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On the Asymptotic Convergence of B-Spline
Wavelets to Gabor Functions

Michael Unser, Member, IEEE, Akram Aldroubi, and
Murray Eden, Life Fellow, IEEE

Abstract—A family of nonorthogonal polynomial spline wavelet
transforms is considered. These tranforms are fully reversible and can
be implemented efficiently. The corresponding wavelet functions have a
compact support. It is proven that these B-spline wavelets converge to
Gabor functions (modulated Gaussian) pointwise and in all L -norms
with 1 < p < +oo as the order of the spline () tends to infinity. In fact,
the approximation error for the cubic B-spline wavelet (n =3) is
already less than 3% this function is also near optimal in terms of its
time /frequency localization in the sense that its variance product is
within 2% of the limit specified by the uncertainty principle.

Index Terms— Wavelet transform, Gabor transform, uncertainty prin-
ciple, polynomial spline, B-spli time-freq y localization.

1. INTRODUCTION

There has been a recent growth in studies of time-frequency or
multi-channel decompositions that allow a signal analysis to be
localized in both time and frequency [1]-[3]. These representations
constitute the natural mathematical tools for handling time-variant
(or space-variant) signals. Hierarchical representations such as the
wavelet transform also enable the characterization of a signal con-
sidered at different scales (multiresolution analysis) [4].

One of such decompositions is the Gabor transform by which a
continuous time function is represented by a sum of elementary
Gaussian signals [5], [6]:

g(x) = 2 apnhin (%) (1.1)

The Gabor basis functions

By a(x) = exp (inQ(x - mT))—%f
— mT)?
* €Xp g_z;;—) (12)

are obtained by modulation and translation of an elementary Gauss-
ian pulse with a standard deviation 7. The modulation and shift
parameters Q and 7 typically satisfy the constraints Q7 = 27 and
T = T, [5]. One of the many advantages of Gabor functions is that
they are optimally concentrated in both time and frequency domain.
Typical applications are the time-frequency analysis of non-
stationary signals [2] and image segmentation based on texture [7].
Another time-frequency representation is the recently proposed
wavelet transform [3], [4], [8] by which a continuous-time function

g €L, is decomposed as
g(x)= Y dy(k)27"?y(27x - k).

(k.iez?

(1.3)
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The corresponding basis functions are obtained by translation (index
k) and dilation (index i) of a single prototype: the wavelet function
V. One of the interesting properties of the wavelet transform is that
it is relatively easy to construct a function ¢ that satisfies the
biorthogonality condition

W@ ix - k), $(27x — 1))
_ {2"
0,

This function can be used to obtain the expansion coefficients by
simple inner product

for (i = j) and (k=1),
otherwise.

(1.4)

dio(k) = (2(x), 27 PIQ@7x = k). (1.5)

In the case of an orthogonal wavelet transform, the biorthogonal
function y is equal to the wavelet itself. Although this inversion
formula is simple conceptually, it is the algorithm recently proposed
by S. Mallat that makes the wavelet transform particularly attractive
[4]. The insight of Mallat was to relate an orthogonal wavelet
transform with a multiresolution signal analysis by which a function
is projected on a sequence of nested function spaces. This led him to
derive a simple reversible algorithm using quadrature mirror filters
(QMF) which is computationally very efficient.

One of the reasons for the popularity of the Gabor representation
is the fact that the basis functions are optimal in terms of their
time-frequency localization. However, the representation is redun-
dant and the inversion of the transform can be unstable, especially
when the product Q7 is close to 2 [3], [9]. The wavelet trans-
form, on the other hand, is stable numerically and is intrinsically
non-redundant (i.e., it is a one-to-one linear mapping). Another
attractive feature is the hierarchical organization of its basis func-
tions as opposed to the use of a fixed window size for the Gabor
transform. In this correspondence, we will provide a further argu-
ment in favor of this type of representation by showing that there
exists a class of wavelet tranforms for which the basis functions tend
to modulated Gaussians, also suggesting that they exhibit near
optimal time-frequency localization.

For this purpose, we will consider B-spline wavelets that are the
natural counterparts of the classical B-splines; these wavelets were
constructed independently by Chui and Wang, and Unser et al.
[10], [11]. An essential property of these functions is their compact
support. They are, therefore, much better localized in time than
their orthogonal equivalents: the Battle/Lemarié polynomial spline
wavelets [12], [13], which have an exponential decay. Another
advantage of this representation is a simplification of the digital
filters for the fast wavelet algorithm [11}.

The presentation is organized as follows. Section II provides a
summary of the main properties of the family of B-spline wavelet
transforms. It also illustrates qualitatively the fact that piecewise
linear and cubic B-spline wavelets are remarkably similar to their
Gaussian approximations. Section III presents some preliminary
mathematical results with an illustrative proof of the L ,-conver-
gence of the standard B-splines to a Gaussian as 7 tends to infinity.
Section IV develops the proof of the convergence of B-spline
wavelets to modulated Gaussians as the order of the spline goes to
infinity. It then briefly addresses the issue of time-frequency local-
ization and presents some numerical performance indices.

0018-9448/92$03.00 © 1992 IEEE
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II. THE B-SPLINE WAVELET TRANSFORM

A. Polynomial Spline Functions Spaces

A convenient way to introduce the B-spline wavelet transform is
to consider a sequence of embedded polynomial spline function
spaces {S(;,, i€ Z} of order n = 2p + | such that Siy D S(’}H?
for ie Z. S}, is the subset of functions in L, that are of class C"~
(i.e., continuous functions with continuous derivatives up to order
n — 1) and are equal to a polynomial of degree n (odd) on each
interval [k - 27, (k + 1) - 21 with ke Z. An equivalent definition,
adapted from Schoenberg [14], is

+ oo
= {00 = 5 au(0ms(r-20). (xer. et

i (2.1a)

where 87:(x) = 8”(x/2"). The basis function B”(x) is the central
B-spline of order » that can be generated by repeated convolution of
a spline of order 0

B"(x) =B°%p"(x), (2.1b)

where B8°(x) is the indicator function in the interval [-1/2,1/2).
This definition states that any polynomial spline function can be
represented by a weighted sum of shifted B-splines and is therefore
entirely characterized by its sequence of B-spline coefficients. The
fundamental characteristic of B-spline basis functions is their com-

pact support, the property that makes them useful in a variety of
applications [15].

B. B-Spline Wavelet Transform

Given a function g(x), we can obtain the B-spline representation
(or approximation) at our finest resolution level that we arbitrarily
define as level (0). Using (2.1), this function is represented in terms
of its B-spline coefficients

+ o

g2 (x) = k=z—:m co(k)B"(x - k). (2.2)

The essence of the wavelet transform is to decompose this expres-
sion using basis functions that are expanded by a factor of two

+ oo

go(x) = kzm d(])(k)ﬁf(x - 2k)

+k§ cy(k)BF(x — 2k)
= kgm du)(k)ﬁz"(x— 2k) + g(';)(x), (2_3)

where B3(x) is the B-spline wavelet defined by

+ o

3 B ek + 1)87(x - k).

k=—o

B3 (x) = (2.4)

In this formula, b>"*+'(k):= g27+1(k), u} is the binomial kernel
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oforder n =2p + 1:
A kI = (n+1)/2
up(k) = {27 \k+ (n+1)2) = ’
0, otherwise
(25)
and “**”’ denotes the discrete convolution; the symbol *“ ~ ** repre-

sents the modulation operator; i.e., @k) = (—1)*a(k). The B-
spline wavelet is a polynomial spline of compact support with the
property that 87(x) L B5(x — 2k), ke Z (cf. [10], [t1]). It fol-
lows that the first term of the right-hand side of (2.3) is the
projection of gg, on S(j, and the second term represents the
residual error. The decomposition can be reapplied iteratively up to
a depth 1, which yields the wavelet representation

7 + o
8o (x) = Z:l k; d(i)(k)_B;‘(x_ 2'k)
+ o
+ X an(k)Ba(x - 2%), (26

where Bi(x) = BJ(x/2'~"). The coefficients {d,,," ", d,} are
the so-called wavelet coefficients ordered from fine to coarse (their
number is reduced by a factor of two for each increment of the
resolution index) while the sequence {c;)} characterizes the lower
resolution signal at level (7). The wavelet transform provides a
linear one-to-one mapping between the coefficients in (2.2) and
(2.6), a process that is fully reversible. This decomposition can in
principle be carried out over all resolution levels and yicld a
representation equivalent to (1.3) by taking ¥(x) = _ﬂ"( 0=
B3(2 x). It can be verified that the corresponding functions 3”(x)
‘that satisfy the biorthogonality condition (1.4) are the dual spline
wavelets

f (bzn+1*[5zn+|*bzn+|]u)*‘(k)

k= —oo

B(x) =
B(x- k). (2.7)

which have been described in [11]. A different— but
equivalent—definition of these dual wavelets is also given in [10].
These modified basis functions can be used to define the dual spline
wavelet transform. This corresponds merely to interchanging the
roles of the functions y(x) and ¢(x) in (1.3) and (1.5).

The B-spline basis functions at resolution level (1) for the piece-
wise linear (n = 1) and cubic (n = 3) spline transforms are shown
in Fig. 1. Superimposed in dotted lines are the Gaussian approxima-
tions derived from Theorem 1 and 2 (cf. Sections Il and V)

. [ 6 6x?
B"(x) = w(n+1) eXp((n+1)

n+1

; (2:8)

4a

maw Cos (27K‘f0(2X - ]))
(2x-1y )

*”(“nan+n

B"(x) =

(2.9)
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Examples of B-spline basis functions and wavelets with their corresponding Gabor approximations (dotted lines) at

resolution level (1).

with a = 0.697066, f, = 0.409177 and o2 = 0.561145. It can be
seen from this graph that the quality of the approximation is already
quite good for n = 1 and n = 3.

C. Fast Algorithm

To demonstrate the practicality of this approach, we succinctly
describe a modified form of Mallat’s QMF algorithm that allows an
efficient evaluation of the direct and indirect B-spline wavelet
transforms. The procedure usually starts with a sequence of sampled
values {g(k)} of the function 8@y(x) at resolution level 0. The
initialization step involves the determination of the corresponding
B-spline coefficients, performed by recursive filtering according to
the procedure described in [16]

colk) = (b")_l*g(k),

where (b")~! denotes the convolution inverse of the discrete B-
spline kernel b"(k):= "(k). The wavelet coefficients are then
computed iteratively for i =0 down to I — 1 by filtering and
down-sampling by a factor of two

Carn(k) = [vrey] (k)

disny(k) = [v*cp), (k) (il 1=1). (210)

The indirect wavelet transform (reconstruction) is implemented in a
similar fashion (upsampling and post-filtering) by successively re-
constructing the B-spline coefficients starting at the bottom of the
pyramid

di (k) = wx[c] (k) + w*[dg],,(k),

(i=1,--,1). (2.11)

At the very end of the procedure, the initial signal values are
recovered by convolution with a sampled B-spline kernel

g(k) = b"=xcq(k). (2.12)

The expression for the filtering kernels in (2.10) and (2.11), which
were derived in [11], are

v(k) = 2[(62"1) " 027k ug (k)
o(k+1) = 3[(62*") "] @3(k)
w(k) = uj(k)

w(k — 1) = B2+ (k)

(2.13)

We note that the synthesis filters have a finite impulse response that
makes the reconstruction part of the algorithm quite efficient. More-
over, the analysis filters can be implemented recursively as sug-
gested in [11]. In contrast with Mallat’s QMF algorithm [4], the
present analysis and synthesis filters are not identical and the filters
in channel 0 and 1 are not modulated versions of each another. This
disparity is a consequence of the nonorthogonality of the B-spline
wavelet transform. The impulse responses of the filters for the cubic
B-spline wavelet transform are given in Table I.

The dual spline wavelet transform can be computed using a
similar algorithm by simply interchanging the analysis (v and v) and
synthesis filters (w and w). The wavelet coefficients in this case
correspond to the inner product between the signal g(x) and
B-spline wavelets (cf. (1.5)). The decomposition algorithm now
uses a simple FIR filter bank which may be an asset in some
computer vision applications such as edge detection or texture
segmentation. There is also a direct link between this representation
and a number of earlier multi-resolution techniques such as scale-
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TABLE 1
FirsT 14 COEFFICIENTS OF THE IMPULSE RESPONSES OF THE FILTERS FOR THE CUBIC B-SPLINE WAVELET TRANSFORM.
ONLY b°, w AND w ARE FIR

k (6%~ (k) b3(k) v(k) vk + 1) w(k) w(k —1)
0 +1.732 +4/6 +0.8932 +1.475 +0.75 +0.6018
-1,1 —0.4641 +1/6 +0.4007 -0.4684 +0.5 —0.4584
-2,2 +0.1244 —-0.2822 -0.7421 +0.125 +0.196
-3,3 —0.03332 —-0.2329 +0.3458 —0.04159
-4,4 +0.008928 +0.1291 +0.3897 +0.003075
-5,5 -0.002392 +0.1265 —0.1968 0.0000248
-6,6 +0.000641 —0.06642 -0.2077
-7,7 -0.0001718 —0.0679 +0.1068
-8,8 +0.03523 +0.1111
-9,9 +0.03637 -0.05733
—-10, 10 —0.01882 —0.05943
—-11,11 —0.01947 +0.03071
-12,12 +0.01007 +0.03181
—-13,13 +0.01042 —0.01644

space filtering [17] and the Gaussian pyramid [18]; this issue is
further discussed in [19].

III. PRELIMINARY RESULTS

We now turn to the issue of the convergence of the B-spline
wavelets to Gaussian signals. For this purpose, we first need to
establish some preliminary results that will play a crucial role in the
proof in section IV.

A. A Convergence Result

Lemma 1: Let A(x) be a function with a positive maximum at
X = X, such that:

2) A(xy) >0
dA(x)
ax

X=X
8%4(x)
2

b) 0

¢) —o < = —a?4(x,) <0,

ax X=X

and consider the sequence

a0 - | (1)

1 A( x ) "
— +x .

A(xy) \« 0
Then the limiting form of A ,(x) as n tends to infinity is a Gaussian

lim {A4,(x/Vn)} = exp (—x?/2).

n—+oo

(3.2)

We note that this result is closely related to the well known Central
Limit Theorem [20], [21]. In this latter context, A(x) is the
characteristic function of a random variable (i.e., the Fourier trans-
form of its probability density function) and has a maximum at
x=0.

Proof: For a fixed value of X, we consider the function

L,(x) =1log A,(x/Vn) = nlog A(x/Vn).

To evaluate the limit

lim L,(x)

n—+oo n

lim
n—+o

rule and differentiate twice to get

lim (nlog 4,(x/Vn))

3732 x A\(n12x)
A (n~2x)yp?

log A\(x/Vn)

n—l

we apply I'Hopital’s

lim L,(x)

n—+o

n—+o

2 2
X X
lim | —AY(n""x)|]= - —
n—+o \ 2 2
We then use the fact that the inverse function exp (x) is continuous
at x = 0, which finally yields (3.2). O

B. An Upper Bound for Standardized Sinc Functions

Lemma 2: For neN and n = 2, the function [sinc (x/v/n)|"
is uniformly bounded from above by an L,(~ o, + ) function
k(x) where pe[l, + )

lsinc(x/\/;)ln =< «(x)

= (1 - rect [ x/2]) (ri)z +exp (—x%). (3.3)

Proof: We start with the inequality

Vxe[O,l], sinc (x) =1 — x2,

where the right-hand side term is the parabola that goes through the
two extreme values of sinc (x) within this interval. We will first
show that

vxe[-Vn, Vn],

2\ 7

) sexp(-x2). (3.4)

1 - —

sinc” (x/\/;) =< (
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For this purpose, we define the positive function

x2\"
p(x) = exp (1)1 -
The derivative of p(x) is given by

ap(x) —2exp (x?)x3(1 —xz/n)n
ax n(1 — x*/n)

and is always negative for x € [0, vn ]. Therefore, the maximum of
p(x) within the interval occurs at x = 0

sup p(x) =p(0) =1,
xe, /1)

which proves (3.4). Second, we note that |sinc (x /Vn ) |n is also
bounded by

|sinc(x/\/;)|ns (L/—;—) .

X

For x = v and n = 2, we get a bound that is independent of n
by noticing that

[}

vxe(Vn, +o) ‘sinc(x/\/;)|ns(ﬂ)"< 2

TX ‘ - (7rx)

(3.5)

Finally, we define the function «(x), which is independent of n, by
suitably combining the right-hand sides of (3.4) and (3.5). O

C. Convergence of the B-Spline Functions

The well-known convolution property of B-splines suggests that
these functions converge to a Gaussian as the order of the spline n
tends to infinity. Here, we provide a proof for the general L,
convergence in both the frequency and time domain. The derivation
is simple and provides an illustration of the use of Lemma 1 and 2.
It also serves as a preparation of the proof for the convergence of
wavelet functions presented in Section IV.

Theorem 1: The B-spline function B”(x) and its Fourier trans-
form B"(f) both converge to a Gaussian as 7 tends to infinity:

) A1 [axd R .
b o *Ff ( 12 x) = 755 o0 (=x/2),
(3.6)
) f 12
nllToo {B”(E n+1 )} - exp(_fZ/z)' (37)

Moreover, B"(f/\/rz(n+ 1)/3) converge to exp (—f2/2)
in L (-0, +)vpell, +»), and +/(n + 1)/12

B"(\/(n+1)/12 - x) converge to exp (—x%/2)/V27 in

L, (- o, +®)vge[2, + >}, as n goes to infinity.

Proof: The Fourier Transform of a B-spine of order n is
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given by

Fourier

8 (x) B (f) = sinem (1), (3.8)
Clearly, B°(f) = sinc(f) has a maximum at f = 0 and satisfies
all the conditions in Lemma 1. Its second derivative at f = 0 can be
written as

2
= —a’= L -(211')2002,
/=0 3

#B°(f)

—F (3.9)

where o2 = 1/12 is the variance of the zero order spline: 8°(x) =
rect (x). Therefore, we have that

lim

n __f__ = —f2
n—>+oo{B (27!'00\/714'—1 '—CXP( f /2)7

which proves the pointwise convergence. Clearly, B"(f/«) is
bounded by the L, function «(f/«) defined in Lemma 2 and this
bound is independent of n. The use of Lebesgue’s dominated
convergence Theorem provides the L, convergence for pe
[1, + ). The L, convergence with g €[2, + o] in the time do-
main follows as a consequence of Titchmarsh inequality, which

states that for 1 < p <2 and p~' + ¢~ ' = 1, the Fourier trans-
form is a bounded linear operator from L,(— o0, +o) into
L, (-, +x). ]

IV. CONVERGENCE OF THE B-SPLINE WAVELETS

A. The Main Convergence Theorem

We first define the centered (and symmetrical) B-spline wavelet
of order n

Fourier

v3(x):= B3 (x - 1) Gi(f) =|B(S)| (4.1)

and the auxiliary function

c(f):

1|sin2a(f- 1)
2 sin 7 (f — 1)

]sinc(f)sincz (f— %)

2
= l il_lﬁf)_z (4‘2)
sans(f-3)

Theorem 2: The Fourier transforms of centered B-spline
wavelets of order n converge to a Gaussian, as n tends to infinity

lim
n—+o

1 . f .
2(c(f))"! GZ(ZWOW\/n +1 ‘f")}
=exp(—f?/2), (43)

where the modulation and dispersion parameters f, and o, are
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given by
fo= argnf]a: {C(f)}=0.409177 (4 .42)
_vet
‘o2 = ijf“ =0.561145. (4.4b)
C(fo)(27)

Moreover, the standardized L p and L -norms of the corresponding
approximation errors in the frequency and time domain also tend to
zero

li : G} 4 ’
n—»]Tcn 2(C(f0))"+1 2(27r¢7w\/n+1 ) ‘
( (f - fo2mo,Vn + 1)2)
—exp | = 3 =0
L,(0,+ o)
vV 1
tim | (o T 1))
nre 14(C(fo))
cos (27 fo(o,Vn + 1) x) x?
} Var ""‘P(‘T) =0

Lg(= 00,4 c0)

for pe[l, + ) and g€[2, + o], respectively.
B. Proof

The Fourier transform of the centered B-spline wavelet is given
by

2 [sin2n(f-3H1"""
Gf(f) = YT [ssl::_”r((hfl)):’ sinc?+! (f)
f sin¢2"+2 (f— l - k), (4.5)
k=—o0 2

which can also be decomposed as

G3(f) =2(c(f))"" + R(f), (4.6)

where C(f) is defined by (4.2) and where the residue R™f) is
given by

2 sin"t(2x(f - 1))

R = 5 S (e (7= D)

sinc”*! ( f)

{ _Zm Sinc2n+2 (f_ % _ k)

k=1

1
+sinc27+2 (f— 5+ k)}

The proof consists of two main parts. The first will be to examine
the convergence of (C(f))"*! and the second will be to show that

the residue converges to zero. We note that the derivation is only
concerned with the positive part of the frequency axis. The same
arguments can be used to obtain the convergence on the negative
axis because

G3(f) = Gi(=1) =2(C(-£))""" + R*(~F).

Convergence of (C(f))"*!: The graph of the function C(f) is
given in Fig. 2. It is not difficult to show that C(f) has a global
maximum that occurs in the interval (0, 1). To find it, we take the
first derivative

ac(f) B sin (27 f)
of r22f-1)°

“(cos 2mf)(87f? — 4xf) —sin(27f)(6f ~ 1))

and set this expression to zero. The maximum occurs at f, =
0.409177, which is the solution of

cos (27 fo) (87 S5 — 4mfy) — sin(27f,)(6f, — 1) =0 (4.7)
The second derivative at f = f,, is negative and can be written as

*C(f)

| = cUene.

f=ro

where C(f,) = 0.697066 and 02 = 0.561145. Since aC(f)/af is
zero at f = f,, we can use Lemma 1 to show that (C(f))"*'
converges pointwise to a shifted Gaussian

lim

) 1 f n+1 R
a{—(c(b_\/ﬁ ws)) }”"P(‘f )

where a = C(f,) and b = 270, are two proper scaling constants.
The next step is to establish the two following inequalities

1
;C(f+fo)51—f2, for fe (—1,1),

1 1
-C(f+ = —, for e(l, +),
JCU 1) = — [71e(1, +)

and to use the same technique as in Section 1I-B in order to prove
that

n

a\ovm TP

a

! ( Y ) SK(%)’ for feRand n=2,
(4.8)

where k(f) is the function defined in Lemma 2. Since «(f)e
L,(—o, + ) with pe[l, + ), we then use Lebesgue’s domi-
nated convergence Theorem to obtain the L, convergence for
PE[l, +).

Convergence of the Residue: First we rewrite R"(f) in the
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Fig. 2. Graph of the function C(f).

more convenient form

R™(f) = 2sin"*! (7 f)sinc™*! (f)s$**+(f-3), (4.9)

where

+ oo
STS) = X sineE (£ = k) 4 sinet" (S + k).
=1

(4.10)

We also need an upper bound for the function $27*+!( f), which is
provided by the following result.

Lemma 3: The symmetrical function |S2"*!(f)| is bounded
from above

vfe(0,1), §2n+1 _———  (4.11

e(©1), | D<o e (1)
and

Vfe(0, +=), |S2"HY(f)|=1. (4.12)

Proof: To prove (4.11), we note that
1 + oo
er(O,E), |21 f)| <2 Y sinc?*2 (f - k)
k=1
2 piig -2n-2
7l' k=1

The sum that appears in the right hand side of this inequality can be
bounded as

kzl (k _f)—2n—2 < (1 —f) -2n-2

+/ (x=f)""dx, (4.14)
1

where the integral is evaluated as

/M(x—f)*“"zdx
1

1
@2n+1)(1 - f)>"!
1 (1-1) 1

T D) < (=) (4.15)

By substituting (4.15) and (4.14) and replacing this expression in
(4.13), we finally get (4.11). In order to prove the second part of the
Lemma, we consider the function B2"*!(f) = $?"*!(f) +
sinc27+2( f) = §2"+1(f), which corresponds to the Fourier trans-
form of the discrete B-spline kernel 52”*!. We then use the norm
inequality

| BE () = 1B o = 16271,

Since the B-splines are positive, we have that | &>"*!| )=
B2"*1(0) = 1, which provides the desired result.

The task is now to find an upper bound for R”~'(f/(b \/;))/a"
and to show that this bound converges to zero. For this purpose, we
divide the frequency axis in two distinct intervals.

@) fe(0, bvn): In this case, we have |f/(b\Fn) - 1/2]
< 1/2 and we use the first part of Lemma 3 together with (4.9) to
obtain

1 S
VfG(O,b\/;), 'FRn_l(b\/;)‘
8 o wf o f
<a731n (b\/;)slnc (bﬁ)

'(,,(1 - %—lf/(bﬁ)l) )

If we define the constant ¢ = max {sin (wx) sinc (x)}/a =
1.03952, we also have that

3

vfe(0,bVn), ’%R”"(bf )‘

1 I )2n<8(2\rc)2n
w(1 [} - 1/bVn)) |

< Sc"(

which clearly converges to zero as n goes to infinity. We can also
get an estimate of the L,-norm by taking the integral

4

LRH-I( U )
a” b\/; Ly(0.byn)

8PcP" 1/2 dx
< ( ) <2007 [
0

7ran (1 _ X)an

§PcPny 22nP-1 _
=2(b -
( \/;)( x2en ) 2np — 1
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This inequality can be manipulated to yield

P

4c\"*
<b81’(F) . (4.16)

n—1 f
ot (w;)

L,(0,by7)

Since 4c¢ /72 < 1, this expression also converges to zero as # tends
to infinity.

b) fe(bVn, +o): For this interval, we note that R"(f) is
bounded by 2 |sinc (f)|"*!. Therefore, we have that

vie(bVn, +o),

1 S
___pn—1
a”R (b\/ﬁ)‘
2 (n'2p\" 1\
<F( 1rf) <2(;) N

which converges to zero as n goes to infinity. An estimate of the
corresponding L ,-norm is given by

+ oo

< / 22(anflbvn) " df
bym

2 5]
a”R bvn

Ly(byn + )

= b2ova (4.17)
C(an)"@mp— 1)

which also tends to zero as n goes to infinity.

We then complete the proof by observing that the pointwise
convergence of both (C(f))" and R™(f) on the positive frequency
axis implies the pointwise convergence of GJ(f) to a shifted
Gaussian as specified in (4.3). Moreover, we use the fact that the
L ,-norm of the global residual error is bounded by the sum of the
individual L p-norms in (4.16) and (4.17), plus the contribution due
to (C(f))", which implies the L »(0, +0o0) convergence in the
Fourier domain with p € [1, 4 ). The same result obviously also
holds for the negative part of the frequency axis since the function
G7(f) is symmetrical. Finally, we use the conjugacy property of
the Fourier transform to obtain the L 4 convergence in the time
domain with g €2, + o]. O

C. Optimal Time-Frequency Localization

Let us consider an arbitrary function g(x) with its Fourier
transform G(f). The uncertainty principle sets a lower limit 2 7) ~2
on the product of the variances (or uncertainties) in the time (axz)
and frequency domain (ofz) [5]. This product is known to be
minimum for the class of Gaussian functions including modulated
Gaussians of the form given by (1.2). Note that J. Morlet used such
Gabor functions to define an integral wavelet transform that he used
for the analysis seismic signals [1], [22].

In the proceding sections, we have demonstrated the Gaussian
convergence of the functions 8”(x) and 8"(x) as the order of the
spline goes to infinity. In fact, the modulated Gaussian (2.9) corre-
sponds to the real part of a Gabor function. These convergence
results would also suggest near optimal behavior in terms of time-
frequency localization. We have performed some numerical compu-
tations of the approximation errors and dispersion measures. These
results, obtained by numerical integration, are summarized in Table
IL. Since the limiting form of the bandpass functions B"(f) is in

TABLE 1I
TiME /FREQUENCY LOCALIZATION AND APPROXIMATION ERROR FOR LOWER
ORrpER B-SPLINE Basis FUNCTIONS AND WAVELETs

Function € gxz f ofz 0X2 . afz - @7)?
B-splines:

Bli(x)  0.08916 0.1 0 0.07484 1.182
B3(x)  0.03444 0.1806 0 0.03523 1.005
‘Wavelets:

Bi(x)  0.1065 0.6075 0.4235 2.807 1072 2.698
B3(x)  0.02677 1.1747 0.4109 5.494 103 1.019

fact the superposition of two Gaussian functions at f, and —f,, we
have used a modified one-sided definition of the dispersion in the
frequency domain in which the integrals are evaluated on the
positive part of the frequency axis only. The quality of the approxi-
mation was measured by the relative root mean square error e.
These computations clearly indicate that, in accordance with our
theoretical results, the approximation error decreases with 7. The
product of the time and frequency variances also seems to decrease
with n. We note that for #n = 3, it is already surprisingly close to
the optimal limit for Gaussian functions. The largest uncertainty
product occurs for the linear B-spline wavelet and can be attributed
to a comparatively poor localization in the frequency domain, a
consequence of the higher frequency components of G,(f) which
decay like O(1/f?). For higher order splines, the decay at infinity
is at least O(1/f"*!) and this effect become less and less signifi-
cant. In fact, our numerical results tend to support the conclusion
that the localization performance of the cubic spline wavelet trans-
form should be sufficient for most practical applications.
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On the Regularity of Wavelets
Hans Volkmer

Abstract—The regularity index «, of the scaling functions , ¢,
N =2,3, - -+ of multiresolution analysis introduced by Daubechies in
1988 is investigated. It is shown that 0.51 < o, < 0.53 and
limy . an/N=1-1log3/(2log2).

Index Terms—Wavelets, regularity index, dilation equation, Fourier
transform, scaling functions.

I. INTRODUCTION

If f is a trigonometric polynomial with f(0) = 1 then the infinite
product

F(z) = T 7(27/z) (1.1)

defines an entire function F (e.g., see [6, Lemma 2.3]). In the
special case f(z) = cos 7 we obtain

sin 2

ﬁ cos (277z) =

Jj=1

(12)

This method is used in [2] to solve dilation equations of multiresolu-
tion analysis by functions with compact support. The solutions
(called scaling functions) are Fourier transforms of infinite products
of the type previous shown. Then wavelet bases of L*(R) can be
defined in terms of these scaling functions. One is interested to find
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scaling functions with compact support as smooth as possible which
then leads to the problem to investigate the behavior of F for
R >z — + 0. In this correspondence, we treat this problem for the
special trigonometric polynomials f = fy, NeN, given in [2,
Section 4]. These polynomials are products

: N
In(2) = (G(1+€9)) en(2),
where g, is a trigonometric polynomial satisfying g,(0) = 1 and

| en(2)17 = Py(sin® (32)),

where

Py(y):= Ngol (N_jl +j)yj.

(13)

~.

Here and in the following the arguments of our functions are always
real numbers. The function g, can be made unique by additional
conditions which, however, are not needed in this correspondence
because we only use | go(2)|. If we denote the functions of (1.1)
corresponding to fy, &y by Fy and Gy, respectively, then (1.2)
shows that

1Fe(2) ] =222 G2 ) (14)

As in [2, p. 981, (4.28)] (there is a misprint in that formula: the
power 1 + « has to be replaced by «), let a, (the “‘regularity
index” of the Fourier transform of Fy) be the supremum of all 8
such that

(1.5)

/m (1+ |t‘)ﬁ|FN(f)|dt<oo,

Then the problem is to find upper and lower bounds of «,. For
instance, it is known that «, = 0.5 (see [2, p. 984]). In Section III,
we improve this to

0.51 < a, < 0.53.

(1.6)

In a remark on p. 984 of [2] we find the value o, =2 —
(log (1 + ﬂ))/(log 2) = 0.55---. According to [3] this value
corresponds to a different definition of the regularity index o,.
There «, is the supremum of all « such that the Fourier trans-
form of F, belongs to the space Lip-o of functions f satisfying
[ flx) = fix+ D] =CA+ |1

In particular, one is interested in the asymptotic behavior of o
as N tends to infinity. It is known that «, /N = 0.1936 +
O(N~"log N), see [2, p. 983]. However, the limit of ay/N
given on p. 983 of [2] has turned out to be wrong [3]. In Section IV
of this paper, we will prove that

(1.7)
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