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ABSTRACT

We present an extension of the family of Battle/Lemarié spline
wavelet transforms. By relaxing the intra-level orthogonality
constraint, we show how to construct generalized polynomial
spline scaling functions and wavelets that span the same
multiresolution spaces, but can also exhibit very distinct
properties. Particular examples in this family include the B-
spline wavelets of compact support that are optimally localized
in time-frequency; the cardinal spline wavelets that have the
fundamental interpolation property; and the dual spline wavelets
(the biorthogonal complement of the B-spline wavelets). We
provide a full characterization of the digital filters for the
corresponding fast wavelet transform algorithms. We also
discuss the asymptotic properties of these representations, and
indicate the link with Shannon’s sampling theory and the Gabor
transform.

1. INTRODUCTION

Polynomial splines have a number of attractive properties that
make them useful in a variety of applications. These features
include good smoothness properties, a simple analytical form
(piecewise polynomial), and the fact that they have convenient
Tepresentations in terms of simple basis functions (B-splines).

Due to these properties, polynomial splines were among
the first functions used to construct orthogonal wavelet
transforms [1, 2, 3]. More recently, Chui and Wang, as well as
our group, independently introduced the B-spline wavelets of
compact support that are the natural counterpart of the classical
B-spline functions [4, 5].

The purpose of this presentation is to unify those results
by introducing an extended class of polynomial representations
and wavelet transforms. We will emphasize a signal processing
formulation and also relate these approaches to some recent
filter-based algorithms for polynomial spline approximation [6].

One of the main points of this work will be to show that it
is possible to construct a variety of equivalent scaling functions
and wavelets with some very specific properties by simply
relaxing the standard intra-level orthogonality constraint. The
design or selection criteria considered here are : (a) simplicity of
implementation (FIR or recursive filter banks), (b) near-optimal
time-frequency localization, and (c) good bandpass

characteristics of the equivalent filter bank. Since it is not
possible to enforce all of these properties simultaneously (for
instance, property (b) and (c) are contradictory), the selection of
the most appropriate representation ultimately depends on the
application.

Note that the present family of spline wavelet transforms
falls into the general framework of biorthogonal wavelet
transforms. However, the present method of construction has
the distinctive feature that it preserves the orthogonality of the
wavelets across scales, a property that is usually lost in other
biorthogonal schemes.

2. POLYNOMIAL SPLINE PYRAMIDS

2.1 Preliminary definitions

The basic function space V4, considered here is the space
of polynomial splines of order n (n odd) with knots at the
integers. Specifically, V(o is the sub-set of functions in L, that
are of class C*'! and are equal to a polynomial of degree n on
each interval [k, (k+1)] with ke Z. A classical result in
approximation theory is that this function space can be defined
as (c.f. [7, 8))

Viu) = {g(o)(x) = ic(k)(P:(x —k), ce Iz} (¢))

k=—oe
where @j(x) is Schoenberg's central B-spline of order n; this
scaling function is generated by repeated convolution of a B-
spline of order 0:

QX =0, * ¢} (x) @
where @j(x) is the characteristic function in the interval
[-4.+%). This definition states that any polynomial spline can
be represented by a weighted sum of shifted B-splines and is
therefore entirely characterized by its sequence of B-spline
coefficients. A fundamental characteristic of B-splines is their
compact support, the property that makes them useful in a
variety of applications [9].

We define the discrete B-spline kernels by sampling the B-
splines at the integers

b"(ky= }(x)_,- 3)
We will also use some special notations to represent certain
operators that act on discrete signals. A list of these operations is
given in Table L.
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TABLEI
DISCRETE OPERATORS AND THEIR EFFECT IN THE Z-TRANSFORM DOMAIN

Operator signal domain z-transform
convolution inverse (a (k) 1/ A(2)
square-root inverse (@) (k) 1/+fA(z)
modulation ack) = (-1)*a(k) A(-2)

time reversal a'(k) = a(—k) A/ 2)
up-sampling lalr, (k) AG")
down-sampling [a], (k) -}(A(z*) + A(—-z*))

2.2 Multiresolution spline approximation

It is not difficult to verify that the B-splines of order n (n
odd) satisfy the two-scale relation

R(x/2)= Y Bk} (x—k), @
kx—oe
where i is the symmetrical binomial kemel of order n
(k) <2222 2c05™(nf). )

We can therefore consider a sequence of nested polynomial
spline subspaces that forms a multiresolution analysis of L, in
the sense defined by Mallat: -5V, 5V, D V-2V e
[3]. V{; is the subspace of polynomial splines of order n with
knot points k-2, ke Z.

A minimum error (L,-norm) polynomial spline
approximation of a function ge L, at a given resolution (i) is
obtained by orthogonal projection on V@) This approximation,
which we denote by g,, can be expressed as

80 =272 (86,0, ©)
ieZ

where (-,-) is the standard L, inner product. The basis functions
9;,=9"(2"'x-k) and §; ,=@"(2"x-k) are biorthogonal. They are
defined through the following formulas:

o= 3 HOeLx-k)

™
f

@@= Y (p**) (e} x-b), ®
R=va

where the operators (-)-! and ' are defined in Table L. This
representation is parametrized by the sequence p which can be
any invertible convolution operator from /; into itself. ¢" is a
generalized polynomial spline scaling function.

Some examples of scaling functions for r=3 (cubic
splines) corresponding to different choice of the parameter p are
shown in Fig. 1. These functions all have some specific
properties : (a) orthogonality, (b) compact support, (c)
interpolation property, and (d) biorthogonal complement of the
B-spline. The corresponding values of the parameter p are given
in Table II.
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Fig. 1. Examples of cubic splinc scaling functions.

‘We have shown previously that the interpolating and orthogonal
spline scaling functions, as well as their dual, converge to
sinc(x) as the order of the spline goes to infinity [6, 10]. These
asymptotic results provide an explicit link with the classical
procedure dictated by Shannon's sampling theorem. Note that
the dual basis function in (6) acts in a way that is analogous to
the anti-aliasing lowpass filter required in conventional sampling
theory.
3. POLYNOMIAL SPLINE WAVELETS

3.1 The B-spline wavelet

To obtain the wavelet transform, we consider the sequence
of orthogonal complementary spaces ---,W_,, W), W,
Wipsoee with V,_, =W, @ V. A fundamental result is that the
basic residual space W, is generated from the integer transla-
tions of a basic wavelet y(x); for example, the B-spline wavelet.

The B-spline wavelets of compact support are the wavelet
analogue of the classical B-splines; they can be defined as
follows

Vi / D = D& 5k + g x - k), ®
o —

where the symbol "~" is the modulation operator (cf. Table I)
and where u; is the binomial kernel defined by (5). An attractive
feature of these wavelets is their excellent time/frequency
localization [5]. In fact, we have shown that these functions
converge to modulated Gaussians (real part of Gabor functions)
as the order of the spline goes to infinity. Based on this
asymptotic result, we get the following approximation

wyor . 4a™! 2x-1)
Vo) = e T20%(n+ 1))
with 2=0.697066, f;=0.409177 and 6?=0.561145. For n=3
(cubic splines), the relative L, approximation error is 2.6% and
the product of the time-frequency uncertainties is within 2% of
the limit specified by the uncertainty principle.

cos(2nf,(2x ~ 1)) ex



TABLE II
SPECTIFIC PARAMETERS FOR VARIOUS SETS OF SPLINE SCALING
FUNCTIONS AND WAVELETS

| N

N,

Representations P q
orthogonal 2m41) 12 ©2n+ 2041 21} V2
i L [ e

basic (B-splines) | B, (identity) 8, (identity)

cardinal (C-splines) [ (6")" ([ i) )-‘
dual (D-splines) (bz””)_1 ([ B2 % bzuafl]l * bb»l)_l
2

3.2 Generalized spline wavelets

A full polynomial spline wavelet expansion of a function

g€ L, can be obtained as follows:
8= 224(3-‘?’;1)"’:’,; (10)
G,k)e2?

where the generalized spline wavelets ; ,k=w"(2"'x-k) and

Vix=W"(27x-k) are obtained from the dilation (index i) and

translation (index k) of the basic wavelets :
V()= 3 q(e}(x—k)

k=—ee
oo

V=Y (tz'*b"'+1 o Ul bb-*l]u)—l(k)(p:(x -k, (12)

k=—oe

an

which form a biorthogonal pair. These functions are defined in
terms of the B-spline wavelet (9), and a parameter sequence q
which is an invertible convolution operator.

3.3 Specific wavelet transforms and their properties

The polynomial spline wavelets that are the counterpart of
the scaling functions in Fig. 1 are shown in Fig. 2. Each case
corresponds to a specific choice of the parameter ¢ dictated by
our desire to satisfy a certain property. The corresponding
parameter values can be found in Table IT.

3.3.1 Battle-Lemarié wavelet transform (O-splines)

The sequence p and g can be selected so that the basis
functions are orthogonal. If we also impose symmetry, we get
the well known Battle-Lemarié spline wavelets [1, 2].

3.3.2 Wavelet transform of compact support (B-splines)

The main property of this representation is the compact
support of the basis functions. In most applications, this
property will translate in systems of equations that are band-
diagonal and can be solved very efficiently. In terms of
numerical stability and ease of computation, this representation
appears to offer the same advantages as the classical B-splines
used routinely in a variety of engineering and applied
mathematics applications [9].

The other attractive property of this transform is the near
optimal time-frequency localization of the basis functions. The
B-spline wavelet transform is in this sense very similar to a
hierarchical Gabor transform with the advantage that it has a fast
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Fig. 2. Examples of cubic splinc wavelets at level (1) (step size A=2).

algorithm associated with it. It is therefore also well suited for
the analysis of non-stationary signals.

3.3.3 Cardinal wavelet transform (C-splines)

The cardinal representation has the unique property that the
wavelet coefficients are precisely the samples of the underlying
residual signal 8-y — 8w € Wm. This is only possible because
the cardinal scaling functions and wavelets vanish at all the
integers except at their origin where they take the value one.
This representation is therefore the most appropriate for
visualizing the underlying signals. Furthermore, the complexity
of the reconstruction algorithm can be reduced by a factor of two
since it is only necessary to compute the finer level coefficients
that are between knot points (interpolation). The cardinal spline
representation is very similar to the orthogonal one. In fact, the
orthogonal and cardinal spline wavelets all tend to the modulated
sinc-wavelet (ideal bandpass filter) as the order of the spline
goes to infinity [11].

3.3.4 Dual wavelet transform (D-splines)

This function is the biorthogonal complement of the B-
spline wavelet. The dual representation therefore corresponds to
the flow graph transpose of the B-spline case. The
corresponding analysis functions are the B-spline wavelets
which are also very similar to Gabor functions. This property
together with the simple FIR form of the decomposition
algorithm may turn out to be quite useful for certain computer
vision applications such as edge detection or texture
segmentation.

4. FAST WAVELET ALGORITHM

Let us define the quantities
oK) =2"(2,¢,,) 13)
d(,')(k) = 2_1-(8’\7’,',()’ (14)

which correspond to the expansion coefficients in (6) and (10),
respectively. We will now show that these quantities can be



computed efficiently by extending Mallat's quadrature mirror
filter algorithm to the case of non-orthogonal basis functions.

In practice, the signal to be analyzed is specified by a
sequence of sample values {g(k)}. The starting point of the
analysis will be to map this sequence into a continuous-time
signal gg)(x) that provides our signal representation at the finer
resolution level (i=0). This interpolation problem can be solved
efficiently by digital filtering [12]. In the present context, this
leads to the initialization procedure

co®=(p*b")" *gk)
where (p*b*)"! is the convolution inverse of the sampled scaling
function @"(x)], _, (cf. Eq. (7).

The multiresolution spline and wavelet coefficients down
to a certain resolution level / are then computed by filtering and
down-sampling by a factor of two :

Caapy(k) = [;* €l (K)

iy (R) = [W* ], (0)
The procedure is applied iteratively starting from the finer
resolution representation cg,. After / iterations of this process,
we obtain the following wavelet representation of our signal
8oy(¥)= ZC(I)(")‘PI vt ZZ dy (ks an
i=] keZ
The quantities { oy By d(,)} are the so-called wavelet

1s

(16)

coefficients; the sequence {c(,,}, on the other hand, codes for

the lower resolution signal at resolution (/).

The indirect wavelet transform (reconstruction) is
implemented in a similar fashion (up-sampling and post-
filtering) by successively reconstructing the spline coefficients
starting at the bottom of the pyramid

Co () =* ey |1, 0V +W*[dyoy ], (- 8)
The digital filters in (16) and (18) are given by
° — 2me1)! 2n+1 "
V(k)—{-[(p*b ) ]n‘p*b *ul (k)
o 735 -1 ~n
e+ =4{(g*s)"] *prazco 19

v(t) =[ply, * (P) " * k)

wik=1)=[gh, *(p)" * & *5*'(k)
and define a perfect reconstruction filter bank. The analysis and
synthesis filters for the polynomial spline basis functions and
wavelets displayed in Fig. 1 and 2 can be obtained by

substitution of the corresponding values of the parameters p and
q in Table II.

5. CONCLUSION

In this paper, we have described an extended class of
polynomial spline transforms. Beside having all the advantages
usually associated with the wavelet transform (hierarchical
decomposition, fast algorithm, etc...), these representations are
the only ones for which it is possible to obtain explicit formulas
(piecewise polynomials) for the corresponding scaling functions
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and wavelets in the signal domain. The regularity of these
functions is simply controlled by the order of the spline .

In addition, we have identified several important properties
that should make these representations useful in a variety of
applications. The B-spline wavelet transform appears to be the
representation of choice if the determining factor is the time-
frequency localization of the basis functions. The cardinal and
orthogonal representation, on the other hand, have good
bandpass characteristics and are therefore well suited for coding;
the quality of the approximation of an ideal bandpass filter can
be improved by simply increasing n. The cardinal spline wavelet
is the sole function in this family to provide a signal
decomposition in terms of the sample values of the underlying
continuous functions and is therefore most appropriate for
visualization and conventional signal processing. Finally, the
dual spline representation has the advantage of a very simple
(FIR) decomposition algorithm, while the impulse response of
the equivalent analysis filter is very similar to a Gabor function.

REFERENCES

G. Battle, "A block spin construction of ondelettes. Part I: Lemarié
functions”, Commun. Math. Phys., vol. 110, pp. 601-615, 1987.
P.-G. Lemarié, "Ondecl A localisation iclles”, J. Math.
pures et appl., vol. 67, pp. 227-236, 1988.
S.G. Mallat, "A theory of multiresolution signal decomposition: the
wavclet represeatation”, JEEE Trans. Pattern Anal. Machine Intell.,
vol. PAMI-11, pp. 674-693, 1989.
CK. Chui and J.Z. Wang, "On d spline 1
and a duality principle”, Trans. A)ur Math Svc vol. 330, pp. 903-
915, 1992.
M. Unser, A. Aldroubi and M. Eden, "On the asymptotic convergence
of B-spline lets to Gabor fu ", IEEE Trans. Information
Theory, vol. 38, pp. 864-872, March 1992.
M. Unser, A. Aldroubi and M. Eden, "Polynomial spline signal
approximations : filter design and asymptotic equivalence with
Shannon's sampling theorem™, IEEE Trans. Information Theory, vol.
38, pp. 95-103, January 1992.
LJ. Schoenberg, "Contrib

quidi data by analytic fu
pp. 45-99, 112-141, 1946.
L. Schoenberg, Cardinal spline interp
Society of Insdustrial and Applicd Mathematics, 1973,
P.M. Prenter, Splines and variational methods. New York: Wiley,
1975.
A. Aldroubi, M. Unser and M. Eden, "Cardinal spline filters : stability
and convergence to the ideal sinc interpolator”, Signal Pr to
appear.
A. Aldroubi and M. Unser, "Families of multiresolution and wavelet
spaces with optimal propertics”, NCRR Report 23/92, National
Institutes of Health, 1992,
M. Unser, A. Aldroubi and M. Eden, "Fast B-splinc transforms for
continuous image representation and interpolation”, JEEE Trans.
Pattern Anal. Machine Intell., vol. 13, pp. 277-285, March 1991.

&)
2

Bl

4

3]

]

to the problem of approximation of
", Quart. Appl. Math., vol. 4,

lati.

(8] PA:

Philadelnhi
* P

6]

(10

1

[12]



