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On the Optimality of Ideal Filters for Pyramid and
Wavelet Signal Approximation

Michael Unser

Abstract—The reconstructed lowpass component in a quadrature
mirror filter (QMF) bank provides a coarser resolution approximation
of the input signal. Since the outputs of the two QMF branches are
orthogonal, the transformation that provides the maximum energy
compaction in the lowpass channel is also the one that results in the
minimum approximation error. This property is used as a common
strategy for the optimization of QMF banks, orthegonal wavelet trans-
forms, and least squares pyramids. A general solution is derived for
the QMF bank that provides the optimal decomposition of an arbitrary
wide sense stationary process. This approach is extended to the contin-
uous case to obtain the minimum error approximation of a signal at a
given sampling rate. In particular, it is shown that the sinc-wavelet
transform is optimal for the representation at all scales of signals with
non-increasing spectral density.

I. INTRODUCTION

The equivalence between the wavelet transform, quadrature mir-
ror filters (QMF), and perfect reconstruction filter banks in general
is now well recognized [1]-[3]. The wavelet transform provides a
vector space interpretation of a subband decomposition, while the
filter bank formulation is a convenient description of the fast
wavelet transform algorithm. Traditionally, the design of QMF
banks has been guided by the desire to approximate a perfect half-
band filter in the best possible way [4]-[6]. More recently, the
tendency has shifted toward designing signal-adapted filters and
wavelets [7], [8]. Interestingly, there are many cases in which both
strategies yield very similar results. For instance, Delsarte et al.
observed that the ideal half-band filter bank is optimal in the sense
that it minimizes the variance of the highpass component for sta-
tionary signals with non-increasing spectral density [7].

Another commonly used class of multiresolution techniques for
signal analysis and compression is the pyramid decomposition, in-
troduced by Burt and Adelson [9]. The transmitted information is
the difference between successive levels of the pyramid. To im-
prove coding performance, it is desirable to minimize the variances
of those residues, which naturally leads to the concept of a least
squares pyramid [10]. A signal-dependent approach was consid-
ered in [11]. In fact, there is a direct relationship between such
least squares pyramids and QMF banks [2], [10].

This note deals with the problem of finding optimal wavelet or
pyramid decompositions for certain families of signals. Unlike most
other studies, no special constraints are imposed on the class of
admissible filters.

II. QMF BaNKS, WAVELET TRANSFORMS, AND PYRAMIDS

The problem of defining an optimal wavelet transform can be
entirely formulated in terms of the design of a QMF bank. The goal
of this section is therefore to review the most important properties
of such filter banks and also indicate the link with least squares
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pyramids. This will justify our optimization approach, which is to
maximize the signal contribution in the lowpass channel. The re-
sults presented here apply to the deterministic case in which all
signals are assumed to have finite energy (i.e., x € ).

A. Quadrature Mirror Filter Bank

A perfect reconstruction quadrature mirror filter bank is repre-
sented in Fig. 1. It is entirely specified by the filter H(f) which
has to satisfy the property [12]

HOI® + H(f+ P = 2. M
The corresponding highpass filter G( f) is given by
G(f) = e"™H*(f + 3). )

The block diagram in Fig. 1 also provides the basis for the fast
wavelet transform [1]. The wavelet coefficients at the finer scale
correspond to the coefficients x, in the highpass branch. Similarly,
the wavelet coefficients at coarser scales can be obtained by reap-
plying the analysis procedure iteratively on the decimated sequence
x5, in the lowpass channel.

While an orthogonal wavelet transform always corresponds to a
perfect reconstruction QMF bank, the converse statement is only
true if H( f) satisfies some additional constraints [1]. The simplest
of these conditions is H(1/2) = 0. The number of zeros of H(f)
at f = 1/2 also determines the regularity (or smoothness) of the
underlying basis functions [13].

B. Energy Analysis

It is not difficult to verify that the QMF constraint (1) has the
following implications:

Proposition 1: A perfect reconstruction QMF bank has the en-
ergy (or squared /;,-norm) preserving properties:

”xh“Z = “)Chh“z 3)
[xll? = Ilxgll? O]
Ixll? = Wxl® + lixl? = loxl® + Hlxgll? Q)

where x € [, is the input signal and where x;, x, x,, and x,, are
defined in Fig. 1.

These properties are better known in the context of the wavelet
transform. They express the fact that the basis functions associated
with the synthesis filters define an orthogonal set (see [3], for an
interpretation of the wavelet transform in /,). In particular, the sys-
tem is such that the outputs of the lowpass and highpass channels
are orthogonal.

Proposition 1 suggests a number of alternative approaches to the
optimization of such wavelet filters. For instance, finding the filter
that minimizes the approximation error [ell> = |x — x,l? is
equivalent to maximizing ||x,]>. The advantage of this latter ap-
proach is that it lends itself quite naturally to a number of gener-
alizations; for example, the case of a P-band system, or the sam-
pling of a continuous-time signal considered in Section IV.

Such an optimization could in principle be based on the follow-
ing formula for the energy in the lowpass channel

1
Il =+ | 1O RxCGP @

1
+3 go HXYH(f + DX(HX*(f+ D df.  (6)
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Fig. 1. Quadrature mirror filter bank.

However, the purely deterministic case is not so interesting be-
cause this error can usually be made zero by selecting the approx-
imation space generated by the signal itself, as is briefly discussed
in Section II-C below. In fact, such a formulation is not entirely
appropriate because in most applications the exact position of the
signal with respect to the origin is unknown a priori. One way to
reflect this fact is to use a modified criterion corresponding to the
average energy over all possible integer shifts of our input x € /5,
which results in a vanishing of the second term in (6). A second
approach, which is the one taken here, is to investigate the sto-
chastic case (cf. Section III). These two approaches are essentially
equivalent and all our results for stationary processes can be easily
adapted to the ‘‘shift-invariant’” deterministic case by simply re-
placing the power spectral density S,(f) by the square modulus of
the Fourier transform of x.

C. The Least Squares Pyramid

The same formulation is also applicable for the design of a pyr-
amid that minimizes the energy of the residual error. The basic
pyramid structure introduced by Burt and Adelson is shown in Fig.
2 [9]. A full pyramid representation is obtained by applying this
decomposition in a hierarchical fashion. The main difference with
the wavelet transform is that this representation is overcomplete.
However, it is simpler to implement and the redundancy can be
used advantageously to reduce the effect of errors using quantiza-
tion feedback (10], [14].

In general, the analysis and synthesis filters need not be identical
and the system can be designed to minimize the approximation er-
ror {10]. The corresponding approximation space is specified by
the synthesis filter u and is defined by

v, = Ef(k) = /27 chutk = 21), ce lz}. (7

It can be shown that a necessary and sufficient condition for ¥, to
be a closed subspace of /, is

O<m=|UNP+|US+DP =M<+ ae., (8)

where m and M are two constants and where U( f) is the Fourier
transform of u (k). The optimal (biorthogonal) prefilter that pro-
vides the least squares approximation of the input signal is

2U(f)
[UHIP + LU+ DI

U(f) := ©

By definition, the error in the least squares pyramid is orthogonal
to %, which implies that

el = 1lxl* — ]2l (10)
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Fig. 2. Schematic representation of the pyramid decomposition algorithm.
The input signal is first reduced (filtering and downsampling) and then ex-
panded (upsampling and filtering) to provide the coarser resolution approx-
imation (¥). % is then subtracted from the input x to yield the error signal
e, the information transmitted to the coder.

Least squares pyramid

T O @ vy Pl

) et
Orthogonal pyramid
el ) @2 H) =X
QMF pyramid
H () @ 2 D] 1 =i

G*(f) ——@-i'-@—— [

Fig. 3. Equivalent interpretations of the least squares pyramid decompo-
sition algorithm.

An orthogonal basis of the same approximation space can be
constructed by suitable linear combination of the generating se-
quence u. The orthogonalized synthesis filter is identical to the
conjugate analysis filter and is given by

V2 U(f)

H(f) = (1D

\/IU(f)P +|Uf+ DI

Clearly, it also satisfies condition (1), which suggests a close con-
nection between this pyramid and the QMF bank in Fig. 1. In fact,
there is a direct equivalence expressed by the set of identities

X = Xy = Xy,

i (12)
e =x— X=X,
It is illustrated graphically in Fig. 3. Hence, the conclusion that
the problems of optimal design for the wavelet transform and least
squares pyramid are equivalent. What can also be seen from those
results is that the optimization error in the deterministic case can
be made zero by simply choosing u = x [or its orthogonalized ver-
sion given by (11)], provided that the signal satisfies the admissi-
bility condition (8). This is very similar to the specification of a
deterministic matched fiiter.

III. APPROXIMATION OF STATIONARY PROCESSES

The previous formulas apply to the representation of determin-
istic signals in /;. We now consider the case in which the sequence
{x(k)}icz is a realization of a wide sense stationary process with
power spectral density (PSD) S, (f).
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A. Link Between the Deterministic and Stochastic Formulations

The previous notion of energy (squared /;-norm) needs now to
be replaced by the average power of a signal, which is achieved
through the following limit process

+N
E{x-y} = Nl»m?m mEEA:ZLNX(k) ‘V(k)}’ (13)
+N 2
= 1 > »~f2mkf
Sy = im oN T E{ 2,1 } (14)

where the expectation is taken over the ensemble of all realizations.
This correspondence permits all previous norm equations to be re-
written in terms of the expectation operator E{ - }. In particular,
the orthogonality of x,;, and x,, now implies that the lower resolu-
tion approximation X and the error signal are uncorrelated. Equiv-
alently, we obtain the direct translation of the least squares con-
dition (10)

E{e’} = E{x?} — E{x"}. (15)

The simplest way to evaluate E { £*} is to use the identities (3)
and (12) and observe that downsampling in the stationary case di-
vides the average power by the sampling factor. Therefore,

1

E{z’} = E{x;} =3 So [H(HOP S (f) df. (16)

The main difference with the deterministic case (6) is that the 2nd
cross-term has disappeared.

B. Optimal Filter Selection

Our main result can now be stated in the following theorem:

Theorem 1: For a stationary process with PSD S, ( f), the resid-
ual error is minimized if the frequency response of the filter H( f)
is such that for fe [0, 1/2]

V2, iffe® = {fel0, 1) S.(f) = S(f+ I}
U {fed i1 S.(f) > S(f+ D)
0, iffe® ={fel0, 1) S(f) < S(f+}

U {feG. 350 = S+ D}

~

|H(f)| =

'
~—
——

Q, and ©, are two sets of measure 1/4 that partition the frequency
interval [0, 1/2], with the property
feQ e i-feq, (17
The optimal choice is therefore to select an ideal filter with a band-
pass region @, and a stop band ©,. This solution has also the prop-
erty that the coefficients in both channels are decorrelated for they
do not share common spectral components. This simple selection
process is illustrated in Fig. 4.
Theorem 1 implies that the half-band ideal lowpass filter is op-
timal whenever
Ve l0, 31, S.(f) = S(f + 5. (18)
This constraint is not overly restrictive and should be applicable to
most practical cases. Because of the symmetry and periodicity of
the spectral density, (18) can be translated into a simple inequality
constraint for the highpass portion of the spectrum with fe (1/4,
1/2), as illustrated in Fig. 4(a). In particular, condition (18) is
satisfied when S, ( f) is a nonincreasing function for f € (0, 1/2).
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Fig. 4. Examples of optimal filter selection. (a) lowpass spectrum (Mar-
kov-1 with p = 0.25), (b) highpass spectrum (Markov-1 with p = —0.25),
(¢) spectrum with an axis of symmetry around f = 1/4, (d) composite
spectrum.

Proof: Starting from (16), the range of integration is split into
two parts and the average power is rewritten as

/2
E{s7) = %SO |HHI S (f) df

i/2
+ %SO [H(f + DIPS.(f + 5) df. (19)
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This expression is then further decomposed in terms of the integrals
E{x"} =3 Sﬂ [HOIS (f) df + 5 Sn IHHOIS (1) df

1 2

+35| [HUF+DES(fF+Dar
Qi

+ %Sn‘ [H(f + )PS.(f + D) df.

Using the definition of ©, and Q, in Theorem 1, we construct the
upper bound

E{z%} <! Xn. |H(H1PS,(f) df + %Sﬂ, [H(OIPS(f + ) df
+ 5\ [H(f+ DS df
2

+ %Sﬂ [H(f + DPS(f + D df
which, thanks to the QMF property (1), simplifies to

E{x’}) = Sn S(f) df + Sﬂ S{f+ ) df
and is independent of H(f). Next, we use (17) and the symmetry
properties of the spectral density to show that the two last integrals
are in fact equivalent, which yields
E{&’} <2 Sﬂ S.(f) df. (20)
i
It is then straightforward to verify that this bound is attained with

the filter specified by Theorem 1. Finally, property (17) is used to
show that this filter also satisfies the QMF condition (1). O

C. Comments

Since most signals encountered in practice tend to be predomi-
nantly lowpass, these results provide a good justification for the
standard QMF design techniques which aim at obtaining a filter
H(f) with good lowpass characteristics [5].

Theorem 1 would also suggest that the use of an adaptive design
may not offer any substantial advantages, at least for the class of
stationary processes satisfying (18). In practice, this is only par-
tially true because the total complexity of the system is usually
limited. For filters with a fixed number of taps, the use of a signal-
dependent approach will in general provide better performance be-
cause it has the capacity to adapt its limited resources to the spec-
tral characteristics of the input signal. Some examples of this kind
of behavior can be found in [7]. Another potential disadvantage of
using ideal filters (or some close approximations) is that they may
induce ringing artifacts. They also require more computations.

Because of the equivalence property (12), the same remarks also
apply for the design of pyramid filters. An example that deserves
some comment is the family of least squares spline pyramids [15].
We have previously observed experimentally that the performance
of such pyramids increases with the order of the spline, although
there was a tendency to saturation for n = 3. In light of our pre-
vious convergence results, Theorem 1 now provides us with a good
theoretical explanation of this phenomenon: the least squares spline
pyramid is asymptotically optimal because the corresponding anal-
ysis and interpolation filters both converge to the ideal lowpass
filter as the order of the spline goes to infinity [16].
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These observations are also consistent with the results of Anto-
nini er al. who observed experimentally that wavelet transforms
with higher regularity index tend to perform better for image cod-
ing [17]. For most classes of wavelets (e.g., splines, Daubechies’
wavelets), the regularity increases with the complexity of the fil-
ters. A higher regularity index is usually also associated with a
better separation of the different frequency bands.

Obviously, the criteria of optimality considered here (maximum
energy compaction and decorreletedness) are only relevant for cod-
ing applications in which one uses a global quantization strategy.
Our theoretical results do not exclude the possibility that better
performance can be obtained with sub-optimal short kernel wave-
lets, provided that one uses some form of adaptive processing.

IV. THE ConTIiNUOUS CASE

The continuous counterpart of the previous optimization problem
is the selection of a scaling function for the minimum error ap-
proximation of functions of the continuous-time variable ¢ at a given
scale. Here, we will first consider a less constrained version of this
problem which is the approximation of a function in the space gen-
erated by the integer translates of a function ¢(x). Note that ¢ is
not, at this stage, required to be a valid scaling function. We will
then determine an optimal generating function that is such that the
approximation (or sampling) error is minimized.

A. Least Squares Approximation in V

This section provides a brief review of the main results of the
general sampling theory developed in [18]. In this formulation, the
process of sampling is viewed as a procedure for obtaining the min-
imum L,-norm approximation of a function x(¢) in the approxima-
tion space

v, = [xm = 2 cthp(t —k).ceh, te R}. 21
keZ

The only restriction on the choice of ¢ is that V,, is a closed sub-

space of L,. A necessary and sufficient condition is

0<ms=< AE}L(f— bPsM< 40  ae  (22)
where m and M are two constants and where L( f) is the Fourier
transform of ¢(z) {18]. This constraint is much weaker than the
conditions required for a multiresolution analysis of L, [1]. An
equivalent orthogonal generating function of ¥V, is ¢(r) whose
Fourier transform is

L
Ff) = e 23
NE L - b

keZ

The signal approximation £, which is the orthogonal projection of
x on V,, is therefore given by

2O = % coRgit = b, cylk) = <x(0), ¢ ~ B (24)
€
The corresponding signal processing block diagram is shown in
Fig. 5.
This representation has certain properties that are essential to our
analysis. First, it can be readily verified that the Fourier transform

of ¢ satisfies the condition

L |F(f— b =1 29
keZ
Second, it has the norm preserving property
el Z, = fleo Il 26)
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Fig. 5. Signal processing system for the minimum L,-norm approximation
of a signal in V,,. Sampling is obtained by multiplication by a sequence of
dirac functions.

simply because {¢(t — k), k € Z} is an orthogonal basis of V.
Finally, £ is by definition orthogonal to the residual error e = x —
. Hence, it is also true that

llel L= lxlli = Ml @n

which, once again, indicates that minimizing || e||” is equivalent to
maximizing || %1,

i = lxliz, — Nzl

B. Optimal Filter Selection

Let us now assume that the continuous-time input of the system
in Fig. 5 is a realization of a wide sense stationary process with
PSD S.(f). To analyze this situation, the previous notion of the
squared L,-norm of a signal must be replaced by the average power
E{x*}. The link with the L, formulation is provided by the fol-
lowing limit process

2~ lim - ST 2
E{x*} = rETm 2TE{ o | x(@)|° dr (28)
1 ’ ’
= 1 — ~j2=f
S.(f) THT@ ZTE H S‘Tx(t)e‘ o dt } (29)

This allows the translation of the norm preserving property (26)
into the relation

E{x*} = E{c}}. (30)

Likewise, (27) implies that condition (15) is satisfied as well. To
state our main result, we first define k5 ( f) as the smallest positive
integer for which the following inequality is true

vkeZ,  S(f+ k() = S(f+ k. (€28)

Theorem 2: For a continuous-time stationary random process
with PSD S,(f), the sampling (or approximation) error is mini-
mized if the Fourier transform of ¢ is such that for fe Z*

1, Q = {v + k(: 0,1
IF(f>I=€O fei=trthwivelol

5 otherwise.

Proof: As in the previous case, minimizing the approxima-
tion error is equivalent to maximizing the average power of the
approximating signal X, or equivalently, the coefficient sequence
c,. It can be readily shown that the spectral density of the sampled
sequence ¢, is [19, p. 336]

Self) = 2 IF(f + OIS.(f+ k)
The average power is then obtained by integration

+1/2
Efci} =2 SO 2 P+ RS (f+hdf. (33

By using (31) and (25), we construct the following upper bound

IA

+1/2
Efcs} 25 ZIF(f+ OPS(f+ ko (f) df

0

+1/2
2| s kO

It is then easy to verify that this bound is achieved for any filter
satisfying condition (32). O

C. Comments

Theorem 2 implies that the classical sampling function ¢(r) =
sinc (7) (ideal lowpass filter) is optimal for all stationary processes
with PSD satisfying the constraint

viel—3, i1, S(f) = S(f+ k., keZ (34)

The corresponding approximation space V,, is the space of func-
tions bandlimited to the frequency interval [—1/2, 1/2]. It is pre-
cisely the class of functions considered in Shannon’s sampling
theorem.

The function sinc (¢) also satisfies all the properties of a scaling
function and hence generates a multiresolution analysis in the sense
defined by Mallat [1]. The corresponding wavelet ¢ (f) = cos (3w (1
— 1)/2) sinc ((¢ — 1)/2) is the modulated sinc (or ideal bandpass)
function. It follows that this wavelet is ‘‘optimal’’ for the approx-
imation of stationary signals satisfying condition (34) up to the res-
olution A = 1. Note also that this wavelet is an analytical function
and that it is in this sense ‘‘infinitely’’ regular.

Interestingly, there are a number of wavelet transform construc-
tions that converge asymptotically to this limit. The better known
example is the family of Battle-Lemarié¢ spline wavelets which
converge to an ideal bandpass filter as the order of the spline goes
to infinity [20]. A procedure for constructing general families of
wavelets with such asymptotic properties has been proposed re-
cently [21]. There is also some evidence that the bandpass char-
acteristics of Daubechies’ family of compactly supported wavelets
improve as a function of the index N [13]. Our results therefore
suggest that there seems to be an advantage in using higher order
wavelets for coding applications. Obviously, there is also a price
to be paid because higher order always means greater complexity.
In practice, one should seek a solution that provides a good com-
promise in terms of performance and complexity and this is pre-
cisely what filter design is all about.

Condition (35) is satisfied for signals with nonincreasing spectral
density, although this latter constraint is a much stronger one. For
such signals, this inequality still holds if the sampling rate is
changed arbitrarily. The sinc-wavelet transform therefore provides
an optimal approximation of such signal for all scales.

VI. CoNCLUSION

This note first dealt with the problem of a signal decomposition
into two subbands. This led to the derivation of optimal QMF filter
banks for the representation of stationary processes. Such filters
maximize the differences in the variance distribution across sub-
bands and therefore result in the largest coding gain in the case of
separate channel encoding. For the class of stationary processes
with predominant lowpass characteristics [the exact condition is
given by (34)], the optimal solution is the classical ideal half-band
filter bank, which justifies the use of conventional QMF design
techniques.

The extension of this formulation to the continuous case has also
revealed a new aspect of the optimality of bandlimited signal rep-
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resentations. An implication is that the modulated-sinc wavelet
transform is optimal for the representation at all scales of the whole
class of stationary random processes with non-increasing spectral
power density.

Although ideal filters are difficult to implement in practice, they
can be approached as closely as desired by increasing the com-
plexity in the algorithm. For instance, one can obtain closer and
closer approximations of the ideal bandpass decomposition (sinc-
wavelet) with most families of wavelet transforms (splines, Dau-
bechies, etc.) by increasing the regularity index. These results pro-
vide a simple explanation for the performance improvement that is
usually observed with higher order transforms (or filter banks). The
optimal filter banks provided by this analysis also lead to very sim-
ple performance bounds that can be used as ‘‘gold standards’” for
assessing the efficiency of a given subband coder. Finally, these
results can easily be adapted for the optimal representation of finite
energy signals with a fixed (deterministic) shape and a uniform shift
distribution (c.f. comment at the end of Section II-B).
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Adapted Local Trigonometric Transforms and
Speech Processing

Eva Wesfreid and Mladen Victor Wickerhauser

Abstract—We use an algorithm based on the adapted-window Malvar
transform to decompose digitized speech signals into a local time-fre-
quency representation. We present some applications and experimen-
tal results for a signal compression and automatic voiced-unvoiced seg-
mentation. This decomposition provides a method of parameter
simplification which appears to be useful for detecting fundamental
frequencies, and characterizing formants.

I. INTRODUCTION

In this note, we apply an algorithm, based on the local trigono-
metric orthonormal basis and the adapted local trigonometric trans-
form, to decompose digitized speech signals into orthogonal ele-
mentary waveforms. This algorithm leads to a local time-frequency
representation  which is well adapted to analysis-synthesis,
compression, and segmentation. We present some applications and
experimental results for signal compression and automatic voiced-
unvoiced segmentation. Furthermore, compression provides a sim-
plified decomposition which appears to be useful for detecting fun-
damental frequencies and characterizing formants.

We begin with a clean, digitized speech signal. The signal is
decomposed into a local trigonometric orthonormal basis which
consists of cosines or sines multiplied by smooth cutoff functions.
This basis is described by Coifman and Meyer [3] and by Malvar
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