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Abstract. This paper presents an extension of the family of orthogonal Battle/Lemarié spline wavelet transforms with emphasis
on filter bank implementation. Spline wavelets that are not necessarily orthogonal within the same resoluton level, are con-
structed by linear combination of polynomial spline wavelets of compact support, the natural counterpart of classical B-spline
functions. Mailat’s fast wavelet transform algorithm is extended to deal with these non-orthogonal basis functions. The impulse
and frequency responses of the corresponding analysis and synthesis filters are derived explicitly for polynomial splines of any
order n (n odd). The link with the general framework of biorthogonal wavelet transforms is also made explicit. The special
cases of orthogonal, B-spline, cardinal and dual wavelets are considered in greater detail. The B-spline (respectively dual)
representation is associated with simple FIR binomial synthesis (respectively analysis) filters and recursive analysis (respectively
synthesis) filters. The cardinal representation provides a sampled representation of the underlying continuous functions (inter-
polation property). The distinction between cardinal and orthogonal representation vanishes as the order of the spline is
increased ; both wavelets tend asymptotically to the bandlimited sinc-wavelet. The distinctive features of these various represen-
tations are discussed and illustrated with a texture analysis example.

Zusammenfassung. Dieser Artikel stellt eine Verallgemeinerung der Familie der orthogonalen Spline-Wavelet-Transforma-
tionen nach Battle/Lemarié vor, wobei insbesondere auf die Filterbank-Implementierung eingegangen wird. Durch Linearkom-
bination von Polynom-Spline-Wavelets mit kompaktem Tréiger - dem natirlichen Gegenstiick zu klassischen B-Spline-
Funktionen - werden Spline-Wavelets konstruiert, die nicht notwendigerweise orthogonal innerhalb eines Aufldsungsniveaus
sind. Der schnelle Wavelet-Transformations-Algorithmus von Mallat wird auf diese nichtorthogonalen Basisfunktionen erwei-
tert. Die Impulsant worten und Ubertragungsfunktionen der zugeordneten Analyse- und Synthesefilter werden fiir Polynom-
Splines beliebiger (ungerader) Ordnung explizit hergeleitet. Die Verbindung zum allgemeinen Konzept der biorthogonalen
Wavelet-Transformationen wird ebenfalls klar herausgearbeitet. Die Spezialfille der orthogonalen, B-Spline-, kardinalen und
dualen Wavelets werden im Detail betrachtet. Die B-Spline- (bzw. duale) Darstellung ist mit einfachen nichtrekursiven bi-
nomialen Synthesefiltern (bzw. Analysefiltern) sowie rekursiven Analysefiltern (bzw. Synthesefiltern) verbunden. Die kardinale
Darstellung ergibt eine abgetastete Darstellung der zugrundeliegenden kontinuierlichen Funktion (interpolationseigenschaft).
Bei zunehmender Ordnung des Splines verschwindet der Unterschied zwischen der kardinalen und der orthogonalen
Darsteltung; beide Wavelets nihern sich dem bandbegrenzten sinc-Wavelet an. Die charakteristischen Merkmale dieser
verschiedenen Darstellungen werden diskutiert und durch ein Texturanalyse-Beispiel illustriert.

Résumé. Ce papier présente une extension de la famille orthogonale d’ondelettes spline de Battle et Lemarié en mettant Paccent
sur une mise en oeuvre par banc de filtres. Des ondelettes spline - pas forcément orthogonales a I'intérieur d’un méme niveau
de resolution — sont construites par convolution discréte d’ondelettes spline polynomiales a support compact; ces derniéres
étant I'extension naturelle des fonctions B-spline classiques. L’algorithme de décomposition et reconstruction par filtrage QMF
de Mallat est modifié pour ces fonctions de bases non-orthogonales. Les réponses impulsionelles et fréquentielles des filtres
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correspondant d’analyse et de synthése sont déterminées de fagon explicite pour tout les splines polynomiaux d’ordre impaire.
Le lien avec la théorie générale des ondelettes biorthogonales est aussi établi. Les cas particuliers des ondelettes spline orthogo-
nales, B-spline, cardinales et duales sont traités de fagon plus approfondie. La représentation B-spline (resp. duale) donne lieu
a de simples filtres binomiaux de synthése (resp. d’analyse) et des filtres récursifs d’analyse (resp. synthése). La représentation
cardinale correspond a une représentation échantillonnée des fonctions continues sous-jacentes (propriété d’interpolation). La
distinction entre représentation cardinale et orthogonale s’atténue lorsque le degré des fonctions spline augmente; ces deux
types d’ondelettes convergent vers une méme fonction sinc modulée lorsque I'ordre tend vers I'infini. Les propriétés de ces
diverses représentations sont mises en évidence en s’appuyant sur un exemple d’analyse de texture.

Keywords. Wavelet transform; B-splines; polynomial splines; interpolation; binomial filters; quadrature mirror filters (QMF);

biorthogonality ; multiresolution signal analysis.

1. Introduction

The wavelet decomposition of a continuous-time
signal g(x) is an expansion of the form

g)=Y ¥ dokyy(2 x—k), (1.1)

ieZ keZ

where the basis functions are generated by dilation
(index /) and translation (index k) of a single
prototype w(x). The wavelet function y(x) must
satisfy certain properties such that there exists a
linear one-to-one mapping between a function
g(x)el, and its wavelet coefficients {d,(k),
(i,k)eZ?}; this mapping defines the discrete
wavelet transform [10, 25, 29]. This type of repre-
sentation has a number of attractive features that
have contributed to its recent growth in popularity
among mathematicians and signal processors
[33, 40]. First, it is a hierarchical decomposition
that enables the characterization of signal over
scale (multiresolution analysis) {24, 25]. Second,
the wavelet transform is in essence a subband signal
decomposition; in fact, it is closely related to a
variety of multirate decomposition techniques
described in the signal processing literature
[9, 39, 48, 52]. Finally, there is a fast reversible
wavelet transform algorithm that uses quadrature
mirror filter (QMF) banks [25].

Here we will consider the special case in which
the basis functions are polynomial splines. Several
such examples have played a significant role in the
early development of the wavelet transform theory.

Signal Processing

The oldest one is the well known Haar transform
[18], which corresponds to a spline of order n=0.
The next example was constructed by Stromberg
using one-sided polynomial splines of order n [41].
Later, Battle and Lemari¢ independently con-
structed orthogonal spline wavelets using symmet-
rical basis functions with an exponential decay
[3, 21]. Another well known example is the modu-
lated sinc-wavelet (ideal bandpass filter), which can
be viewed as a spline of infinite order [21]. More
recently, Chui and Wang introduced the B-spline
wavelets of compact support [7], which are the nat-
ural counterparts of the classical B-splines {34, 35].
We did the same construction independently and
also proved that the B-spline wavelets converge to
a modulated Gaussian as the order of the spline
goes to infinity [46].

The purpose of this paper is to unify these vari-
ous approaches by developing a general framework
for polynomial spline wavelet transform. We will
introduce some general design principles and pre-
sent some new examples of wavelet transforms;
for example, the cardinal spline wavelet transform
which has the fundamental interpolation property.
We will also emphasize a signal processing point
of view which should make these techniques more
accessible to an engineering audience.

The presentation is organized as follows. In
Section 2, we review some results on polynomial
splines and discuss the concept of a spline pyramid.
The wavelet transform essentially provides a non-
redundant representation of the differences
between adjacent levels in such a pyramid. In
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Section 3, we show how to obtain such a represen-
tation by deriving the B-spline wavelets of compact
support. We then use discrete convolution opera-
tors to specify an extended family of polynomial
spline wavelet transforms. In particular, we dem-
onstrate that the use of non-orthognal wavelets can
simplify the filters and computations in the wavelet
decomposition algorithm. Some of these filters are
FIR binomial kernels and can be implemented
using addition only, while others have a simple
recursive structure. We also indicate how this
family of spline transforms falls into the general
framework of biorthogonal wavelet transforms
{8, 19, 32, 50]. In this respect, we note that a dis-
tinctive feature of the present approach is the
orthogonality of the wavelets across scales, a prop-
erty that is usually not present in other biortho-
gonal schemes. Finally, in Section 5, we consider
some image processing examples and discuss the
properties of various representations.

Notation and operators

L, is the vector space of measurable, square-
integrable one-dimensional functions f(x), xeR.
The inner product of f(x)eL, with g(x)elL, is
denoted by { f(x), g(x)). L, is the space of square
summable sequences (or discrete signals) a(k),
keZ. We will consider a number of operators act-
ing on discrete signals. A summary of these opera-
tions together with their effect in the z-transform
domain is given in Table 1.

Table 1

Properties of the z-transform

Operator Signal z-transform

+a0

Discrete signal a(k) A(z)= Y atk)z™*

k=—o0
Time shift atk —ko)=38i, * atk) 2 *A(z)
Time reversal d'(k):=a(—k) A(l/z)
Modulation a(ky:=(—1)a(k) A(—z2)

m=—1 A i2nkyl/m
Down-sampling  [a],,.(k) A([ze"™]™)

k=0 m
Up-sampling [altm(k) A(Z™)
Convolution a* bk) A(z)B(z)
Inverse filter b (k) B(z)"'
Square-root b)Y (k) B(z) '

inverse

Superscript and subscript convention: The func-
tions considered here are polynomial splines and
typically bear two indices (e.g., g(;,(x), wn(x)). The
superscript ‘n” denotes the spline order and also the
degree of the piecewise polynomial segments. The
subscript in parentheses indicates a resolution
level: (i) corresponds to a step size of 2. A
subscript letter is used to indicate a particular type
of scaling function or wavelet (e.g., o: orthogonal,
b: B-spline, c¢: cardinal and d: dual).

2. Multi-resolution polynomial spline
representations

" We consider a sequence of nested polynomial
spline function spaces {V{,, ieZ} of order n (n
odd) such that V(> Vi, for ieZ. Specifically,
Vi is the sub-set of functions in L, that are of
class C"' (i.e. continuous functions with continu-
ous derivatives up to order n—1) and are poly-
nomials of degree n (n odd) on each interval
[k2, (k+1)2") with keZ. These subspaces can be
defined, as in [47], by

Vio= {g?o(x) = ¥ k)" (2x—k),
k=—oc
xeR, cmelz}, (2.1)

where the scaling function ¢"(x) is a weighted sum
of B-splines,

+oc
P'0)= T pkIB k). 22)
k=—o0

and where p is an arbitrary invertible convolution
operator (or filter) from / into itself. The function
B"(x) is Schoenberg’s central B-spline of order n;
it can be constructed by repeated convolution of a
B-spline of order 0:

Br(x)=p"%p°* ¥ Bx), (2.3)
S

n+1 times

where B°(x) is the characteristic function in the
interval [—3, é) The subscript (i) that is used
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throughout the presentation denotes the resolution
level; it can be interpreted as a coarseness index.
Increasing the resolution level corresponds to
stretching the basis functions by a factor of two.

For p= 6, (identity filter), the expansion in (2.1)
is the standard B-spline representation [34, 35]. A
fundamental characteristic of B-spline basis
functions is their compact support, the property
that makes them useful in a variety of applications
[31].

The fact that the function spaces are nested
implies that the basis functions at coarser levels are
themselves included in the finer resolution spaces;
ie., B(x)eV{,, i<0. Specifically, we have the two
scale relation

+oc

B'(x/2)= ) w(k)B"(x=k), (2.4)

k=—o0

where u3 is the binomial kernel of order n,

1 n+1
ux(k) = 2"<k+(n+ 1)/2)’ K<+ 1)/2,

0, otherwise

U (f)=2cos" ' (nf). (2.5)

DFT
—>

This property fails for # even unless one uses modi-
fied spline functions spaces for which the basis
functions are shifted by half a sampling step with
respect to the origin. This difficulty does not arise
if causal B-splines are used instead of centered basis
functions, the approach taken by Chui and Wang
[7]. We note, however, that the use of causal B-
splines may create other complications because the
corresponding cardinal spline interpolation prob-
lem for n even is ill-posed (cf. [43]).

Given a function g(x)el,, we can obtain its
minimum error polynomial spline approximation
for all resolution levels ieZ. Such a sequence of
fine-to-coarse approximations, {gfy(x)}:cz, defines
a multiresolution analysis, called the polynomial
spline pyramid. We have shown previously [47]
that the coefhicients of the polynomial spline pyra-
mid can be constructed recursively by repeated

Signal Processing

application of a REDUCE function (filtering and
down-sampling by a factor of 2):

carnlk) = [ * cwlia(k), (2.6)
where the impulse response of the prefilter 9 is

ﬁ(k)= % [(p * b2n+l)Al]T2 *p * b2n+1 * ug(k)
(2.7)

The sequence b” denotes the discrete spline of order
n, which is obtained by sampling the B-splines at
the integers,

b (k)=B"(X) | < Bi(2). (2.8)

Note that the filters 4" and #; both have a finite
impulse response (FIR).

Conversely, the coefficients of a signal approxi-
mation at a resolution level (ip) can be expanded
to any finer level (i<iy) by successive application
of an EXPAND function (up-sampling and post-
filtering). Specifically, the expansion coefficients
¢ok) of gu+n(x) in the standard representation
(2.1) can be computed as

CA(i)(k) =v* [e+nlra(k), (2.9)
where the postfilter is

v=[pl*uz* (p)"" (2.10)

The computational procedure described by (2.6)
and (2.9) is an extension to non-orthogonal basis
functions of Mallat’s multiresolution approxima-
tion algorithm [25].

3. Polynomial spline wavelets

Let us denote by #{;1y:=g() —gi+1y the loss of
information (or residue) resulting from the applica-
tion of the REDUCE operation defined by (2.6).
This residue can be represented in the difference
pyramid, as suggested in [47], although such a rep-
resentation has twice as many degrees of freedom
as necessary. In two dimensions, this representa-
tion is overcomplete by a factor of 4/3. Here, we
consider a more compact representation using the
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wavelet transform concept proposed by Mallat,
Meyer and others.

By construction, the residue r{;+ ) is included in
Viy, and is perpendicular to V(. ; that is,
r?iJrl)e W:’i+l)’ where W'(1i+l)® V?H—l): V?i) and
Wiy LV is1y. Wiisry is the so-called residual (or
detail) space at resolution 2'"'. The essence of the
wavelet decomposition method is to construct sets
of shift-invariant bases for the sequence of residual
spaces: { W{,, ieZ}, so that

+o0 I
7,'): @ W?k): V?[)@( . W?/q), I>l
k=i+1 k=i+1
(3.1)
and
Wil Wiy, (i,j)eZ” and i#j. (3.2)

Lemarié’s solution uses orthogonal spline wavelets.
He has shown that they have an exponential locali-
zation [21]. We show here that this construction
method can be extended. For this purpose, we will
initially set the framework of our representation
to p=do and construct polynomial spline wavelets
with a compact support (), which are the natural
counterparts of the standard  B-splines

(o= p") [34].

3.1. Spline wavelets of compact support

Specifically, we would like to find a wavelet of
the form

too

vix/2)= 3 wk)p'(x=k), (3.3)

k=—x

that is orthogonal to the set of expanded B-spline
functions {f"(x/2—k), keZ} with the additional
constraint that the sequence w(k) is finite. By using
the representation of expanded basis function (2.4)
together with the property {f"(x), B"(x—y)>=
B'(y) (a direct consequence of (2.3)), the
orthogonality constraint can be expressed as a

convolution equation,

<y'(x/2), B (x/2—k))
=w*us* b k) =0 VkeZ.  (3.4)

Taking the z-transform, we get

%(W(z) Ui B (=)

+ W(-z) U;(—Z)B%"“(—z)>:o. (3.5)

It can be verified by substitution that a general
solution to this equation is

W(z)=zU%—z)B}"" ' (—2)Q(%),

where Q(z) is an arbitrary polynomial in z. The
sequence w of minimal length is obtained for
Q(z)=1. Taking the inverse z-transform (cf. rules
in Table 1), we obtain an explicit formula for the
B-spline wavelet of order n,

VIG/D= S B 6 ) (KB x— k),

k=—o0

(3.6)

where the notation g(k):=(—1)a(k) refers to a
modulation by (—1)* and where 8,(k) represents a
unit pulse at position k=/ and acts as the shift
operator: 8; * a(k)=a(k—=1i). y} is obtained from
a weighted sum of basic B-splines and hence is a
polynomial spline of order n (i.e. wi(x/2)e V).
Based on the orthogonality property (3.4), we get
the following theorem.

THEOREM 1. For ieZ, the vector spaces W1,
defined as

W{',-)={r?,~)(x)= Y dplk)ys(2 'x~k),

k=—cc
XER, d(i)elz} (37)

are such that

L Vi (3.8)
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and
Wfi+1)® V?H—l) = V:'i)- (3-9)

The first part of this theorem follows directly from
(3.4). The last part is proved in Appendix A.

Since we know that (i) clos,,(\_icz Vi) =L, and
(i) (Niez Viy=1{0} [24], it follows from Theorem
1 that the set of functions {y5(2 'x—k)//2', ke Z,
ieZ} is an unconditional basis of L,. These results
can also be generalized for modified wavelet
functions obtained by linear combination (cf.
(3.12)). These wavelets differ from those derived
previously by Lemarié in that they are not ortho-
gonal within the same resolution level, although
they are constrained to be orthogonal between
resolution levels.

Since f"(x) has compact support and that both
b*"" (k) and u3(k) are FIR operators, the wavelet
vy defined by (3.6) has compact support as well.
The basic B-splines at resolution level (1) and their
corresponding wavelets, as determined from (3.6),
are shown in Fig. 1 for n=1 and 3. The wavelets
are symmetric and shifted by one unit with respect
to the standard B-spline functions. Note that the
cubic B-spline is very similar to a Gaussian and
that the corresponding wavelet resembles a modu-
lated Gaussian (Gabor function). In fact, we have
shown that the Gaussian approximation provided
by this function improves for increasing order »
[46].

3.2. Generalized polynomial spline wavelet
transforms

To define a generalized polynomial spline wave-
let transform with a given depth I (i.e., i=1,...,1
where (i) is the resolution level), we consider two
types of expansions. The first is the generic repre-
sentation of a spline g¢ye V7, at resolution level (i),

+o00

gh(x)= Y cu(k)e" (2 x—k),

k=—c0

(3.10)

where the scaling function ¢" is defined by (2.2).

Signal Processing

The second is a representation of the correspond-
ing residue rie Wi,

+ oo
ro(x)= Y doy" (2 x~k), (3.11)
k=-—00
that uses a generalized spline wavelet
+ oo
v'i(x)= Y qlkys(x—k), (3.12)

k=—o0

where ¢ is an invertible convolution operator from
b, into itself. That the modified wavelets (3.12) form
a basis of WY, can be proved by the technique used
in [47], Appendix A.

For a given signal g{, initially represented by its
polynomial spline coefficients at resolution (0), the
use of (3.1) and Theorem 1 leads to the wavelet
decomposition

g = 3 cok)e"(x—k) (3.130)
k=—o0
=T )@ —k)
k=-—c0

+3 < ZOO d(i)(k)l//"(z_ix"k)),

=1 \k=-o0

(3.13b)

where the one-to-one linear mapping between the
discrete signal coefficients in (3.13a) and (3.13b)
is called the wavelet transform. The quantities
{day, dwy, . .., duy} are the so-called wavelet co-
efficients; the sequence {c¢,}, on the other hand,
codes for the coarser resolution signal at resolution
(I). This decomposition can in principle be carried
out over all resolution levels and yields a represen-
tation equivalent to (1.1).

3.3. Biorthogonal splines and wavelets

To fully characterize this family of wavelet trans-
forms, we also need a mechanism to determine the
expansion coefficients in (3.13). For this purpose,
we first derive a generalized sampling theorem
which is an extension of a result initially reported
in [45]. We will then show how the present
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B-spline functions

n=1 (piecewise linear)

Wavelets

o o O O
N s o ®

N\
-4 -2 0 2 4 [ 8
-0.2
-0.4

0.2
0.1
-4 22 0 2 &~ 6 8
-0.1
-0.2

Fig. 1. Examples of B-spline scaling functions and wavelets at resolution level (1).

approach fits into the general theory of biortho-
gonal wavelet transforms [8, 19, 32, 50].

Consider an arbitrary basis function {(x) and
the corresponding symmetrical discrete sequence

a(k) = <L(x), S(x=k)> =L (X) v,  (3.14)

where the notation {'(x)={(—x) stands for the
time reversal of a function. We consider the associ-
ated function space V,,,

+oo

V= {gm(x) = Z c(k)é/m(x - mk),

k=—o0

(xeR, c(k)elz)}, 3.15)
where the basis functions are obtained by trans-
lation of the expanded kernel {,(x)={(x/m). V,,
is also assumed to be a closed subspace of L,. A
general procedure for determining the minimum

error approximation of a function g(x) in V,, is
provided by the following theorem.

THEOREM 2. The expansion coefficients in (3.15)
of the orthogonal projection of a function g(x)eL,
on V,, can be obtained by filtering and sampling,

1 o
c(k) = g(x), Lmlx —mk))

1 .
AT I (3.16)
m x=mk
where the dual function 5,,,(x) is given by
L= Y @7 RC/m—k).  (17)
k=—oc

Note that the sequence (a) '(k) must be well
defined based on the well known property that the

Vol. 30, No. 2, January 1993
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orthogonal projection on a closed Hilbert space
defines a bounded operator [20].

PROOF. We consider the case m=1. Since g, is
the orthogonal projection of g into V,,,, the residual
error must be orthogonal to the basis functions of
V... Therefore, the coefficients ¢(k) of the mini-
mum error approximation must satisfy the relation

+ 00

€)= % eDi(x=1),fx=k)>=0

k=—o0
(3.18)

We now define the discrete sequence u(k),

u(k) = {g(x), {(x=k)>={"* g(x) [x~,

and note that

< Y cD)s(x—=1), C(x—k)>=a * e(k),
k=—oc

where the sequence a(k) is defined by (3.14). With
the use of these notations, (3.18) is also equivalent
to

uky=a* c(k) VkeZ.
Taking the convolution inverse of a, we find that

c(k)=(a)"" * u(k) = (g(x), {(x— k),

where the function 4’ (x) is given by

+o0
=% ()7 (k){(x—k).
k=—00
The general result is found by making a change of
variable x=y/m and applying the proper scaling
to the sampled autocorrelation sequence. [

The role of 5,,1 in (3.16) is analogous to that of an
anti-aliasing filter used in conventional sampling
theory [45]. From (3.17), we clearly have that
fme V... Moreover, it is straightforward to show
that the functions C = and &, are biorthogonal,

o m, k=I,
(=), En(x—=mil) :{

0, otherwise.
(3.19)

Signal Processing

Since we have made no restriction on the choice of
{ other than the fact that V,, is a closed subspace
of L,, we can apply this general result to obtain
the expansion coefficients in the subspaces V{;, and

(-

The autocorrelation sequence (3.14) for the B-
spline scaling functions and wavelets are computed
as follows:

(B(x), Br(x—k)y=b"""(k),

yu(x), wi(x—k))
— % [yg * ng * 122n+l * b2n+1 * b2n+1]lz(k)

i [b2n+l* b2n+l]l2(k)- (3.21)

(3.20)

Next, we use these results together with Theorem
2 to determine the dual functions associated with
the generalized scaling functions and wavelets,

P)="Y (p*p o) (B (x—k), (3.22)
k=—cc
llo,n(x) — Z (q* q/ * b2n+1 £ [b2n+1 % b2n+l]12)*l(k)
k=—o0
X yi(x —k). (3.23)

These functions can be used to obtain the gen-
eralized spline expansion coefficients in (3.10) and
(3.11) by using inner products, as indicated by
(3.16) in Theorem 2. In particular, we can write
the full wavelet expansion (1.1) as

1 _
gx)=3 2 - <&(x), y"Q27x—k))

i
ieZ keZ 2

X y"(27'x—k), (3.24)
a formula that is simple conceptually but not very
efficient computationally. In the next section, we
will show how to determine the expansion
coeflicients using an extension for non-orthogonal
basis functions of Mallat’s fast algorithm.

Some remarks concerning the properties of the
present family of spline wavelets are in order. Since
the corresponding residual spaces are also ortho-
gonal to each other (cf. (3.2)), we have an even
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stronger biorthogonality condition that holds over
all resolution levels (i):

Y"27x—k), y"27x = 1))
_{2", i=jand k=1,

] (3.25)
0, otherwise,

which places the present approach in the more gen-
eral framework of biorthogonal wavelet trans-
forms. The basis functions "(x) are the analysis
wavelets associated with the synthesis wavelets
w"(x). In the general biorthogonal scheme, the
analysis and synthesis wavelet are different unless
the basis functions are orthogonal [50]. Another
point worth mentioning is that the wavelets in the
general biorthogonal setting are usually not ortho-
gonal across resolution levels which makes the
orthogonal projection method described by
Theorem 2 generally not suitable for determining
the wavelet coefficients in the full expansion. In the
general case, it is still possible to define biortho-
gonal wavelets pairs for obtaining the expansion
coeflicients, but these functions usually do not span
the same approximation spaces [8]; this type of
decomposition can also be interpreted in term of
projections but the projectors are non-orthogonal,
unlike in the present situation.

3.4. Fast wavelet transform algorithm

Since the function spaces V{, are nested, the
determination of the wavelet coefficients may pro-
ceed by repeated projection. This process can be
accomplished efficiently by using the perfect recon-
struction filter bank considered in Appendix A.

The starting point of such an analysis is a
discrete signal {g(k)}«.z which needs to be repre-
sented by a function g(x) of the continuous vari-
able x at the finer resolution level (i=0, by
convention). A natural approach is to determine
the coefficients of the polynomial spline that inter-
polates our sequence of data points. This interpola-
tion problem can be solved efficiently by digital

filtering [43]. In the present context, this leads to
the initialization sequence
coy=(p* ") * glk), (3.26)

where the prefilter is the convolution inverse
of the sequence p * b"(k), which depends on the
particular choice of basis functions in (2.1).

The fast wavelet algorithm is then implemented
by successive filtering and down-sampling by a
factor of two,

C(i+1)(k) = [lfj * C(i)]lz(k),
diry(k): = * cwla(k),

(3.27)
(3.28)

where © is given by (2.7), and where W is defined
as follows:

wk)=2[(g* b Y N *p X * si(k). (3.29)

These filter formulas correspond to the inverse z-
transform of (A.9) and (A.10), respectively. This
algorithm, which is described by the analysis part
of the block diagram in Fig. 2, is applied iteratively
for i=0 down to I—1, while retaining the wavelet
coefficients for each level.

The reverse procedure, also implemented iter-
atively, is the re-synthesis of the finer resolution
levels beginning with the coarsest level (bottom) of
the pyramid. As shown in Appendix A, this algo-
rithm can be implemented as follows:

co()=v* [carnlia(k) +w * [din)a(k),  (3.30)

- Vo HRE-0H v

CU)& k)

o iy ()
- W HR--0H W@

Reconstruction
(synthesis)

Decomposition
(analysis)

Fig. 2. Multirate filter bank for the evaluation of the direct and
indirect wavelet transform.
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where v is given by (2.10), and where w is defined
as follows:

wk)=3[gln*wt* 6, * (p)"(k).  (3.31)

This procedure corresponds to the synthesis part
in Fig. 2. Finally, our initial discrete signal {g(k)}
can be recovered by using the reverse of (3.26),
which provides a sampling of g{o,(x) at the integers,

gk)=p* b"* co(k). (3.32)

The full procedure is an extension of Mallat’s
fast wavelet algorithm for non-orthogonal basis
functions. The present approach is general in the
sense that it is valid for any choice of the param-
eters p and ¢. A way of fixing those operators is
to impose certain desirable properties on the basis
functions (cf. Section 4.1).

Our derivation of the wavelet algorithm in
Appendix A uses a set of conditions (A.10) that
are well known in multirate filter bank theory
[48,49]. These conditions are necessary and
sufficient for a perfect reconstruction. In other
words, they guarantee the reversibility of the filter
bank algorithm. A less well known result, which is
derived in Appendix B, is that this property can
also be expressed by the following set of equations:

[6* 0)2(k) = (B (1), v(I+2k)y, = So(k), (3.33a)
W * wla(k) = V' (1), w(l+2k) >, = 8o(k), (3.33¢c)
[ * 0] 1a(k) = OV (1), v(I+2k) >, =0, (3.33¢)
[8* wla(k) = <& (), w(l+2k) ), =0, (3.33d)

where (-, >, denotes the standard I-inner
product. Equations (3.33a-d) are quite general and
must be satisfied for any orthogonal or biortho-
gonal wavelet algorithm (cf. [32], for the special
case of a FIR/FIR filter bank). They can be inter-
preted as discrete biorthogonality ((a) and (b)) and
orthogonality ((c) and (d)) conditions on the
impulse responses. Equations (3.33a) and (3.33b)
also provide a justification of our use of the bi-
orthogonality symbol “” to represent the analysis
filters.

Signal Processing

3.5. Extension in higher dimensions

These results can be readily extended to higher
dimensions through the use of tensor product
splines [31, 37]. In two dimensions, there are four
distinct types of basis functions corresponding to
the different cross-products of one-dimensional
spline scaling functions and wavelets:

@"(x,¥)=¢"(x)9"(y),
v )=y (x)e"(y),
vi(x, ¥) =" () y"( y),
V(X ) =y ()" (p).

(3.34)

The corresponding 2D wavelet transform is separ-
able. Hence, a 2D spline wavelet transform can
be obtained by successive one-dimensional wavelet
transformation along the rows and columns. A
mathematical justification for this type of approach
can be found in [25].

4. Specific wavelet representations

A suitable selection of the convolution operators
p and ¢ in (2.2) and (3.12) allows the construction
of a variety of polynomial spline wavelets with cer-
tain specific properties. We have identified four
representations that are the logical complements of
the polynomial spline representations considered in
[47]. The main properties of these wavelet trans-
forms are summarized in Table 2. Examples of
cubic spline wavelets (n=3) are shown in Fig. 3.

4.1. Orthogonal Lemarié—Battle wavelet transform
( O-splines)

The polynomial spline wavelet transforms
decribed in previous studies use orthogonal basis
functions [3, 21]. It can be verified that imposing
such an orthogonality constraint leads to the fol-

lowing weighting sequences:
Po= (b2n+l)—1/2’
(4.1)
qoz([b2n+] * b2n+l]12 % b2"+1)_1/2,

and that the corresponding spline and wavelet basis
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Alternative sets of spline and wavelet basis functns and their specific properties
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Orthogonal Basic Cardinal Dual
(O-splines) (B-splines) (C-splines) (D-splines)
Specific Orthogonality Compact support Interpolation Fast REDUCE
properties fast EXPAND
good localization
Basic Qo p=p" o Pi= ¢
function
Weighting (b2 5o oR By
coefficients (p)
Wavelet Wo 174 Ve wa=
functions
Weighting (thH * [122:ul * bZthZ)fl/Z ao(k) ([bn * 1!21 ¥ blnﬂhz)fl (b2n+l * [blnﬂ * bzm 1112) 1

coefficients (p)

-1

N\ JASN
-7 -57-3 \]1\/ 5~

(a) Orthogonal

9

-0.25
(b) B-spline (compact support)

-1

A AN
-7 -5 -3 —\jl\/ 5

(c) Cardinal (interpolation)

functions are identical to those described in [21].

7 9

(d) Dual

Fig. 3. Examples of cubic spline wavelets at resolution level (1).

The main advantage of the orthogonal representa-

tion is that the analysis and synthesis filters are
identical and can all be obtained from a single

prototype:

5\_7 9

PRGN 7\
-7 3 /-3 \/1\]

Ve = % [(b2n+l)-l/2]T2 * (b2n+l)1/2 * ug.

This property is also valid in the case of a general
wavelet transform [50]. It can be verified by substi-

tution of (4.1) in (3.29) that the corresponding
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wavelet filter is the conjugate (or quadrature
mirror) filter: w,=§, *v,, in agreement with
Mallat’s general results for the orthogonal wavelet
transform.

4.2. Wavelet transform of compact support
( B-splines)

In the present formulation, the most obvious
choice is p=g=dy, in which case the polynomial
spline and wavelet basis functions all have a com-
pact support. This particular case also corresponds
to the wavelet transform described by Chui and
Wang, with the slight difference that their basis
functions are shifted with respect to ours [7]. The
choice of this representation tends to simplify the
reconstruction process (indirect wavelet transform)
as the corresponding filters are binomial or modu-
lated binomial FIR kernels. Moreover, the decom-
position filters have a simple recursive structure
and can be implemented efficiently using a tech-
nique similar to the one described in [43]; this point
is further elaborated in Section 4.5. )

What also makes these functions particularly
attractive is their excellent time-frequency localiza-
tion. In fact, we proved that the B-spline wavelets
tend to Gabor functions as the order of the spline
n goes to infinity [46]. These latter functions are
modulated Gaussians; they are known to be opti-
mal with respect to the uncertainty principle (i.e.
maximum energy concentration in both the time
and the frequency domain) [15]. The quality of the
Gabor approximaton is surprisingly good, even for
small values of n. For instance, for n=3, the rela-
tive L, approximation error is 2.6% and the pro-
duct of the time-frequency uncertainties for the
cubic B-spline wavelet is within 2% of the limit
specified by the uncertainty principle. These good
localization properties and the availability of fast
algorithms should make the B-spline wavelet trans-
form useful for the analysis of non-stationary
signals.

4.3. Cardinal wavelet transform ( C-splines)

Another possibility is to construct wavelets for
which the coefficients are the sample values of the
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residual signal. These basis functions must satisfy
the interpolation condition
1, ifk=0,
Wik + £)={ ' VkeZ. (4.2)
0, ifk#0
This is the wavelet counterpart of the cardinal or
fundamental spline representation [43], which has
the convolution operator

pe=("""

Condition (4.2) translates into a constraint on the
reconstruction filter,

[6-1 * wla(k)
=g * B * s * B k) = 8o(k).  (4.3)

By solving this equation, we find the cardinal
weighting sequence

qC:([bn * yg * b2”+1]12)_]. (44)

The corresponding cardinal spline/wavelet decom-
position allows a better visualization of the
underlying continuous signals because the expan-
sion coeflicients are the sample values of the
coarser resolution spline and wavelet signal com-
ponents. Furthermore, the computational com-
plexity of the reconstruction algorithm can be
halved; it is only necessary to compute the finer
resolution coefficients between knot points (inter-
polation). It can be seen from Fig. 3 that the cardi-
nal and orthogonal cubic spline wavelet functions
are quite similar. The essential difference, however,
is that the former basis functions are precisely
equal to one for x=1 (center of symmetry) and
vanish for all other odd-valued indices.

4.4. Dual wavelet transform ( D-splines)

Another interesting case is to try simplifying the
structure of the analysis filters as much as possible.

This leads to the dual spline representation with
pd _ (b2n+1)71’
qd:([b2n+l * b2n+]]l2 %* b2n+])_] (45)

with precisely the same filters as the B-spline wav-
elet transform but in reverse order. This situation
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corresponds to a flow graph transposed version of
the B-spline case. These dual wavelets are denoted
by wi. They are indeed the dual of the B-spline
wavelets in the sense that they satisfy the biortho-
gonality condition (3.25); i.e., wg= yp. This also
means that the dual spline wavelet is the analysis
wavelet associated with the B-spline representa-
tion, and vice versa {(cf. Section 3.3). A
different - but equivalent — definition of these par-
ticular functions is also given in [7].

4.5. Implementation

The digital filters for the fast wavelet algorithm
for all these cases can be obtained from (2.7),
(2.10), (3.29) and (3.31) by substitution of the cor-
responding expressions for p and ¢. General for-
mulas for the transfer functions of these filters are
given in Table 3. These results are illustrated in
Fig. 4 with the frequency responses of the analysis
filter bank for »=3 (cubic splines).

Although the filter bank implementation appears
to be relatively straightforward, there are several
practical issues that need to be dealt with. These
are briefly discussed below.

4.5.1. Choice of the finer resolution signal model
In signal and image processing applications, our

initial data representation is a sequence (or array)

Table 3

of sample values g(k). Our approach to choosing
the initial signal model is to determine the poly-
nomial spline that interpolates g(k). By conven-
tion, the initial step size is assumed to be one. Based
on the results in Section 3.4, the initial spline
coefficients at level (0) are obtained by convolution
(prefilter) using (3.26). The frequency responses
of the corresponding filters for cubic splines are
represented by dotted lines in Fig. 4. The advantage
of using such an initialization procedure is that
our initial signal model is uniquely defined and is
independent of our choice of basis functions. Like-
wise, we can apply the inverse procedure (3.32) to
reconstruct the digital signal from its finer resolu-
tion spline coefficients. Note that the use of such
filters is not necessary in the cardinal representa-
tion (p=(b")"").

4.5.2. Boundary conditions

Since the signals or sequences encountered in
practice have a finite extent: {cq(k), k=
1,..., Ko}, we have to introduce some boundary
conditions. A consistent implementation of these
boundary conditions is important to guarantee that
the wavelet transform is fully reversible. For practi-
cal convenience and to avoid discontinuities, we
have chosen to extend the signal on both sides by
using its mirror image, a standard practice in image

Frequency responses of the filters for the evaluation of polynomial spline wavelets

Representation P f) Vi) VW e YW 1)
General 1 USCOHBY (SIPS) US(SIPQS) L U f+D)P(S) S DB +3)02S)
2 B 2NHPCS) P(f) 2 BYTN2)Q2f) P(f)

( o B o [BUNS N BETGED l\/ﬁ""w%)
Orthogonal 2Uz(j) *—B?’”(Zf) Us(f) FERIEYs 2Uz(f+z) —Blz,,ﬂ(zf) 2 Sf+3) BT 2f)
[ BN u 1 US(Sf+3) 0 e g ]
Basic Uzu)(ﬁf””(zf)) 2(f) 3 B0 U f+3)B7" (f+32)

n 2nil, o n n n 2ntly oy 1 n Lspng oyxp2ntly o0 1
Cardinal 1U:1<f><—3,1(2f)€,‘,ﬂ(”> U';(f><ﬁ3,,‘(f)> PR G BB ()
2 BY()BY(2f) Bi(2f) 2 BUNBYTCS) c'(f)
Dual S U Uz(f)(B%ﬁ,(Zf) S UM DBT(f+D) FERNYS

Where Us'(f)=2cos"™'(nf), Bi(f)=F,7  [sinc(f—K)]""" =5"(0) + T2 26" (k) cos(2nkf ) and

C"(N)=2(US(f+ DB BT (f+ 3+ UNLIBIS+3)BYT(Sf)).
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(a) Orthogonal

0.1 0.2 0.3 0.4 0.5

(c) C-spline (cardinal)

(d) D-spline (dual)

Fig. 4. Transfer functions of the analysis filters (¥( f) and W(f)) for various cubic spline wavelet transforms. The highpass filter

extracts the wavelet components, while the lowpass filter produces a lower resolution signal approximation. The graph in dotted lines

represents the frequency response of the prefilter that converts the initial signal values (cardinal representation) to the corresponding
spline representation.

processing. In specifying such boundary condi-
tions, one has to distinguish between whether one
performs a signal decomposition or a reconstruc-
tion from its lower resolution coefficients. In each
case, we will assume that the size of the signal at
the finer resolution level is twice that at the next
coarser one, which sets the constraints: K, even
and K, = K;,2', where K, is the number of spline
or wavelet coefficients at level (i) and 7 the depth
of the decomposition. For the direct wavelet trans-
form (downward direction), the boundary condi-
tions on the input sequence are

ci(—k) =cpk+2),
k:O, P K(,')_l,

colk) = ciy(2Ky — k),
k:K(,'), ey 2K([)_ l

(4.6)

It can be verified that the compatible boundary
conditions for the indirect wavelet transform

Signal Processing

(upward direction) are

C(i+1)(—k):C(i+1)(k+2),
k:(), ey K(,'+1)_ 1,

4.7)
ciornk)y=cun(Kn—k+1),
k:K(,ur]), N K(,')"l;
d(i+1)(_k) =d(i+l)(k+ 1),
k=0,...,K,~ _1,
@h (4.8)

d(H—l)(k):d(i+1)(K(i)—k)’
kZK(,-H), ... ,K(i)" 1,

where K;)=2K ) 1s even.

4.5.3. Recursive implementation

It has been mentioned that the IIR filters that
appear in the basic, cardinal or dual wavelet trans-
form can be implemented recursively. To illustrate
this principle, we consider the evaluation of the
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wavelet coefficients in the basic representation
( Po=qv=0),

diriy () =[3[(B*" ) M * s * ¢ ]i2(k)
=BT R eolpk),  (49)

which can be evaluated in two steps. The first is to
perform a FIR prefiltering with 3 4% while down-
sampling by a factor of two. The second is to apply
the postfilter (h*"*')"' which corresponds to a
direct B-spline transform of order 2n+ 1 [43]. This
filter can be implemented very efficiently by decom-
posing it into a product of first order causal and
anticausal recursive filters with a total complexity
of approximately 2»n additions and 2» multiplica-
tions per sample points. A similar procedure is
applicable for the implementation all other IR in
the basic, cardinal and dual representations.

4.5.4. FIR approximations

The other approach is to use a truncated FIR
approximation. This technique has the advantage
of simplicity but introduces approximation errors.
The simplest design method is to evaluate the fre-
quency response of a given filter using the formulas
in Table 3 and to perform an inverse FFT trans-
form to obtain the coefficients of the impulse
response. The impulse response is then truncated
to an appropriate length to satisfy a prescribed tol-
erance error. We note that this technique is the
only one applicable for the implementation of the
orthogonal transformation.

5. Results and discussion

5.1. Image processing examples

We illustrate the above with some examples. Our
256 % 256 test image (Fig. 5(a)) is a combination
of two Brodatz textures (wood and sand) after
intensity scale normalization [4]. This example was
selected to test the usefulness of the wavelet trans-
form for texture analysis and segmentation. We
used a separable implementation in which the 2D
wavelet coefficients were determined by successive

filtering and decimation along the rows and col-
umns of an image.

The cubic C-spline wavelet transform with a
depth of two is shown in Fig. 5(b); each wavelet
sub-image has had its gray scale linearly expanded
for maximum contrast display. Note that the wave-
let components in the upper right (V), lower left
(H) and lower right (D) quadrants tend to amplify
high resolution vertical, horizontal and diagonal
edges, respectively. The two texture regions can be
differentiated on the basis of their relative energy
contribution to the different channels of the decom-
position. Wood texture contributes little to the hor-
izontal (H and h) and diagonal (D and d)
channels; but both vertical channels (V and v) are
enhanced because of the strong directionality of
the underlying structure. Figure 6(a) displays the
corresponding image coefficients of the orthogonal
polynomial spline functions obtained by filtering
Fig. 5(a). Although the conversion filter attenuates
higher frequencies slightly (cf. Fig. 4(a)), the
images in Figs. 6(a) and 5(a) are virtually indis-
tinguishable; the same is true for the orthogonal
and cardinal cubic spline wavelet transforms (cf.
Figs. 5(b) and 6(b)). The cubic spline coeflicients
of the image in Fig. 5(a) and the corresponding B-
spline wavelet coefficients are displayed in Figs.
7(a) and 7(b), respectively. Both appear to be vis-
ually sharper than their counterparts in Fig. 5.
Finally, Fig. 8 displays the dual cubic spline
coefficients (Fig. 8(a)) and the corresponding D-
spline wavelet transform (Fig. 8(b)) which both
appear to be smoother.

5.2. Discussion

These different types of wavelet decomposition
are all equivalent but they exhibit distinct proper-
ties. We will now present arguments to facilitate
the choice of a transform appropriate to a specific
application.

The main advantage of the orthogonal represen-
tation is that the ,-norm in the transform domain
1s equivalent to the L,-norm in the continuous sig-
nal domain. This is especially relevant in coding
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@

Fig. 6. Two-dimensional orthogonal cubic spline wavelet transform. (a) Orthogonal spline coefficients; (b) O-spline wavelet transform.

applications, see for example [1, 25, 38]. The corre-
spondence between approximation errors in the
signal and transform domain justifies the use of
LMS error criteria for encoding the wavelet
coeflicients. Examples of such schemes are the
Lloyd-Max quantizer [28], and vector quantiza-
tion [16, 17, 22], a multivariate extension of the
former. To illustrate the optimality of the ortho-
gonal representation with respect to an LMS

Signal Processing

coding strategy, we have constructed an experi-
ment using two test images: the standard ‘Lena’
image and the texture composite in Fig. 5(a). We
applied a minimum error quantizer to the wavelet
coefficients in the first three quadrants of the
various cubic spline wavelet transforms, while the
lower resolution components were coded with no
error. The results are summarized in Table 4 in
terms of the signal-to-noise ratio (dB) between the
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Fig. 8. Two-dimensional dual cubic spline wavelet transform. (a) Cubic B-spline coefficients; (b) D-spline wavelet transform.

Table 4

Signal-to-noise ratios resulting from the quantification of the coefficients in the first level of
various cubic spline wavelet transforms

Quantification levels O-splines B-splines C-splines D-splines
‘Lena’ image
n,=3 33,23dB 25.52dB 32.44dB 29.29 dB
n,=17 36.96 dB 27.80 dB 35.89dB 31.81dB
Texture composite
n,=3 28.17dB 21.91 dB 27.92dB 21.10dB
n,=17 33.92dB 25.77dB 33.67dB 25.21dB
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various approximations and the original image.
Not surprisingly, the O-spline representation out-
performs the B-splines and D-spline wavelet trans-
forms. The C-spline representation, on the other
hand, is only slightly sub-optimal.

The cardinal representation is well suited for
conventional signal processing for it provides a
precise rendition of the underlying continuous
functions in terms of sampled values. It requires
no pre-filter, otherwise necessary for consistent
representation of a discrete sequence by polyno-
mial splines. In practice, the distinction between
this representation and the O-spline decomposition
is usually quite subtle (cf. Figs. 5 and 6, as well
as Table 4). The cardinal spline wavelet should
therefore also be a good candidate for coding. A
practical advantage of the latter could be to reduce
decoding complexity (i.e., one half of the synthesis
filter coefficients are zero so that only every other
term has to be evaluated).

The B-spline wavelets can be closely approxima-
ted by Gabor functions [46]. They are therefore
very well localized in space (or time) and fre-
quency. The B-spline wavelet transform is in this
sense very similar to the hierarchical Gabor decom-
position designed empirically by Daugman using
neural networks [11]. A clear advantage of the
wavelet transform is the orthogonality of the basis
functions between resolution levels and the avail-
ability of fast algorithms. Because of these proper-
ties, the B-spline wavelet transform also appears to
be especially suited for the analysis of non-station-
ary signals [14].

Another feature of the B-spline representation is
the compact support of the basis functions. This
property could be especially useful for performing
numerical computations with a high degree of pre-
cison since no truncation of the basis functions is
required. It may also be a significant advantage in
the design of finite element methods for the numeri-
cal solution of differential equations. This property
will translate into systems of equations that are
band-diagonal and can be solved very efficiently by
gaussian elimination or LU factorization. In terms
of numerical stability and ease of computation, the
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spline wavelets of compact support appear to offer
the same advantages as the classical B-spline
functions used routinely in a variety of engineering
and applied mathematics applications [12, 31].

The main advantage of the dual representation
is the simplicity of the analysis filters (simple FIR
kernels); this may be an asset in some pattern
recognition applications. This technique could for
example be useful for texture segmentation using a
multi-resolution extension of the method described
in [44]. There is also a direct link between this
representation and a number of earlier multi-
resolution techniques such as scale-space filtering
[23, 51} and the Gaussian pyramid [5, 6] ; this issue
is further discussed in [47].

The analysis wavelets for the dual decomposition
are the B-spline wavelets, which are very similar to
Gabor functions. Based on this observation, cer-
tain parallels can be made with our current under-
standing of the way in which the human visual
system operates. For instance, Gabor functions
have been shown to provide good models for the
receptive fields of simple cortical cells; the hierarch-
ical organization of the visual cortex is also well
documented [13, 26]. In fact, this type of argu-
ments has been the basis for many applications of
the Gabor transform in image processing, mainly
for texture segmentation {30, 42].

We have already pointed out the similarity
between the orthogonal and cardinal spline repre-
sentations. In fact, this resemblance improves as
the order of the spline is increased. Moreover, we
have the following asymptotic relations:

Iim @l(x)=lim @i(x)= lim @}(x)=sinc(x),

n— oG o0 h—oC

(5.1)
lim y”(x)=lim ¥"(x)= lim y’(x)

n—oC n— o0 n—ooc

=cos<3n(x— 1)) sinc(x_ 1), (5.2)
2 2

where sinc(x) :=sin(nx)/nx. An implication is that
the corresponding wavelet analysis and synthesis
filters tend to the ideal discrete lowpass and high-
pass filters as the order of the spline goes to infinity.
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Hence, the bandpass characteristics of the filter
bank tend to improve for higher order splines. The
polynomial spline wavelet transform is therefore in
essence a subband signal decomposition. Lemarié
has proven the pointwise convergence of the fre-
quency response of wo(x) to the ideal highpass
filter [21]. Different aspects of the convergence of
@:(x) to sinc(x) are discussed in [2, 27, 36]. These
include convergence in the L,-norm, which has also
been shown to hold for ¢-(x) and @5(x)[45]; the
same ideas can be used to construct a proof for the
convergence of wi(x), we(x) and wi(x). For the
reader unfamiliar with these concepts, we recall
that L,-norm convergence is a much stronger result
than pointwise convergence. Pointwise conver-
gence in the frequency dqmain alone does not
imply convergence of the basis functions them-
selves. The L,-norm convergence, on the other
hand, has an interpretation in both time and fre-
quency domain. For instance, it is well known that
the norm of the difference for p=2 is identical in
both domains (Parseval’s identity).

6. Conclusion

In this paper, we have extended the construction
of the polynomial spline wavelet transform initially
proposed by Lemari¢ and Battle by relaxing the
orthogonality condition of the wavelet basis
functions. In particular, we have described polyno-
mial spline wavelets of compact support which are
the natural counterpart of the standard B-splines.
An interesting feature of these wavelets is their
excellent time-frequency localization, a property
that is especially relevant for the analysis of non-
stationary signals. Other related basis functions
have been generated by reversible translation-
invariant linear transformations. We have also
shown how to extend Mallat’s fast decomposition
(respectively reconstruction) algorithm, which
operates by iterated filtering and decimation
(respectively up-sampling and post-filtering), for
the evaluation of the class of polynomial spline
wavelet transforms. The corresponding analysis

and synthesis filters are not necessarily identical
but can take a simple form (e.g. FIR binomial
filters). Using simplified FIR or recursive filter
structures may reduce computational complexity
as well as improve numerical precision and
stability.

We have emphasized the cardinal spline wavelet
transform; the sole wavelet in this family to pro-
vide a signal decomposition in terms of the sample
values of the underlying continuous functions. The
corresponding basis functions are true interpolaton
kernels and are in this sense very similar to sinc or
modulated-sinc functions. An interesting feature of
this class of wavelet transforms is to include two
important limit cases: for =0, we have a decom-
position using piecewise constant functions {Haar
transform), while as # tends to infinity the wavelet
transform becomes the classical subband decompo-
sition of a signal using ideal lowpass and highpass
filters. For intermediate values of »n (e.g., n=3),
the filter banks associated with the orthogonal or
cardinal spline wavelet decomposition have good
bandpass characteristics which should make them
useful in a number of applications.

Appendix A. Proof of Theorem 1

In the proof, we will represent splines using the
generalized scaling functions and wavelets dis-
cussed in Section 3.2. The situation described in
Theorem 1 corresponds to the particular case p=
q=0,. Equation (3.3) implies that Wi, < V7.
Moreover, the orthogonality property of wi(x)
implies that Wi, LV{i,. To prove that
Wiin®@Viey=V{y, we will show that any
function gi; € V'{; can be expressed as a linear com-
bination of basis functions of Wi, and V{y,,,

go)= Y col)e" 2 x—k)

k=—oc
= Y cunk)e" 27" Vx—k)  (A.D)
k=—oc
+ Y diy ()" Px—k),
k=—cc
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where ¢" and y" are defined by (2.2) and (3.29),
respectively. We start by expressing the coarser grid
basis functions in terms of the scaling function on
the finer grid. By using (2.4), (3.3) and performing
the appropriate change of coordinates, we find that

PD= T ok (x—k), (A2)
k=—o0

VD= Y wk)e(x=k), (A3)
k=—oc0

where the sequences v and w are given by (2.10)
and (3.31), respectively. A direct implication is
that the coeflicients ¢, can be recovered from
the coarser level coefficients ¢+, and d+1) using
the procedure schematized in the right part of
Fig. 2. The transfer function of the corresponding
synthesis filters are

n 2
V(z)=54;-z?, (A4)
ne_ n+ly 2
Wy = ECAB (D0 (A.5)

P(2)

We will now show that the decomposition of g, in
(A.1) can be computed from the perfect reconstruc-
ton filter bank in Fig. 2 with analysis filters 4 and
w.

For this purpose, we need to ensure that the
output of the system in Fig. 2 is identical to its
input. By using the rules in Table 1, it is not diffcult
to show that the z-transform of the output can be
written as

(V@ V(2) + W(z) W(2))C(2)
+3:(VE@)V(=2)+ W W(—2))C(-z2),  (A.6)

where C(z) —— ¢,(k). Hence, we obtain the well
known conditions for a perfect reconstruction

V(z)V(z)+ W(2) W(z) =2,

V(2)V(—z)+ W) W(-z2)=0. (A7)
Note that the first equation guarantees a distortion
free transmission, while the second suppresses
aliasing.

Signal Processing

We can now attempt to solve this linear system
of equations in terms of the unknowns ¥(z) and
W(z). A unique solution for these filters exists if
the determinant of the system does not vanish on
the unit circle. By replacing ¥(z) and W(z) by their
specific form given by (A.4) and (A.5), we find that
the determinant is

Z P(z)Q()
P(z)*
+Us(—2)Us(—2)BT"" ' (~2)),

A(z)=— (U2 U3(2)BT"(2)

where the right-hand side factor is precisely the z-
transform of 2[u5 * uj * b7"*'],212(k). Next, we use
the discrete convolution property of discrete B-
splines [43] to show that

2[u§ * uz * b%nﬂ]lm(k) :4[b§n+l]urz(k)
-z 4B%n+](22),
where 63" (k)= B**"'(x/2). Hence, A(z) simplifies
to
P(*)Q(z*)B"'(2)

A(z)=—4z P(z)2

(A.8)

We have previously shown that the polynomial
B3""'(2) has no zero on the unit circle for all values
of n (cf. [2], Proposition 1). The same is obviously
true for P(z) and Q(z), which, by definition, repre-
sent the z-transforms of invertible convolution
operators. Thus, we conclude that A(z) is non-zero
for z=e”¥. We can then solve the system, which
yields

_2W(=2)_1 Uy2)BI' ()P

"O="40 2 PR (A9)
Wiy~ 1T UK2)PE) A10)

Az 2 Q)BT

It follows that any function g, can be decomposed
as in (A.1) without any loss, which is also equiva-
lent to saying that W?H—l)@ V?H.]) = V?i) . g
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Appendix B. Discrete biorthogonality conditions

Rioul derived the set of conditions (3.33) for the
special case of a FIR/FIR perfect reconstruction
filter bank [32]. We will extend his results for arbi-
trary filters. We start by expressing (3.33) in the z-
transform domain using the rules in Table 1,

V() V(2)+ V(—2)V(~2) =2,
WE)W(z)+ W(—2)W(—z) =2,
V(z)W(z) + V(—z) W(~z) =0,
W(z)V(z)+ W(—2)V(—z) =0.

(B.1)

By substituting the general solution given by the
central terms in (A.9) and (A.10) in the left-hand
side of (B.1) and using the fact that A(—z)=
—A(z), we find that the conditions (B.1) are satis-
fied. Hence (A.7) implies (B.1).

We will now show that (B.1) also implies (A.7)
by solving the former set of equations in terms of
the unknowns V(z) and W(z). From (B.1), we
obtain the two decoupled systems of equations,

[ V(iz) V(-2) ][ ") ]: H B2)
Wz) w(—2l¥(-2] Lo
] P T
V(iz) V(-2 ILW(-z)] [0

The determinant of (B.2) is the same as the determ-
inant of (A.7), i.c.,

A(D)=V(2)W(—z)— W(z)V(—z).

Assuming that A(z) is non-zero on the unit circle,
we find that

[ OV(Z) } [2 W(~z) /A(z)], (B.5)
V(i—z)] [2W(z)/A(-=z)

where we once again use the fact that A(z)=
A(—z). Similarly, we can solve (B.3) to get

[ w(z) }_[—W(—z)/A(z)]
W(-2] [-2Vz)/a(-2]
In each case, the solutions are mutually compatible
and are the same as those given by the central terms

(B.6)

in (A.9) and (A.10), respectively. Thus we conclude
that conditions (A.7) and (B.1) are equivalent.
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