and Murray Eden

Abstract—Least squares approximation problems that are regularized
with specified highpass stabilizing kernels are considered. For each
problem, there is a family of discrete regularization filters (R-filters)
allowing an efficient determination of the solutions. These operators are
stable symmetric lowpass filters with an adjustable scale factor. Two de-
compusition theorems for the z-transform of such systems are presented.
One facilitates the determination of their i'nipulse response, while the
other allows an efficient implementation through successive causal and
anticausal recursive filtering. A case of special interest is the design of
Rc-filters for the first and second order difference operators. These results
are extended for two-dimensional signals and, for illustration purposes,
are applied to the problem of edge detection. This leads to a very efficient
implementation (8 multiplies + 10 adds per pixel) of the optimal Canny
edge detector based on the use of a separable second order R-filter.

Index Terms—Approximation methods, edge detection, Gaussian filter-
ing, recursive filters, regularization, smoothing.

I. INTRODUCTION

Regularization theory provides a convenient way to solve ill-posed
problems and to compute solutions that satisfy prescribed smoothness
constraints [1]. It has been recognized for some years that this formal-
ism provides a unified framework for studying several problems in
early vision including edge detection, visual interpolation, structure
from stereo, shape from shading, and the computation of optical flow
[2], [3]. Most of these tasks can be formulated as global optimization
problems and are solved by numerical iterative schemes. The cost
function to be minimized is a combination of a quadratic error term
and a stabilizing functional. This latter term usually reflects physical
constraints arising within the application for which the proposed
solution is a model, and acts by limiting the energy of the solutions’
higher order derivatives.

For problems involving linear translation-invariant operators, it is
well known that a regularized solution can be obtained by linear
filtering. This is usually equivalent to the application of a smoothing
operator. Such techniques have been applied for signal restoration
(deconvolution) [4], signal approximation (noise reduction) [5], and
signal differentiation (edge detection) [6]-[8]. In practice, the filters
are either implemented in Fourier space or approximated by finite
impulse response kernels, which in both cases can require substantial
numbers of computations. For example, a smoothing kernel exten-
sively used in computer vision is the isotropic Gaussian filter [7],
[91, [10}.

Recently, we have found that the approach by filtering can be an
attractive alternative to the conventional iteration of the Gauss—Seidel
method for problems requiring the estimation of multiplicative signal
parameters (manuscript in preparation); for example, the estimation
of optical flow in the Horn and Schunck method [11]. The main
advantage of the filter approach is a substantially improved conver-
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gence rate that is independent on the magnitude of the regularization
parameter; that is, the degree of smoothness imposed on the solution.

For all these applications, the issue of computational cost is
extremely important and there is a strong motivation to develop fast
filtering techniques. To address this issue, we present an analysis of
discrete regularization in the simple case of signal approximation.
We adopt a purely discrete point of view—as opposed to the more
conventional continuous interpretation [2], [3]-so as to allow us
to develop efficient techniques for designing, implementing, and
studying the properties of such filters.

The presentation is organized as follows. In Section II, we show
that simple finite impulse response (FIR) stabilizing kernels can
be used to define families of parametrized regularization filters.
We investigate the properties of such R-filters, emphasizing their
recursive structure, which leads to fast computational algorithms. In
Section 111, we focus on the design of R-filters associated with the
first and second order difference operators (]—1 1| and {—1 2 —1],
respectively). Finally, in Section IV, we extend those results to
signals of higher dimensionality and identify separability conditions.
We consider edge detection as an example and propose an efficient
realization of two well known methods: the approximating spline
[7], [8] and the Canny [12], [13] edge detection techniques. Other
potential applications include the estimation of local image statistics,
and fixed or adaptive image smoothing for noise reduction.

II. DISCRETE REGULARIZATION FILTERS

A. Regularized Approximation of a Signal—Definition

The discrete regularized approximation of a signal {z(k),k =
—00,-+-,+00} with respect to a stabilizing kernel {h(k)} and a
regularization parameter A > 0, is defined as the signal {yx(k)} that
minimizes

@)= 3 b®) - yBPHA S BEAEE O

k=—oc0 k=—o00

The criterion 77 (y) combines the quadratic approximation error and a
constraint functional that measures the energy of a filtered version of
y(k). Usually, the stabilizing kernel is chosen to be some differential
operator, which is equivalent to imposing smoothness constraints on
the solution.

In this study, we will consider FIR stabilizing kernels of length
(n + 1) described in terms of their z-transform

h(k) o H(z)= Y h(k)z™*

e
k=—cc
and their autocorrelation function
+00
on(k) = h(k)xh(=k) = Y~ h(DA(I+k) = H(z)H(=™"). (3)
I=—00
The only constraint that we place on {h(k)} is that
+oo
Y h(k) = H(z)|s21 =0, @)

k=—o00

the weakest condition to be satisfied by a highpass filter. A typical
example of such a stabilizing kernel is the nth order difference
operator (with H,(z) = z~"/3(1 - z)*), which is the discrete
equivalent of the nth order derivative of a continuous signal.

U.S. Government work not protected by U.S. copyright
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B. Regularization Filter

The optimal regularized approximation of the {z(k)} is found by
differentiating (1) with respect to y(k) and setting the derivative to
Zero:

a ¢ +n
6%(% = —2fx(k) = y(B)] + 22 3" y(k - Dpa() = 0.

1=—n

(kz_ao_,,._-{.-i)c)_ )

This expression is a standard constant-coefficient difference equation.
It follows that the regularized solution y(k) may be derived from
2(k) by linear filtering

y(k) = wa(k) * z(k) O]

where {wx (k)} is the so-called regularization filter. In the z-transform
domain, (5) is equivalent to

+n

X =Y(E)+A 3 V() enld) ™)
1=—n
which implies that
. Y(z) 1
Wi(s)= g = ———
X() 14+ X 3 = len((l)
="
(k). ®

1+ AH(=)H(z7Y)

Based on this result, we may derive a certain number of elementary
properties.

1) wx(k) is symmetric: wy(k) = wx(—k). This is a simple
consequence of the fact that (k) is symmetric which also implies
that W(z) = Wia(=71).

2) wa(k) has a sum normalized to unity. By evaluating (8) at = = 1
and using (4), we find that

+oc

Z wa(k) =MW ()= =1. )

k=—oc

3) wa(k) is a stable filter. The frequency response of wi(k) is
obtained by evaluating W (z) at = = ¢/2™/ and is also given by

W) = —

 —— T 10
1+ MH(F) o

The denominator of W, ( f) is always greater than one which implies
that 0 < |W)(f)| < 1, thus implying that the filter is stable
independent of the value of A > 0.

4) If h(k) is a highpass filter such that |H(f)| > 0 for 0 < f< 1/2
then wx (k) is a lowpass filter [cf. (10)]. Moreover, the strength of
the lowpass filter is modulated by the parameter A. We clearly have
the two limiting cases:

lima_o {Wa(f)} = 1

limy .o {1 :{1 f=+.-10.12,.-.
1 () 0 otherwise an
which, respectively, correspond to no filtering at all and the suppres-
sion of all non-DC frequency components.

C. Decomposition Theorems

When the stabilizing kernel {h(k)} is of length (n + 1), {wx(k)}
will be referred to as an nth order R-filter. There are two impor-
tant decomposition theorems that allow a full specification of the
transfer function of such systems in term of the n smallest roots
{zi,i =1.--+,n} of the characteristic polynomial

Pon(z) = [% + Wh(o)}:" + igh(i)[;"“ + Z,_l]. 12)

The first theorem is especially suited for practical implementation
with a minimum number of operations. The second, which uses
a decomposition into partial fractions, is useful for the explicit
determination of the R-filter impulse response.

Decomposition Theorem I1: The transfer function of an nth order
R-filter can be decomposed as

Wia(z) = Vi)V (13

where V¥(z) is the z-transform of a stable causal system and is
given by

) S 14)

Furthermore, A is related to the roots of the characteristic polynomial
through the relation

n

1 z
—(—1)" _l____‘ 15
/\ ( 1) y?h(n) E (1 _ 31)2 ( )
Proof: W (z) may be written as
Wa(z) = e 16)

AP, (2)

Since Wi (z) = Wi(z7"), we have that if =, is a root of Ps,(z:)
so is :i‘1 as long as z; # 0. This means that the roots of the
polynomial appear in reciprocal pairs. Furthermore, we know that
the system is stable. This implies that the roots cannot be on the unit
circle (|z;] # 1). Consequently, there must be n roots with a modulus
smaller than one, which we denote by {z;,i = 1,n}. Clearly, the n
reciprocal roots with a modulus greater than one are {z;” li=1, n}.
Hence, the characteristic polynomial can be expressed as
P () = pn(n) H(; —z)(==27"). (17)
=1
By dividing (17) by =" and multiplying it by the product of the
roots, we find that

I"V,\(:) = - =1 )
(’\“/"h("))gl (1= z2)(1 = z571)

We now use the property that W (7) = 1 to get (15). By substituting
the corresponding value of A in (18) and identifying the terms in 27,
we finally obtain get (14). Q.E.D.

Decomposition Theorem 2: The transfer function of an nth order
R-filter can be decomposed as

Wi(z) = W) + W (="") = w*(0)

(18)

19

where W*(z) is z-transform of the impulse response of a stable
causal system defined as

E>0

k) = Jwalk) 20
w (k) {O otherwise 20)
and is given by
. - aj;
Whz) =Y Fp— < 1)
Jj=1 e
where
w1 (1= z)
a; = (=1) (H (_~l_>
i=1 wt
X ! . (22)
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Proof: Since wy (k) is an even function, it can be decomposed
as: wa(k) = w*(k) + wt(—k) — w(0). Taking the z-transform,
we get (19). Furthermore, the stability of w(k) (which also implies
that |z;| < 1) guarantees that of w* (k). By using the results of the
previous decomposition, W, (z) can be rewritten as

W,\(Z) = Con—
1131 (z - zi)(z - zi_l)

where the constant ¢ is given by
Co =

(-1)" H(l

We use a standard decomposition into simple partial fractions

/\<Ph

B;
W =
A(2) jzlz—zﬁjzz—z @3
for which it is relatively straightforward to establish that

a; = — 0% and

G-z ) I (427 — 25
by
B = —a;z; > (24)

We then note that (23) is equivalent to
n -1
—Z; oy zja
% — J P had B -
2(2) J_Zz;l—zjz“1 ]Zl—zz Z

which, through the use of (24), allows a direct identification of the
terms in (19) and (22). Q.E.D.

D. Efficient Implementation

An efficient implementation of {w,(k)} results directly from
Theorem 1 which allows us to write Wy (z) as

1 1
4% =
M) =y e —bnzm l—bial — o —bpam
(25)
where ¢, b1, -, b, are constant coefficients that can be obtained

easily from (14). This expression tells us that y(k) can be computed
from a succession of two complementary causal and anti-causal
recursive filters with identical coefficients:

k) =2(k) +biy Tk -1) 4+ + by (k—n)  (26)
y (k) =yt (k) + biy(k +1) + - + bay(k +n) 27)
y(k) = ciy™ (k). (28)

If one neglects the last step which is just a renormalization, this
filtering requires no more than 2n operations (1 operation = 1
add + 1 multiply) per sample value. Similarly, a separable two-
dimensional nth order R-filter can be implemented with as few as
4n operations per pixel.

In practice, the sequences to be processed are of finite length:
{z(k),k =1,---, K}. It is therefore important to pr0v1de a proper
initialization of thc recursive equations (26) and (27) in order to
minimize border artifacts, which are especially disturbing in image
processing applications. For instance, a minimum requirement is that
the R-filtering of a constant signal produces the same constant. A
simple approach is to use the initial conditions

y+(k) = z(k)/ e, (k=1,-+,n) (29)
y (k) =y (k)/eo, (k=K -n+1--,K) (30)
where o = (1—by —by—---—b,) is a proper scaling factor,

which is more or less equivalent to performing a partial (one- -sided)
smoothing near the border regions. The remaining signal values
are then computed from (26) for k. = n + 1 to K and (27) for

k = K — n down to 1. Based on our experiments, we found this
initialization procedure to be superior to conventional zero padding
techniques in the sense that it produces no visible border artifacts.

III. SpECIFIC EXAMPLES
In this section, we use our previous results to derive the R-filters as-
sociated to the first and second order differential operators commonly
used as stabilizing kernels.

A. First Order Difference (Differentiation)

The first order difference operator, which is the standard discrete
approximation of the derivative, can be defined in terms of its transfer
function

Hi(z) = (\~2 +1) or (-1+4z7Y) (31)
and correspond to the R-filter
1
= 32
Wi(z) 1+ A(-z7142-2) (32)

which, according to Theorem 1, can be decomposed as Wi(z) =
ViF(2)ViF (z71) with

l-a
M) = —. 33
Vit(z) 1~ a1 (33)
The parameter o (0 < o < 1) is the smallest root of the characteristic

polynomial (12) and is given by

1 V14+4A
ao=14—— ———. 4
1 22X 2A 34

By using decomposition Theorem 2, it is straightforward to demon-

strate that the impulse response of this filter is a symmetric expo-

nential

1-a |k|
(27

l+a

wi(k) = 35)

which is shown in Fig. 1(a) for various values of A. The spread of
this function, which is positive and normalized to one, is conveniently
characterized by its variance. A simple way to determine this quantity
is to apply the following technique which relies on the differentiation
of the z-transform

+oc 2
*Wi(z) 2«
ol = Bui(k)= —22 | =2a=—"— 0 (36)
k:z_:oc ' 822 z=1 (1 - a)z

This filter will have roughly the same smoothing strength as a
rectangular moving average filter of size v/120,,. The first order
R-filter can be implemented with as few as two operations per sample
value by taking b; = « in (26) and (27).

B. Second Order Difference

The discrete second order differential operator is the well known
Laplacian filter described by

Hy(z) = Hi(z)H: (=~
The transfer function of the corresponding second order R-filter is

1
14+ A(z72—4271 46 — 4z + 22)

N=—z42-27" (37)

Wa(z) = (38)

which, according to Theorem 1, can be decomposed as Wi(z) =
Vit (2)V5 (z7') with

1 —2pcos(w) +p°

r+
Vo'(z) = 1—2pcos(w)z—1 + p2z—2

(39

where p and w are the magnitude and argument of the two smallest
complex conjugate roots of the characteristic polynomial (z; = pe’*
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(a)

A=200

(b) -20. -10. 10. 20.

Fig. 1. (a) Impulse response of a first order R-filter for various values of A.
(b) impulse responses of a second order R-filter and its equivalent Gaussian
filter (dotted line) for various values of A.

and z2 = pe 7). By determining the roots and making the necessary
simplifications, we find that

A. Separability Conditions
The two-dimensional R-filter that minimizes the functional

m(y)-Z Z [a(k.1) - y(k, D)
k=—oc I=—0oc
+A Z Z (k. 1) % by (R)]
k=—oc l=—x
+u Z E (k. 1) * ho(D]

+o0 +oc

+a Yy > ly(k. 1) % (hi (k)2 (1))

k=—oc l=—2c

(47

is separable and is given by

wap (k. 1) = wa(k)w, (1) = Wau(z1,22) = Wa(21)Wa(22) (48)

where wy (k) and w,(l) are the one-dimensional R-filters with
stabilizing kernel hy(k) and hy(k), and regularization parameters A
and p, respectively. The functional form (47) is also necessary for
separability.

Proof: By using the same procedure as in Section II-B, we can
show that

Wip(z1,22) =
1

1 1
= \/1+\/1+16/\—\/§> — + 40
P ( 8A 14 /1+16X (40)
141+ 16X
tan (w) = Y2 TV £ 104 (41)
22
The inverse relationship is directly obtained from (15):
2
£ “2)

= (1= 2p cos(@) + 2

By applying the second decomposition theorem, we can show that
the impulse response of this filter is

wa(k) = cop'™ [(cos(w|k]) + 7 sin(w|k]))] (43)
where
C1=-p 1
T 1+ p? tan(w) “4)
and where the normalizing term ¢ is given by
1421 — ) 2
o = +p 2p cos{w) + p 45)

1= p2 1+ 2p cos(w) + p*’

We have determined empirically that this filter resembles a normal-
ized (zero mean and unit sum) Gaussian filter with variance

o2 = V2 (46)

Examples of impulse responses are shown in Fig. 1(b). Their
Gaussian approximations obtained using (46) have been superim-
posed in dotted lines and can be seen to be very similar. The
main advantage of the present regularization filter is that it can be
implemented with as few as four operatlons per sample value by
taking b1 = pcosw and b, = —p? in (26) and (27).

IV. 2-D EXTENSIONS AND APPLICATIONS

The results given in Section II-B carry over directly to higher
dimensions. However, we have not been able to find two-dimensional
equivalents of the decomposition theorems given in Section II-C. A
case of special interest is when the R-filters are separable which
allows a direct use of all one-dimensional results. In this section,
we identify the separability conditions and consider some image
processing applications.

LA (20 Hy (o )+}LH2(Z2)H2( Y+ Ay (20 H (= )H2<22)H2(z,;1)
1 1
iy A (2)H (27 1+ pHy (22 Ha(25")

where Hi(z) and Ha(z) are the z-transforms of hi(k) and ha(k),
respectively. Conversely, it is easy to show that the form of the
stabilizing functional in (47) is the only one that allows a separa-
ble decomposition of the filter into one-dimensional regularization
operators.

The implication of this result is that commonly used 2-D stabilizing
functionals such as the squared norm of the gradient [6], [8] or the
energy of the Laplacian [11] cannot lead to a separable implemen-
tation. Therefore, if we are to take advantage of the separability
property and the availability of fast 1-D convolution algorithms, we
have to modify slightly the stabilizing functional by including not
only the horizontal (k), vertical (1), but also the combined (k @ 1)
filtering contributions. On the other hand, this gives us somewhat
more flexibility by allowing us to adjust the smoothness constraints
differently in the two principal directions.

B. Application: Efficient Implementation of Edge Detectors

Edges in real images have been detected as maxima of a first-order
derivative in the direction of the gradient, or as zero crossings of a
second-order derivative (Laplacian). The former scheme is usually
more robust and allows a better localization [7]. A natural way
to compute the image gradient is to approximate the data with an
analytic function and subsequently evaluate the derivatives [6], [14].
To accomplish this task, Poggio et al. have used regularization theory
with a Laplacian stabilizing kernel which is equivalent to finding an
approximating spline function [8). The corresponding smoothing filter
is usually approximated by a two-dimensional Gaussian. The vertical
and horizontal components of the gradient are thereafter obtained by
convolving the discrete data with the filters obtained by sampling the
continuous z and y derivatives of the regularization kernel.

A similar system can be developed by applying our discrete
regularization formalism. We define the components of the gradient of
a discrete image to be the result of the convolution of the image with
simple differential one-dimensional (|—10 1) horizontal and vertical
operators. If we select a stabilizing functional of the type given by
(47) with a Laplacian kernel and a value of X reflecting some a priori
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1 1

W(z) =
— Wi(@) - l-b]z'l-bzz'z 1-bz b2?
8Os
b Gradient Non-maxima|

— Wiz)) Ll Wi(z,) magnitude et " gelerion

and phase
gL ;
[o]
o, L] o

Rows Columns

Fig. 2. Efficient implementation of the optimal Canny/Deriche edge detec-
tion algorithm using a separable two-dimensional second order R-filter.

Fig. 3. Example of edge detection. (a) 231 X 157 M-mode echocardiogram
(At = 1/75s and Az = 1/16 cm) [15]. (b) Output of a standard Sobel
operator which is far from being satisfactory. (c) Result of smoothing with a
second order R-filter with A = 40.5 (0., = 3). (d) Gradient magnitude after
nonmaxima deletion algorithm. These algorithms were coded in Fortran on a
standard 16 MHz Apple Macintosh II personal computer. The execution time
was approximately 3 s for (b), 10 s for (c), and 18 s for (d).

constraint on the smoothness of the intensity function, we obtain the
edge detection algorithm shown in Fig. 2. The last two components
of this block diagram correspond to a conversion of the gradient into
polar coordinates and a nonmaximum deletion. This last module sets
to zero the values of the gradient magnitude that are not maxima
within a 3 x 1 directional window oriented in the direction of the
gradient.

The smoothing operator in Fig. 2 is implemented by successive
one-dimensional filtering along the rows and columns. In practice,
the strength of the smoothing operator is adjusted by selecting some
particular value for A or the standard deviation of an equivalent
Gaussian window [cf. (46)]. The filter coefficients in the upper block
diagram in Fig. 2 are b = p cos w and by = —p? where p and
w are evaluated from (40) and (41). The one-dimensional filters
Wi(z1) and Wy(z2) are implemented recursively as described in
Section II-D.

The present approach has two advantages. First, signal approxima-
tion and differentiation are carried out sequentially; in other words,
the output of the same smoothing R-filter can be used for the eval-
uation of the horizontal and vertical gradient components. Second,
the computational cost is low and is independent of the strength of
the smoothness constraints: only 8 multiplications (+1 optional for
normalization) and 10 additions per pixel are required to compute
both components of the gradient. An example of edge detection
obtained with an echocardiographic image, which is typically quite
noisy [15}, is shown in Fig. 3.

C. Equivalence with the Canny/Deriche Operator

Interestingly enough, the system displayed in Fig. 2 is rigorously
equivalent to the Canny/Deriche edge detector [12], [13], as demon-
strated below. This latter operator is known to be optimal with respect
to a criterion that takes into account both the efficiency of detection
in the presence of noise and the reliability in localization [12].
This equivalence is consistent with the observation made by Deriche
[13] who first noted the similarity between the smoothing operator
associated with the Canny edge detector and the smoothing cubic
spline filter derived by Poggio ef al. using the tools of regularization
theory [8].

According to Deriche [13], the transfer function of the 1-D
edge detector satisfying Canny’s condition of optimality with some
appropriate boundary conditions is given by

az"! az

F(z)= . 49
(=) 14+ b1zt + bpz—2 + 1+ bz + bgz? 49)
with

a = —ce” “sin(w)

by = —2e~* cos(w) (50

b2 — e—2n

where o and w are the filter parameters and where ¢ is a scaling
constant. We choose to rewrite this expression as

a(l =by)(s7! —2)

V= . 51
F(z) (1 + byz1 +byz 2)(1 + b1z + b222) (51)

If we define ¢; = a(l —b2) and p = €™, we sce that
F(z)=Wa(z)(=" = 2) (52)

which clearly indicates that this filter corresponds to the discrete dif-
ferentiation of the R-filter associated with the Laplacian (Section III-
B). If we select orthogonal projections functions corresponding to
the regularization kernel themselves (which incidentally is also the
approach chosen by Deriche), we obtain the two-dimensional filters
for the evaluation of the horizontal and vertical gradient components

{F,(zl. z9) = W”z(zl)W'z(zz)(:l_l — :1)
Fy(zl, Zg) = Wé(m)‘l’}(zz)(:;l -

It is clear from (53) that the smoothing needs to be performed only
once and that these operations are equivalent to those performed by
the block diagram in Fig. 2.

However, we note that despite those similarities, our implemen-
tation (cf. Fig. 2) is computationally almost three times more par-
simonious than the Deriche algorithm [13], which is also recursive
but requires 12 multiplications and 10 additions per pixel and per
gradient component.

(53)

Ty
~

D. Discussion

The formalism presented in Section II-B allows us to construct
whole families of R-filters. These operators are infinite-impulse
response lowpass filters. They are entirely characterized by their
associated stabilizing kernel {h(k)} and a regularization parameter A.
This latter quantity provides a convenient way to adjust the amount
of smoothing.

The most important property, at least from a practical point of
view, is the availability of fast recursive filtering algorithms with an
amount of computation that is independent on the value of X. This
feature makes R-filters interesting alternatives to other commonly
used smoothing operators. They could be useful in a large variety
of standard image processing tasks such as smoothing for noise
reduction [4], image interpolation, the estimation of local image
statistics {16], multiresolution techniques [16], [17], or the evaluation
of control parameters for adaptive processing schemes [18], [19].

One such application is the edge detection algorithm described
in Section IV-C. This method has been described in greater detail
because it turns out to be equivalent to the Canny edge detection
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algorithm, nowadays one of the most popular because of its superior
performance. We believe that the coding effort for the system shown
in Fig. 2 is minimal and that there is a substantial reward in algorith-
mic performance when compared to previous implementations.

Another application is the use of second order R-filter as a Gaussian
filter. This substitution is computationally very attractive, especially
for larger standard deviations. The quality of the approximation to
a true Gaussian, which should be sufficient for most applications
(cf. Fig. 1), can be further improved through the use of repeated
convolutions (a consequence of the central limit theorem). Such an
approach is suitable for the generation of multiresolution or scale-
space signal representations [20], [21]. It is certainly an interesting
alternative to other suggested approximation methods [22].

Our implementation of R-filters is fully recursive and some care
has to be taken to avoid propagation of roundoff errors. The simplest
approach, which is the one that we selected, is to use floating point
arithmetic. In image processing applications where it is often neces-
sary to save memory storage, it is sufficient to use one auxiliary 1-D
real array to store intermediate filtering results. The final output of the
row or column filters can be truncated and stored in standard byte or
integer format. Fixed point realizations are also conceivable, provided
that an error analysis be performed to determine the appropriate
number of bits per sample needed to maintain the error within an
acceptable range [23].

Finally, we would like to mention that the availability of fast
R-filtering techniques is crucial for the design of a new class of
iterative algorithms for solving linear and space variant regularization
problems. It is the investigation of such filtering-based algorithms that
initially motivated the present study. We are currently studying the
convergence properties of such schemes. They appear to be superior
to the conventional Gauss—Seidel approach, particularly for large
values of A. Further, a problem that could benefit from this approach
is the area-based estimation of optical flow in the Horn and Schunk
formulation [11].

V. CONCLUSION

In this correspondence, we have investigated the properties of R-
filters, a special class of smoothing operators with an adjustable scale
parameter A. These operators provide a convenient way of solving
approximation problems with certain regularization constraints. We
have developed general analysis and design techniques and applied
them to the study of R-filters associated with the first and second
difference operators. These filters have been fully characterized in
terms of their impulse response, equivalent window size, and filter
coefficients, expressed as functions of the regularization parameter A.

The R-filters that have been described here have two essential
features:

1) they can be implemented recursively with a small number of
operations per sample value (2n operations for a one-dimensional nth
order R-filter);

2) their smoothing window can be tuned to any scale through a
single parameter with no effect on execution speed.

Due to these properties, R-filters stand as attractive alternatives to
standard moving average and Gaussian smoothers currently used in a
wide variety of image processing and computer vision applications.
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Fast B-Spline Transforms for Continuous
Image Representation and Interpolation

Michael Unser, Akram Aldroubi, and Murray Eden

Abstract— This correspondence describes efficient algorithms for the
continuous representation of a discrete signal in terms of B-splines (direct
B-spline transform), and for interpolative signal reconstruction (indirect
B-spline transform) with an expansion factor m.Expressions for the z-
transforms of the sampled B-spline functions are determined and a
convolution property of these kernels is established. It is shown that both
the direct and indirect spline transforms involve linear operators that are
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