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Abstract. This paper describes two ways of improving Burt and Adelson's Laplacian pyramid, a technique developed for image 
compression. The Laplacian pyramid is a multi-resolution image representation that captures the loss of information occurring 
through repeated reduction of the spatial resolution. The generation of this data structure involves the use of two complemen- 
tary functions: EXPAND, which increases the size of an image by a factor of 2, and REDUCE, which performs the reverse 
operation. The first modification is the adjunction of a pre-filter to the initial EXPAND function in order to guarantee an 
image extrapolation that is an exact interpolation of the coarser resolution level. The second refinement is a REDUCE 
operation modified to minimize information loss. The corresponding least squares Laplacian pyramid (LSLP) is generated by 
adding a post-filter to the initial REDUCE function. These new functions have an efficient implementation using recursive 
algorithms. Preliminary experiments indicate improved performance: for a Gaussian-like kernel (a = 3), the new EXPAND 
function exhibits a 2 to 2.5 dB attenuation of the first level of the Laplacian pyramid, while the complete scheme (LSLP) leads 
to a 4.7 to 8.5 dB improvement in the two images used to test the procedure. For comparable compression ratios, the subjective 
image quality for the LSLP appears to be significantly better. A theoretical relationship between the present approach and the 
family of quadrature mirror filter image pyramids is also derived. 

Zusammenfassung. Diese Arbeit beschreibt zwei Methoden, die Laplacepyramide yon Burr und Adelson zu verbessern, welche 
zur Bildkompression dient. Die Laplacepyramide ist eine Bilddarstellung dutch Mehrfachaufl6sung, welche den Informa- 
tionsverlust erfasst, der durch die wiederholte Reduktion der rS.umlichen Aufl6sung entsteht. Fiir die Erzeugung dieser 
Datenstruktur werden zwei komplement/ire Funktionen gebraucht : EXPAND, welche das Bild um einen Faktor zwei vergr6s- 
sert, und REDUCE, welche die inverse Operation durchfiihrt. Die erste Modifikation besteht im Hinzufiigen eines Vorfilters 
zur EXPAND Funktion, um eine Bildextrapolation zu erreichen, welche eine pr/izise Interpolation des gr6beren Aufl6sungsni- 
veaus ist~ Die zweite Verbesserung betrifft die REDUCE Funktion, welche modifiziert wird, um einen minimalen Informa- 
tionsverlust zu erreichen. Die entsprechende Laplacepyramide kleinster Quadrate (LSLP) wird durch Hinzufiigen eines 
Nachfilters zur REDUCE Funktion erzeugt. Diese zwei neuen Funktionen erlauben eine effiziente Realisierung mithilfe rekur- 
siver Algorithmen. Erste Versuche deuten auf eine deutliche Verbesserung hin: fiir einen Gauss-artigen Kern (a = 3) erreicht 
die neue EXPAND Funktion eine D/impfung von 2 bis 2.5 dB im ersten Niveau der Laplacepyramide, w/ihrend die vollst/indige 
Methode (LSLP) eine Verbesserung yon 4.7 bis 8.5 dB fiir zwei Testbilder erreicht. Fiir vergleichbare Bildkompressionsfaktoren 
ist die subjektive Bildqualit/it von LSLP wesentlich besser. Ferner wird ein theoretischer Zusammenhang zwischen dieser 
Methode und der Familie Bildpyramiden mit quadratischen Spiegelfiltern hergeleitet. 

R6sum6. Ce papier dbcrit deux faqons d'am61iorer la pyramide Laplacienne de Burt et Adelson, une technique d6veloppee 
pour la compression d'images. La pyramide Laplacienne est une repr+sentation multi-rbsolution d'image qui code la perte 
d'information li+e ~i une r6duction r6p6t+e de la r6solution spatiale. La g6n6ration de cette structure s'effectue ~i l'aide de deux 
opbrations compl6mentaires: EXPAND, qui accro~t la taille de l'image par un facteur deux, et REDUCE qui effectue l'op~ration 
inverse. La premi6re modification est l'adjonction d'un pr6filtre ~i la fonction EXPAND afin de garantir que l'agrandissement 
d'une image ~i partir d'une representation plus grossi6re donne lieu ~ une interpolation exacte. La seconde am61ioration est la 
redefinition de la fonction REDUCE afin de minimiser la perte d'information. Ceci donne lieu/t une repr6sentation pyramidale 
aux moindres carr6s (LSLP) qui diff6re de la pr6c6dente par la simple adjonction d'un post-filtre. Ces nouvelles fonctions se 
preterit/t une mise en oeuvre tr6s efficace par filtrage r6cursif. Des experiences pr61iminaires indiquent une am61ioration des 
performances: pour un noyau quasi-gaussien (a = 3), la nouvelle fonction EXPAND att6nue le premier niveau de la pyramide 
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Laplacienne de 2 ',i 2.5 dB, tandis que I'algorithme complet (LSLP) donne lieu ~i une am61ioration de 4.7 ~t 8.5 dB sur les deux 
images utilis6es afin de tester la proc6dure. Pour des taux de compression comparables, les images cod6es avec LSLP sont de 
qualit+ subjective sup6rieure. Finalement, un lien th6orique est btabli entre l'approche pr6sente et la famille des repr6sentations 
pyramidales par filtres mirroirs en quadrature. 

Keywords. Laplacian pyramid, multi-resolution representation, image compression, image coding, Gaussian pyramid, least 
squares approximation, recursive filter, quadrature mirror filters, wavelet transform. 

1. Introduction 

Multi-resolution data representations are 
becoming increasingly popular in image processing 
applications. Pyramid data structures, in particu- 
lar, play an important role in coding, and are ide- 
ally suited for progressive image transmission [13, 
15]. In these data structures, the image is represen- 
ted hierarchically with each level corresponding to 
a reduced-resolution approximation. An example 
of such a coding scheme is the Laplacian pyramid 
proposed by Burt and Adelson in which the differ- 
ence between successive levels of a Gaussian pyra- 
mid is transmitted [3]. This approach compares 
favorably with earlier techniques, such as trans- 
form or predictive image coding, especially when 
large compression ratios are desired [7]. Recent 
developments in pyramid image compression also 
include subband coding techniques [ 18, 20], ortho- 
gonal pyramid structures [1, 12] and wavelet trans- 
forms [9], which are all based on the concept of 
quadrature mirror filters (QMF) [4]. 

The Laplacian pyramid coding technique 
described by Burt and Adelson relies on the use 
of two complementary functions: REDUCE and 
EXPAND. REDUCE computes a lower resolution 
level of the Gaussian pyramid by decreasing the 
resolution by a factor of two. EXPAND performs 
the reverse operation by mapping the coarser level 
onto a finer sampling grid. These two functions, as 
defined initially, were sub-optimal in two respects. 
First, the basic EXPAND function induces some 
image blurring, tending to increase the energy of 
the residual image. Second, the initial REDUCE 
function fails to minimize the loss of information 
(in the least squares sense) from one level to the 
next one. It will be shown here that these limita- 
tions can be corrected through the appropriate 
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insertion of additional post- and pre-filtering mod- 
ules. These operators have an infinite impulse 
response (IIR) and yet can be implemented very 
efficiently using simple forward and backward 
recursions, as discussed in Appendix A. 

The presentation is organized as follows. Fol- 
lowing a series of definitions, a brief review of the 
Laplacian pyramid coding concept is given in Sec- 
tion 2. A modified EXPAND function that guaran- 
tees an exact image interpolation is described in 
Section 3. The least squares Laplacian pyramid is 
introduced in Section 4 and the corresponding 
REDUCE function is derived. The performance 
improvement of this new approach is illustrated 
both qualitatively and quantitatively with some 
experimental results in Section 5. Finally, the pre- 
sent approach is reinterpreted in terms of quadra- 
ture mirror filters in order to bring out the 
relationship with recent subband (or wavelet trans- 
form) coding techniques. 

2. Burt's Laplacian pyramid 

2.1. Notation and operators 

The techniques described in this paper are 
intended for the processing of digital images. How- 
ever, to simplify the presentation, we have chosen 
to concentrate on the pyramidal representation of 
a one-dimensional signal: {f(k)}k~. All subse- 
quent results carry over directly to higher dimen- 
sions if one makes use of separable filtering kernels. 
In practice, for digital images, this means that a 
pyramid representation can be obtained from the 
successive application of one-dimensional opera- 
tors along the rows and columns. 
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There are two operations that are particularly 
useful for our purpose: the up-sampling of a signal 
by an integer multiple m (in particular, m=2) ,  
which is defined as 

[ f (k ' )  
[ f l * m ( k ) = ) O  

for k = mk', 
(2.1) 

otherwise. 

and its dual, the decimation by an integer factor 

[f]+m(k) =f(km). (2.2) 

the initial data sequence 

fo(k) =f(k) ,  (2.6) 

and the successive coarser resolution levels are con- 
structed iteratively using the REDUCE operator 

f+ l (k )  = REDUCE[ f ] (k) .  (2.7) 

This operation requires some form of lowpass fil- 
tering and decimation by a factor of 2. Two 
examples of pyramid representations are shown in 
Fig. 1. Burt and Adelson [3] use a 5-point quasi- 
Gaussian pre-filter and their REDUCE function 
can be described as 

We will rely heavily on the z-transform representa- 
tion of a signal, which, as a reminder, is defined as 

+ ~  

f (k)~--~F(z)= ~ f ( k ) z  -k. (2.3) 

In particular, Burt's generating kernel [3] is central 
to the construction of the Gaussian or Laplacian 
pyramid and is conveniently represented as 

w2(k) ~ W2(z) = ( ~ - a)(z -e + z 2) 

+~(z I + z ) + 2 a .  (2.4) 

f +  ,(k)= {[w2 * f~li2(k), (2.8) 

where the generating kernel w2 is defined by (2.4). 
The complement of REDUCE is the EXPAND 

function, which performs a signal extrapolation to 
a finer resolution level, 

][~+ ,(k) = EXPAND[f+  1](k). (2.9) 

This operation involves an up-sampling by a factor 
of two and some form of interpolation. Burt and 
Adelson use the following operator [3]: 

f,..i+,(k) = w2 * [f+~lTz(k). (2.10) 

This operator is symmetric and has a sum equal to 
two, independent of a. The decimated version of 
this kernel is 

wj(k) = [w2]~2(k) 

Wl(Z) = ( ~ - a)(z -1 + z) +2a, (2.5) 

and has a sum equal to one. 

These two procedures are summarized in Figs. 2(a) 
and 2(b). 

2.3. The Laplac&n coding concept 

The Laplacian pyramid captures the loss of 
information resulting from an application of the 
REDUCE function and is the difference between 
two successive levels of the Gaussian pyramid: 

A f ( k ) = f _ I ( k ) - E X P A N D [ f ] ( k ) .  (2.11) 

2.2. Basic R E D U C E  and E X P A N D  functions 

The Gaussian pyramid is a multi-resolution rep- 
resentation of a signal. It is characterized by a 
sequence of signals f0,f l  . . . . .  fn, with the number 
of samples reduced by a factor of two in each of 
the principal directions from one level to the next. 
The finer or zero level of the pyramid is given by 

The key idea in the Laplacian coding scheme is to 
transmit the sequence of difference images 
Afl . . . . .  Af, with sample values less extensively 
correlated than are the initial image pixels. The 
original image is then recovered by progressively 
expanding and summing the levels of the Laplacian 
pyramid, starting at the coarsest level. The main 
advantage of this approach is that the entropy of 
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Fig. 1. Examples of image pyramids. (0): 208 x 222 'female' image (level 0), (al-a4):  levels 1 to 4 of  the basic Gaussian pyramid, 
(b l -b4) :  levels 1 to 4 of  the least squares Gaussian pyramid. 

GAUSSIAN PYRAMID : 

(a) REDUCE 

fi , ( ~ ( k )  

(b) EXPAND 

f A ~ , , ( k )  

(c) LAPLACIAN 

f - ~ ( k ~ ( k )  

LEAST SQUARES PYRAMID : 

(d) REDUCE 

(e) EXPAND 

f i ( ~ . ,  (k) 

(D LAPLACIAN 
I , _ , ( ~  

Fig. 2. Schematic representation of  the REDUCE,  EXPAND and LAPLACIAN functions for the standard and least squares 
Gaussian pyramids. 

the difference images is usually smaller than that of 
the initial image. Thus, the amount of transmitted 
information can be reduced by source coding. 

If one is willing to accept some image degrada- 
tion, a substantial improvement of performance 
can be further achieved through quantization. Burt 
and Adelson have shown that the degradation can 
be made almost imperceptible through a proper 
choice of the number of quantization levels. The 
scheme they propose uses more quantization steps 
Signal Processing 

for coarser levels of the pyramid. The sample 
values at coarser spatial resolutions have to be 
coded more carefully because their contribution 
affects a larger number of pixels in the final recon- 
structed image. 

Although this approach achieves excellent image 
coding performance, we have evidence that it can 
be further improved. The reason for this is that 
Burt's construction of the Laplacian pyramid is 
sub-optimal by several criteria: 
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(i) The E X P A N D  function as defined by (2.8) 
does not achieve a true image interpolation; 
that is, EXPAND[Ills2 as defined by Burt will 
generally differ from il. 

(ii) The variances of the Laplacian images are not 
necessarily minimal. 

(iii) The R E D U C E  and EXPAND functions as 
defined by (2.8) and (2.10) are not strictly 
complementary in that EXPAND so defined 
is not the generalized inverse of R EDUC E:  

R E D U C E [ I l l ( k )  

7t REDUCE[EXPAND[REDUCE[I l ] ] ]  (k). 

The following sections will show how these 
criteria can be taken into account. 

It is straightforward to verify that (3.2) and (3.3) 
are mutually consistent with (3.1). Equation (3.3) 
is an easily invertible constant coefficient difference 
equation. In fact, Pi+l can be determined by 
convolution, 

pi+ ,(k)  = g  , il+ t(k),  (3.4) 

where g is the inverse filter given by 

g(k)  ~-~ G(z) = Wl(z)  -1 

1 

( ½ - a ) ( z - l  + z ) +  2a 
(3.5) 

The poles of this filter are 

- 2 a +  4 x / ~ l  
Zl,2 - (3.6) 

1 - 2a 

3. The Laplacian pyramid with interpolation 

The major limitation of the method proposed by 
Burt et al. is that the EXPAND function defined 
by (2.10) does not produce a valid image interpola- 
tion in the sense that the pixel values at the nodes 
are not preserved when a coarser level is used to 
approximate the next finer level. In fact,~,~+ l(k) is 
a smoothed extrapolation o f f +  6k) and the energy 
of the difference signal is therefore unnecessarily 
large. We have defined a modified EXPAND func- 
tion that guarantees strict signal interpolation in 
the sense defined above. This constraint is formally 
expressed as 

[ f,,i+ tin(k) =il+ l(k). (3.1) 

This condition can be satisfied by applying the pre- 
vious E X P A N D  operation to an auxiliary sequence 
{p,÷t (k) } : 

f i ,  i+  l ( k )  = [Pi+1]T2 * w2(k) 
+¢¢ 

= Y, p t + l ( l ) w z ( k - 2 1 ) ,  (3.2) 
l=--o¢ 

chosen to satisfy the constraint 

i l+,(k)  =P,+I * Wl(k) 

= • p , + l ( l ) w , ( k - l ) .  (3.3) 

and form a reciprocal pair. For a >~ ~, these poles 
are real and the system can be decomposed as a 
cascade or a sum of causal and anti-causal simple 
exponential filters. For a = I, G(z) = 1 and an exact 
interpolation can be achieved with no filtering at 
all. Otherwise, this operator can be implemented 
recursively with as few as two adds and three multi- 
plies per sample point, as shown in Appendix A 
(see Table A). As the signals encountered in prac- 
tice are of finite extent (e.g. { f ( k )  Lk = 1 . . . . .  K}), 
we have chosen to implement both finite and infin- 
ite impulse response filters using the following 
boundary conditions: 

f ( K + k ) = f ( K - k ) ,  k =  1 . . . . .  K. (3.7) 
f ( i  - k ) = f ( 1  +k) ,  

This type of signal extrapolation using mirror sym- 
metry is commonly used in image processing appli- 
cations and has the advantage of  suppressing 
border artifacts. 

Our modified EXPAND operator is represented 
schematically in Fig. 2(e) and is described formally 
a s  

~,,+ ,(k) -- w2 • [g , i l+,]T2(k) .  (3.8) 

It differs from (2.10) only by the adjunction of a 
pre-filter (g). 
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4. The least squares pyramid 

A further refinement is to choose a compression 
scheme that minimizes the energy of the Laplacian. 
For this purpose, it is convenient to use the auxili- 
ary coeffÉcient sequence {pi(k)} defined earlier and 
to express the Laplacian as 

Af(k) = f _  ,(k) - w2 * [p,]t2(k). (4.1) 

We now seek the series of coefficients {p~(k)} that 
minimizes the error criterion, 

+oo 

~2= E (af,(s~)) 2 
k - - o o  

+oo 

= ~ ( f . - i ( k ) - w 2 *  [p~]T2(k)) 2. (4.2) 
k = - o o  

As demonstrated in Appendix B, the optimal 
sequence of coefficients pt(k) satisfies the following 
equation: 

[w2 * w2]~2 * p,(k) = [Wa2]t2 * p,(k) 

= [wz *f-,]+2(k). (4.3) 

The solution is determined by first convolvingf_ l 
with w2, performing a decimation by a factor two, 
and finally filtering the resulting sequence with the 
operator h that implements the inverse of [w22]lz: 

pi(k) =h • [w 2 *ft.-,]~2(k). (4.4) 

By determining [w22]~2(k) explicitly, the corre- 
sponding IIR filter is characterized in the z-trans- 
form domain, 

h(k) ~ H(z) = [( 41 - a + a 2) (z 2 + z -2) 

+(J  + 2a - 4a2)(z + z -1) 

+ 1 - 2a + 6a2] -1. (4.5) 

The poles of this operator are simple and real for 
~< a ~< ½. As shown in Appendix A, h can be imple- 

mented recursively with as few as five multiplica- 
tions and four additions per sample point. The 
relevant filter parameters for different values of a 
are given in Table A. By substituting (4.4) in (4.1), 

we find that the least squares Laplacian is given by 

Af.(k)=f ,(k) 

-w2 * [tt * [w2 *f-,l+al~2(k). (4.6) 

Similarly, the corresponding REDUCE function is 
obtained by substitution of (4.4) in (3.3), 

f + l ( k ) = w l  • h • [w2 *f]+2(k), (4.7) 

and differs from (2.8) by the inclusion of two addi- 
tional levels of post-filtering provided by wl and h. 
By recalling that g ,  wffk)= ~(k), we note that 
(4.6) is fully compatible with both (2.11) and the 
modified EXPAND function defined by (3.8). 
However, a direct evaluation of the least squares 
Laplacian through (4.6) is preferable for most 
practical purposes. It is more economical and also 
reduces the propagation of roundoff errors. 

These results are summarized in Fig. 2 which 
provides a block diagram representation of the 
EXPAND, REDUCE and LAPLACIAN 
functions and a comparison of the conventional 
and least squares Laplacian pyramids. 

5. Results 

5.1. Experiments 

The experiments were performed with a =3, 
unless indicated otherwise. In these comparisons, 
the three following procedures were considered: (i) 
the initial Laplacian pyramid (LP) based on (2.8) 
and (2.10), (ii) the Laplacian pyramid with inter- 
polation (LPI) based on (2.8) and (3.8), and (iii) 
the least squares Laplacian pyramid (LSLP) based 
on (4.6), (4.7) and (3.8). 

The Gaussian and least squares pyramidal repre- 
sentations for two test images are shown in Figs. 1 
and 3, respectively. In both cases, the sharpness of 
the least squares pyramid is preserved at all resolu- 
tion levels, while the corresponding images in the 
Gaussian pyramid seem increasingly blurred by 
comparison. The distinction between the two meth- 
ods is even more striking if one looks at the Lapla- 
cian images displayed in Figs. 4 and 5. The same 
intensity scaling factors were applied to all images 

Signal Processing 
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Fig. 3. Comparison of image pyramids. (0): 238 x 253 'MRI'  image (level 0), (al a4): levels 1 to 4 of the basic Gaussian pyramid, 
(bl-b4) : levels 1 to 4 of the least squares Gaussian pyramid. 

~ 2 

B 
i 

4 

Fig. 4. Comparison of Laplacian pyramids for the 'female' image. (A1 4): four bottom levels of the basic Laplacian pyramid, 
(BI 4): four bottom levels of the least squares Laplacian pyramid. 
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Fig. 5. Comparison of Laplacian pyramids for the 'MRI' image. (A1-4): four bottom levels of the basic Laplacian pyramid, 
(B1 4): four bottom levels of the least squares Laplacian pyramid. 

to facilitate the comparison. For  the initial LP, 

the amount  of  information at each level is quite 
significant and the initial subject is still recogniz- 

able. In the case of  the LSLP, the energy of  the 
Laplacian is reduced drastically and only very high 

frequency details are visible in this representation. 
In a first stage, the performance of the decompo- 

sition can be assessed in terms of  simple statistics 

These measures are given in Tables 1 and 2 for test 

images (a) and (b), respectively. For  a = 2, the LPI 
is superior to the basic LP in all respects (e.g., 

Table 1 
Comparison of performance measures 

3 levels for the 'female' image with a -5  
at successive pyramid 

such as the entropy, the standard deviation or root P y r a m i d  Range RMS Entropy SNR (dB) 
mean square (RMS) error, and the minimum and level 

maximum values of  the Laplacian images. Another LP-1 11.75 5.10 23.70 
useful indicator is the signal-to-noise-ratio associ- LP-2 12.27 5.39 19.44 

LP-3 14.98 5.85 16.48 
ated with a full scale expansion of  a lower resolu- LP-4 17.50 6.09 - -  

tion level f ,  LPI-1 9.71 4.77 25.35 
I k~./[J~ / LPI-2 9.55 4.95 20.70 

(k, l) _ f ] 2  LPI-3 11.67 5.45 17.51 
~Z [ ~  )-~--?0./~,-/ 2/ ,  (5.1) LPI-4 13.55 5.70 - -  

SNRi = 10 log10 )] LSLP-I 6.81 4.36 28.43 

J LSLP-2 12.36 5.35 22.96 k k , I  

LSLP-3 16.91 5.96 19.48 

wherefdenotes  the image's average intensity value. LSLP-4 23.92 6.42 - -  

Signal Processing 

(-80, 85) 
(-69, 64) 
(-60, 52) 
(-53, 56) 

(-67, 82) 
(-60, 53) 
(-47, 44) 
(-50, 45) 

(-60, 81) 
(-79, 76) 
(-79, 116) 
(-89, 83) 
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Table 2 

Comparison of performance measures at successive pyramid 
levels for the 'MRI'  image with a = ]  

Pyramid Range RMS Entropy SNR (dB) 
level 

LP-I (-76, 101) 11.99 4.83 26.55 
LP-2 (-65,  99) 15.70 5.26 20.95 
LP-3 (-61,  94) 17.47 5.57 18.01 
LP-4 (-39,  82) 14.60 5.58 - -  

LPI-1 (-71, 91) 9.77 4.59 29.15 
LP|-2 (-52,  79) 12.38 4.92 22.44 
LPI-3 (-51, 73) 13.72 5.22 18.87 
LPI-4 (-33, 63) 11.36 5.21 - 

LSLP-1 (-55,  60) 4.50 3.63 35.05 
LSLP-2 (-101, 111) 14.31 5.33 25.48 
LSLP-3 (-101, 133) 22.50 6.11 20.78 
LSLP-4 (-108, 127) 28.36 6.38 - -  

reduced range, smaller standard deviation and 
entropy, and better signal approximation). As 
expected, the LSLP provides an even better signal 
approximation. In fact, the SNR values obtained 
for an LSLP extrapolation at a given level i are 
comparable to those obtained for an LP extrapola- 
tion at level i - 1  with four times more sample 
values. The improvement of the LSLP is particu- 
larly striking at the finer resolution level at which 
the residual RMS error is approximately reduced 
by a factor of 2. Note, however, that this effect is 
reversed for the coarser levels and that the LSLP 
has the tendency to pack the energy into the top 
of the pyramid. In terms of image coding, this 
means that while fewer bits are required for repre- 
senting the finer levels of the LSLP, more bits will 
be necessary for coding the coarser levels, a result 
consistent with the bit allocation strategy used by 
Burt and Adelson. 

For lossless image coding, the number of bits per 
pixel (bit-rate) necessary to transmit the top of the 
pyramid up to level i is approximately 

Bi = ~ Hi~4 i-l ,  (5.2) 
k - i  

where Hi denotes the entropy at the/ th  level of the 
Laplacian pyramid. A convenient way to assess the 
performance in a progressive data transmission 
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scheme is to evaluate the associated mean square 
distortion in terms of percentage, 

Y, [fo(k, l)-)~o,~(k, l)]2 
Di= 100 k,l (5.3) 

Y~ [fo(k, l ) _ f ] 2  
k,I 

The rate-distortion curves for our test images are 
given in Fig. 6. For both images, the LSLP achieves 
the best performance at all resolution levels. The 
LP is the worst and the LPI is in between. 

2 . 0 '  

uJ 
u) 
:z 

1.0. 
o 
(n 

0.[ 

"female" image 

[+7o  I 
GPI 
LSGP 

i 

2 4 6 

BIT RATE (blts/plxel) 

I,u 
r.n 
:8 

o 
i -  
n.- 
o 
I -  

2 

"MRI" image 

GPI 
LSGP 

0 2 4 6 

BIT RATE (blt~/plxel) 

Fig. 6. Rate distortion curves for 'female' and 'MRI'  images for 
the three image pyramids: Gaussian pyramid (GP), Gaussian 
pyramid with interpolation (GPI) and least squares Gaussian 

pyramid (LSGP). 
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An aspect that must also be taken into account 
in this comparison is that the performance of the 
pyramid decomposition depends on the value of 
the parameter a. In principle, our modified scheme 
should result in some improvement for any value 
of this parameter, although this effect may not 
always be as dramatic as in the examples discussed 
above. A case of special interest occurs when a = 
0.5 in which case the LP is equivalent to the LPI 
(i.e. g(k) = identity). The corresponding error stat- 
istics for the MRI image are given in Table 3. The 
performances of the LPI are slightly superior to 
those obtained with a = 3. The LSLP performs best 
but the improvement is not as dramatic as in Table 
2. For comparison, we have also included the 
results for the LP with a---0.6, the parameter value 
that resulted in the greatest reduction in entropy 
and variance in the series of experiments reported 
by Burt and Adelson [3]. The improvement over 

3 the LP with a=~ is substantial, emphasizing the 
importance of the optimization of this parameter. 
Despite these excellent results, the optimized LP is 
still less performant than the LSLP which provides 
its best results for a = 3. 

The Laplacian pyramid coding scheme proposed 
by Burt and Adelson is especially suited for lossy 
image transmission [3]. The quantization scheme 
that they propose uses fewer bins for the higher 
resolution levels of the pyramid, which takes into 

account the fact that human contrast sensitivity 
decreases with high spatial frequencies. We have 
conducted some preliminary experiments to com- 
pare the efficiency of the different pyramid repre- 
sentations for this type of image coding. The 
experimental procedure is similar to the one used 
in [3] with some minor differences. The important 
features of the present compression algorithm are 
as follows: 

(i) The coding and the decoding are performed 
in parallel starting at the coarsest level of the 
pyramid. In the present case, the pyramid has 
three levels and the coarsest (~)  is coded pre- 
cisely using all eight bits per node (256 gray 
level values). The corresponding contribution 
to the total bit-rate is only 8=0.125bits/  
pixel. 

(ii) A Laplacian image is computed from the 
difference between a particular level of the 
Gaussian pyramid and the expanded version 
of the encoded image one level coarser. This 
technique takes into account quantization 
errors introduced at coarser resolution levels. 

(iii) The number of levels for each Laplacian 
image is fixed and should be determined using 
psychophysical information. The values of 
these levels are determined using a discrete 
form of the Max minimum error quantization 
algorithm [ 11 ] applied to the histogram of the 

Table 3 

Comparison of performance measures at successive pyramid levels for the 'MRI' 
image with a=0.5 and a=0.6 

Pyramid level Range RMS Entropy SNR (dB) 

LP-1 (a=0.6) (-71, 91) 7.09 4.06 31.11 
LP-2 (a=0.6) (-97, 124) 13.74 4.92 24.15 
LP-3 (a=0.6) (-81, 133) 18.69 5.49 20.07 
LP-4 (a=0.6) (-69, 120) 19.10 5.67 - -  

LP or LPI-I (a=0.5) (-73, 95) 8.54 4.31 29.49 
LP or LPI-2 (a=0.5) (-79, 111) 13.75 4.92 22.78 
LP or LPI-3 (a=0.5) (-60, 103) 16.82 5.32 19.15 
LP or LPI-4 (a=0.5) (-45, 93) 15.53 5.38 - -  

LSLP-1 (a=0.5) (-65, 79) 5.93 3.89 32.65 
LSLP-2 (a=0.5) (-120, 145) 16.84 5.12 24.93 
LSLP-3 (a=0.5) (-125, 190) 27.84 5.71 20.50 
LSLP-4 (a=0.5) (-129, 196) 33.73 6.01 - -  

Signal Processing 
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images. The corresponding quantization levels 
are selected to minimize the approximation 
error and are not necessarily equidistant as 
was the case in the approach chosen by Burt 
and Adelson. In this series of experiments, the 
Laplacian images 2 and 3 were represented by 
5 and 15 levels, respectively. The finest level 
of the pyramid was either not transmitted at 
all to achieve bit-rates lower than 1 bit/pixel 
or represented by 3 levels. 

(iv) The effective bit-rates are estimated from the 
entropies of the quantized images using (5.2). 
These estimates are somewhat optimistic as 
they ignore the transmission of the code book 
information. A practical approach to this 
problem is to summarize this information in 
terms of the coefficients of a parametric model 
of the Laplacian histogram (for example, the 
two parameters a and fl of a generalized expo- 
nential model p(Af) = Co e-~lAJ-I/~)~). These 
parameters can then be used to determine 
uniquely the optimal quantization levels in the 
Lloyd Max scheme and their corresponding 
code words in a variable length Huffman 
code [6]. 

Some examples of image coding with bit-rates as 
low as 0.7 bits/pixel are shown in Fig. 7. The same 
number of quantization levels were used in all cases 
with the exception of Fig. 7(d). This latter image 
is an improvement of Fig. 7(c) obtained by adding 
a finer level of the LSLP quantized with three lev- 
els; it is visually indistinguishable from the origi- 
nal. The image obtained using LP (Fig. 7(a)) 
appears to be out of focus and is of lesser quality 
(both qualitatively and quantitatively) than the 
results obtained with the LPI and LSLP. The LSLP 
scheme is clearly superior and appears to preserve 
most of the image details. The same qualitative 
behavior has also been observed for different com- 
pression ratios and test images. For the test image 
in Fig. 7, we have also observed that the quality of 
the LP reconstruction is noticeably degraded for 
bit-rates lower than 1.5 bits/pixel, while for the 
LSLP greater compression ratios still produce 
acceptable results, as illustrated by Fig. 7(c). In 

1 9 7  

these preliminary experiments, the performance of 
LSLP appears to be consistently superior. 

5.2. Discussion 

Our experimental results show that both the LPI 
and LSLP should be superior to the standard LP 
proposed by Burt et al. Two types of improvements 
have been considered and both seem to be equally 

1 
helpful, at least for a < ~. The first is the require- 
ment that an image extrapolation be a true interpo- 
lation of a lower level approximation. A simple 
way to enforce this constraint is to add a pre-filter 
(g(k)) to the basic EXPAND operation. The effect 
of this operator is less significant when a is close 
to ~, in which case the LP and LPI are essentially 
equivalent. The second is to minimize the amount 
of transmitted information. The only adjunction 
here is a post-filter following the basic REDUCE 
operation. The LSLP incorporates both of these 
mechanisms and has surprisingly good com- 
pression properties. This approach provides an 
attractive alternative to the standard LP and 
should allow greater efficiency in image coding. 
Since multi-resolution techniques are being used 
increasingly in image processing, there are many 
other potential applications including image seg- 
mentation [2, 16], edge detection [10], feature 
extraction and a variety of multi-grid algorithms 
for computer vision [14]. 

The experimental results presented in Section 5.1 
indicate a performance improvement in a lossless 
progressive data transmission scheme (cf. Fig. 6). 
The reduction of the RMS error also suggests that 
the LSLP should result in some improvement for 
lossy image coding as confirmed by our preliminary 
experiments (cf. Fig. 7). These results, however, 
are still preliminary and require further investiga- 
tion. For instance, it seems important to determine 
an optimal bit allocation strategy for a given com- 
pression ratio and to compare the coding results 
for a variety of test images using objective psycho- 
visual criteria. A detailed evaluation of the depend- 
ence of the relative performance of the algorithms 
on the parameter a may also be appropriate. 
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Fig. 7. Comparison of lossy image compression schemes. (a) Laplacian pyramid (LP): B=0.746bits/pixel, SNR=23.02dB; 
(b) Laplacian pyramid with interpolation (LPI) : B = 0.708 bits/pixel, SNR = 24.51 dB; (c) least squares Laplacian pyramid (LSLP): 

B = 0.702 bits/pixel, SNR = 27.15 dB; (d) LSLP: B = 1.667 bits/pixel, SNR = 31.90 dB. 

As described in Appendix A, the additional pre- 
and post-filters can be implemented very efficiently 
and the increase in computation is negligible. For  
instance, the CPU times (standard 16 MHz Apple 
Macintosh Ilcx) required to compute the first level 
of the Laplacian of  a 256 x 256 image using Burt's 
LP, the LSI and LSLP are 18 s, 25 s and 27 s, 
respectively. The complexity of the LSI and LSLP 
are comparable because the use of the interpolation 
pre-filter can be avoided in the second scheme (cf. 
Fig. 2(f)). 

The value a--83--- 0.375 was used for most of  our 
experiments. It is close to the value 0.36 recom- 
mended by Burt for the greatest reduction of  the 
side lobes of the transfer function [2]. Note that 
a =3 corresponds to an implicit choice of a 
Signal Processing 

quadratic B-spline interpolator [17]. In terms of  
performance, this value of  a seems to be preferable 
over others (cf. Tables 2 and 3), largely because 
of the smoothness and Gaussian-like shape of the 
corresponding interpolation kernel, which appears 
to be most appropriate for a large class of  images. 
The unmodified LP, on the other hand, seems to 
perform best for a=0 .6  [3]. An explanation for 
this observation is that the corresponding correc- 
tion filters in our modified scheme have a very fast 
decay (i.e., g(k)= O(z~ ~1) and h(k)= O(plkl), where 
Zl = 0.084 and p = 0.074), and can be relatively well 
approximated by an identity filter. Another value 

1 
of  interest is a = ~. This value leads to a triangular 
interpolation function and corresponds to image 
reconstruction by piecewise linear (or bilinear) 
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interpolation. This scheme is equivalent to a first- 
order spline interpolation. 

Clearly, the theory presented here is not 
restricted to the particular form of interpolation 
function given by (2.4). It is straightforward to 
adapt these results to any given kernel 
w(k) ~ W(z). The only constraint is the stability of 
the approximation and interpolation filters, which, 
in the general case, are given by 

2 
H(z) W(zl/2 ) W(.,_I/2) "~ m ( _  l/.2) m ( _ z _ l / 2 ) ,  

t5.4) 

2 
a(z)  = (5.5) 

W(z) + W(-z )  

There is another advantage for the use of the 
least squares pyramid. In a standard complete pyr- 
amidal representation the number of nodes is 

1 
increased by 5 when compared to the initial 
number of pixels. In the LSLP, the total number 

I 
of nodes can be reduced by a (e.g., made equal to 
the initial number of pixels) because the residual 
error at each step is orthogonal to the reduced reso- 
lution signal approximation. In other words, the 
LS REDUCE function is a projection operator 
with the property that 

REDUCELs[Af~(k)] = 0. (5.6) 

For a bi-dimensional image with M grid points, 
(5.6) provides us with a set of 1 gM linear con- 
straints. The true number of degrees of freedom of 
the LS Laplacian is therefore 3M and not M as 
may be thought initially. In fact, we will show in 
the last section that the quadrature mirror filter 
(QMF) concept offers a simple solution for dealing 
with this redundancy. We will thereby also estab- 
lish the relationship between the present approach 
and recent work in orthogonal pyramid structures 
[1, 12], wavelet transforms [9] and subband coding 
techniques [ 18, 20]. 

5.3. Link with Q M F  pyramids 

Quadrature mirror filters, introduced by Croisier 
et al. in 1976 [4], provide an attractive method 

for splitting a signal into critically sampled filtered 
components. Such filter banks can be applied iter- 
atively to produce a subband decomposition of the 
spectrum into octave bandwidth pieces [18]. The 
two attractive features of this technique are (i) the 
reversibility of the process (error free reconstruc- 
tion) and (ii) the fact that the resulting signal 
decomposition uses no more samples than the ini- 
tial representation. Recently, several authors have 
applied this concept to pyramid image compression 
and have reported substantial improvements in 
performance [1, 12, 18, 20]. QMF banks also pro- 
vide an efficient way of computing wavelet trans- 
forms, as has been shown recently by Mallat and 
Daubechies [5, 8, 9]. 

The block diagram of a QMF bank is represen- 
ted in Fig. 8. In the basic QMF design [12, 19], the 
transfer functions of the filters are chosen such that 

Fo(z) = Go(l/z) = F(z), 

Fl(Z) = FI( 1/z) = zF( - z ) ,  
(5.7) 

where F(z) is a lowpass filter prototype satisfying 
the perfect reconstruction property 

F(z)F( 1/z) + F ( - z ) F ( -  1/z) = 2. (5.8) 

To establish its relationship to the present 
approach, we will construct a QMF bank such that 
its lower branch (lowpass) precisely computes the 
least squares signal estimates derived in Section 4. 
We derive this result by manipulating the block 
diagram in Fig. 9(a), which performs successively 
the REDUCE and EXPAND functions described 
in Sections 3 and 4. The first step is to note that 

Fig. 8. Block diagram of a quadrature mirror filter bank for 
signal analysis and synthesis. 
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a) 

Reduce Expand 
r I f ] 

W2(z)[H(z2)] It2 -- W2(z)lH(z2)] L~ D 

Fig. 9. QMF interpretation of the least squares approximation 
procedure: equivalent block diagrams. 

the two central filters (W~ (z) and G(z)) cancel each 
other. Second, the filter H(z) is factored into a 
product of square-root components (Fig. 9(b)). 
Finally, the filters are moved on each side of the 
sampling modules by upsampling their impulse 
response by a factor of two (this is achieved by 
replacing z by z 2 in their z-transform) (Fig. 9(c)). 
At the end of this process, we have an equivalent 
system (i.e., same input and output) for which the 
pre-filters and post-filters are identical and given 
by 

F(z) = F( 1/z) = W2(z)( H(z2) ) ' /2. (5.9) 

Using (5.4), it is then easy to verify by substitution 
that this operator satisfies the perfect reconstruc- 
tion property (5.8). Since the final output of the 
QMF bank is equal to its input, it follows that the 
corresponding highpass branch precisely codes for 
the residual signal displayed in the least squares 
Laplacian pyramid. This approach is easily 
extended to higher dimensions by iterating the sub- 
band decomposition along the rows and columns 
according to the procedure initially described by 
Vetterli [ 18]. The main advantage of such a QMF 
decomposition is that the residual signal is now 
represented without redundancy (i.e., the sum of 
the number of lowpass and highpass samples is 
equal to the initial number of samples). 

In order to obtain a decomposition closer to our 
initial design, we choose an alternative, but 

globally equivalent, factorization with 

Fo(z) = ½ W2(z)H(z 2) W,(z2), 

W2(z) 
Go(Z) = W, (z2) ' 

(5.10) 
F,(z) = ½z W 2 ( - z ) H ( f )  W,(z2), 

G,(z)=z_ t W2(-z) 
W,(z  2) ' 

for which it can be verified that the filters Fo(z) and 
Go(z) are precisely those required for the 
REDUCE and EXPAND function described in 
Sections 3 and 4. The advantage of this latter 
decomposition is that it can be implemented recur- 
sively using the fast algorithms described in Sec- 
tions 3 and 4 (see Figs. 2(d) and 2(e)) and 
Appendix A. The highpass components can be 
evaluated using the same procedure, provided that 
the FIR smoothing kernel (Wz(z)) (which is used 
as a pre- and post-filter) is replaced by its modul- 
ated and shifted counterparts: z W2(-z) and 
W2(-z)/z ,  respectively. We note that this particu- 
lar choice of filters corresponds to a linear algebraic 
transform that is non-orthogonal, in contrast to a 
standard QMF bank as defined by (5.7) (5.8), 
which can be interpreted as an orthogonal trans- 
formation [12]. These results also suggest that a 
QMF implementation of the present least squares 
image pyramid could provide a further 

I 
improvement by z over the coding procedure used 
in the experimental part of this paper. 

6. Conclusion 

Two methods for improving the Laplacian pyra- 
mid proposed by Burt and Adelson for image 
coding have been described: 
(i) The EXPAND function has been redefined to 

ensure that the expansion of a coarser level 
onto a finer grid is an exact interpolation. 

(ii) An improved REDUCE function has been 
derived in order to minimize the loss of infor- 
mation occurring during resolution 
conversion. 

Signal Processing 
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It is easy to modify the initial scheme to 
incorporate these new functions. This is achieved 
by adding a pre-filter and a post-filter in the expan- 
sion and reduction modules, respectively. These 
filters can be coded very efficiently and the resulting 
increase of computations is moderate. 

For lossless progressive data transmission, the 
performance improvement that can be achieved in 
this way is significant. The least squares scheme 
performs best according to the quantitative criteria 
used in this paper. Preliminary results suggest that 
this approach allows improved image coding 
according to the lossy scheme developed by Burt 
and Adelson. The least squares pyramid also 
stands as an interesting alternative to the widely 
used Gaussian pyramid and should be useful in a 
variety of multi-resolution image processing algo- 
rithms. It has also been shown that the present 
approach can be linked to the family of QMF 
image pyramids (e.g., orthogonal pyramids, wave- 
let transforms, subband coders). 

that the zeros of P2N(Z) must necessarily appear 
in reciprocal pairs (e.g., if PZN(Zi)=O then 
P2x(z~-r)=0). These roots, which are assumed to 
lie outside the unit circle, are denoted by 

{ ( zi , : i '  ) l lzil < 1, i :  1 . . . . .  N}. 

Consequently, H2N(Z ) can be factored as 

N 
H,_N(z) =Co [ ]  H(z; z,.), (A.2) 

where H(z; zi) is the transfer of a simple symmetri- 
cal filter, decomposed as 

__Z i ) 
H(z; zi)= (1 --Ziz-l)(1 --ZiZ) 

1 1 )  
_ -1 ~- 1 . ( A . 3 )  

- - ~ . ~  1 - -  Z i ~  

A p p e n d i x  A .  E f f i c i e n t  r e c u r s i v e  f i l t er  

i m p l e m e n t a t i o n  

This appendix describes an efficient way to 
implement the recursive filters required in the 
generation of a least squares Laplacian pyramid. 
The transfer functions of these operators are spe- 
cial cases of a class of IIR symmetrical filters 
described by the following equation: 

H2N(Z) 

CO 

N 
CoZ 

P2N(Z) '  
(A.1) 

where Co and {aklk = 0 . . . . .  N -  1 } are given con- 
stant coefficients. Due to the reverse symmetry of 
its coefficients, the polynomial P2N(Z) of degree 2N 
is such that z--Np2N(Z)=zNp2N(Z--I). This implies 

It follows that (A. 1) can be implemented by a cas- 
cade of simple operators of the form specified by 
(A.3), each of which has a symmetrical exponential 
impulse response: 

h(k; z i ) -  -z i  ,b~l (A.4) 
( 1 - =2,) -' " 

The implementation of these elementary units is 
based on the decomposition of H(z; z,% into a sum 
of simple causal and anti-causal first order systems, 
as given by the right-hand side of (A.3). The corre- 
sponding recursive filter equations are 

y+(k)=x(k)+z~y+(k -1 ) ,  k = l  . . . . .  K, 

y - ( k ) = x ( k ) + z ~ y - ( k + l ) ,  k=K,  . . . .  1, 

y ( k )  = ci (y+(k)  + y  (k)  - x ( k ) ) ,  (A.5) 

where x(k) and y(k) are the input and output sig- 
nals, respectively, and where ci = - z i / ( 1 - z  2) is a 
scaling constant. For boundary conditions speci- 
fied by (3.7), the recursion is initialized with the 
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following values: 

ko 

y+(1)=  E z lk - ' l x (k ) ,  
i=1 

y - ( K )  =y+(K) ,  

M. Unser / An improved Laplacian pyramid for image compression 

(A.6) 

where k0 is such that zl ~'°p is below some prescribed 

level of  precision. A slightly more economical alter- 

native is an implementation based on a product 

decomposition: 

k = l  . . . . .  K, 

(A.7) 

k = K - 1  . . . . .  1. 

y+(k) = x(k)  + z , y + ( k -  1), 
y ( K )  = c~(2y+ (K)  - x ( K )  ), 

y (k )  = z~(y(k + 1) - y + ( k ) ) ,  

also more economical to combine the individual 

scaling factors in (A.1) and (A.5) or (A.7) into a 

single multiplication at the end of  the process. The 
relevant filter parameters for implementing some 
of the operators described in Sections 3 and 4 using 
this strategy are given in Table A. 

This approach is also applicable in higher dimen- 
sions through the successive use of  the same one- 
dimensional filter along the various dimensions of  

the data. For  digital images there is no need for 
floating point data storage other than the one- 
dimensional array(s) required by the basic one- 
dimensional filtering module. 

We note that the second equation is borrowed from 

the sum decomposition and is required to initialize 

the backward recursion correctly. 

All operations in (A.7) (respectively (A.5)) are 

real, and it is necessary to use one (respectively 

two) one-dimensional real array(s) for storing the 

filtered sequences with sufficient precision to avoid 

a recursive propagat ion of errors. It is relatively 

straightforward to write a general subroutine that 

implements (A. 1) from a succession of  simple con- 

volutions of  the form (A.5) or (A.7); no additional 

intermediate storage is necessary for this task. It  is 

Appendix B. Derivation of the least squares 
coefficients 

The error criterion (4.2) is decomposed as 

+cX~ 

d =  E ( f  , (k)/  

+ o C  

+ E (w2 • [pi]T~(k)) 2 

+at., 

- 2  Z f - , ( k ) ( w 2 *  [Pilt2(kl). 

Table A 

Transfer functions and characteristic parameters of interpolation and least squares approximations filters as a 
function of the parameter a 

Filter a Transfer function Co Poles: {Izir < l li= 1 . . . . .  N} 

2/(1 - 2a) 2 ~ / ~  1 - 2a 
g(k) >! ~ z l -  

z+4a/ (1-2a)+z  ~ 1-2a 1-2a 

36 L / L  / ~  

ntK;a=~) 0.3333 z2+17z+36+17z l+z 2 36 

64 
h(k; 3~ 

a=~) 0.375 z2+28z+70+28z l+z 2 64 

100 
h(k; a=~) 0.4 (z-J+3+z)(z J+38+z) 100 

4 
h(k; a= ½) 0.5 z + 6 + z _  ~ 4 zl = . j 8 -  3 

z l = -0.574403, z2 = -0.068417 

zl =-0.446463, z2 =-0.0395661 

zl =-0.381966, z2=-0.026334 

Signal Processing 
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D e f i n i n g  w22(k) = Y 4 = - ~  w2(l)w2(k + l) and mak- 
ing the appropriate change of variables, this 
expression is rewritten as 

e 2= ~ ( f _ t ( k ) f  

+ - ) t  

+ Z [p,]~2(k)(w22 * [p,]~2(k)) 

-2  ~ (w2*f i(k))[p~]~2(k). 

The restriction of the two rightmost terms to the 
non-zero values of [pi]r2(k) (e.g., a decimation by 
a factor of 2) yields 

• ~= S (f,  ,(k)) 2 

+ ~ pi(k)([w22]+2*pi(k)) 

- 2  y" p~(k)([w2*f-t]+2(k)). (B.1) 

The partial derivative of (B. 1) with respect to p~(k) 
is given by 

8 e  2 

. . . .  2[w22]+2 * p~(k) 
~pi(k) 

-2[w2 *f-1]+2(k). (B.2) 

The optimal sequence of coefficients is obtained by 
setting this expression equal to zero, which results 
in (4.3). Q.E.D. 
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