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Abstract— The first part of this paper is concerned with the
derivation of general methods for the L, approximation of signals
by polynomial splines. Such approximations can be represented
in a variety of ways using different sets of shift-invariant basis
functions (e.g., cardinal, dual, orthogonal or standard B-splines).
The main result is that the expansion coefficients of the approxi-
mation are obtained by linear filtering and sampling.

The second part applies those results to construct a Lo polyno-
mial spline pyramid that is a parametric multiresolution repre-
sentation of a signal. This hierarchical data structure is generated
by repeated application of a REDUCE function (prefilter and down-
sampler). A complementary EXPAND function (up-sampler and
post-filter) allows a finer resolution mapping of any coarser
level of the pyramid. Four equivalent representations of this
pyramid are considered, and the corresponding REDUCE and
EXPAND filters are determined explicitly for polynomial splines
of any order n (odd). Some image processing examples are pre-
sented. The present formulation provides a number of interesting
links with several other multiresolution techniques including the
wavelet transform, scale-space filtering, and Burt’s Gaussian
and Laplacian pyramids. In particular, we demonstrate that
the performance of the Laplacian pyramid can be improved
significantly by using a modified EXPAND function associated with
the dual representation of a cubic spline pyramid.

Index Terms—Binomial filters, B-splines, decimation, interpo-
lation, multigrid methods, multiresolution, polynomial splines,
pyramid, recursive filters, scale space, signal approximation,
spline filters, wavelet transform.

I. INTRODUCTION

MAGE PYRAMIDS are data structures for representing

image copies at multiple resolutions [1]. These represen-
tations are particularly useful for improving the efficiency
of many image processing tasks such as edge detection [2],
object recognition, and image segmentation [1], [3]. Their
main advantage is to provide a simple mechanism for ad-
justing the spatial resolution to optimize the performance of
image processing algorithms that operate on very localized
neighborhoods with a fixed number of pixels. Furthermore,
the use of a coarse-to-fine strategy can dramatically improve
the execution speed and convergence properties of iterative
algorithms that proceed by successive refinement. Over the
past ten years, these concepts have caught the attention of the
mathematical community and have led to the development of
powerful multigrid methods for solving a variety of elliptic
boundary value problems [4]. Some specialized forms of
these multigrid relaxation techniques have been used to find
numerical solutions for differential equations that arise in
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the context of computer vision, for example, visible surface
interpolation [5], [6] or optical flow determination [7], [8].

Image pyramids are also frequently used for generating
multiscale descriptions of signals or images. Instead of keep-
ing a full copy of each resolution level, some researchers
have found it useful to code the differences between reso-
lution levels. Examples of such bandpass representations are
Burt’s Laplacian pyramid [9], Crowley’s difference of low-
pass transform [10], the class of pyramid structures used in
subband coding [11], [12], and the recently proposed wavelet
transform [13], [14]. Many of these approaches have proven
to be particularly effective for image coding [9], [12]. Other
examples of applications include feature extraction [15] and
texture analysis [13], [16].

A related method of multiresolution analysis is the decom-
position of a signal in scale space by repeated convolution
with Gaussian kernels of increasing width [17]-[19]. The main
characteristic usually analyzed is the systematic behavior of
the extrema (or zero crossings of the Laplacian) as a function
of scale [20]. Koenderink has pointed out several striking
correspondences between important scale-space characteristics
and properties of the visual system, such as size invariance
and the presence of multiple frequency-tuned channels [18].
An axiomatic formulation of a scale-space theory for discrete
signals, in which continuous Gaussian filters are replaced by
generalized binomial kernels, has been proposed recently [21].

The construction of an image pyramid involves the repeated
application of a REDUCE function that reduces the image by a
factor of two. The reverse of this operation is obtained through
the EXPAND function, which maps (or extrapolates) a coarser
level onto a finer sampling grid. The REDUCE and EXPAND
functions (or DOWN and UP in the multigrid literature) can be
implemented using a combination of digital filters and sam-
pling rate converters; the convolution operators used in both
cases are usually identical. An important requirement in the
design of such systems is that the loss of information occurring
during resolution conversion be minimal. Clearly, the REDUCE
operation should be chosen such that lower resolution copies
remain as close as possible to the original image in order to
ensure the compatibility between image processing operations
performed at different resolutions. Moreover, the EXPAND
function should be designed to minimize the approximation
error between the original image and an extrapolation obtained
from a coarser level of the pyramid. As surprising as this may
appear, some of the most frequently used combinations of RE-
DUCE and EXPAND functions (see, for example, [4] and [9]) are
not consistent with this last requirement. A notable exception is
the orthogonal multiresolution representation associated with
the wavelet decomposition described by Mallat [14].
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The objective of this paper is to develop a coherent approach
to the multiresolution representation of signals such as to
minimize loss of information between resolution levels. An
important requirement is to use the smallest number of samples
possible at each scale in order to 1) provide a compact
multiscale representation and 2) improve the efficiency of
processing algorithms. For this purpose, we will consider
the generation of a class of polynomial spline pyramids
that fall within the general framework of the multiresolution
transform defined by Mallat. An important aspect of this study
will be to investigate polynomial spline representations that
are not necessarily orthogonal such as the standard B-spline
representation [22] or the cardinal representation in terms
of sampled values [23]. This point of view will result in
the definition of modified REDUCE and EXPAND functions us-
ing complementary—but not necessarily identical-filters. This
formulation will bring out filter structures that are similar,
if not identical, to the operators used by Burt, Witkin, and
others, thus establishing a close relationship with some of the
approaches mentioned above.

Polynomial splines of order n are piecewise polynomials
that are connected to guarantee the continuity of the function
and its derivatives up to order n—1. These functions, which
were introduced and studied extensively by Schoenberg [22],
[24], can be expressed as weighted sums of shifted B-spline
basis functions. In the case of equally spaced data points,
the B-spline interpolation problem can be solved efficiently
using recursive filters [25]. Moreover, an increase in the order
of the splines provides a progressive shift from the simple
zero order and piecewise linear methods of interpolation to
the ideal “sinc” interpolation for bandlimited signals; these
extreme cases correspond to polynomial spline interpolations
of order n = 0,n = 1, and n — 400, respectively [23], [26],
[27]. Additional features that should make splines attractive
for computer vision are as follows:

1. Polynomial splines have good regularity properties.
Among all interpolants of a given degree of smoothness,
they are those that oscillate the least [28]. Precise
convergence rates for the approximation of smooth
functions and their derivatives by splines are also
available [29].

2. Polynomial splines have a simple explicit form that
makes them easy to manipulate. Operations such as
derivation and integration can be performed in a straight-
forward manner. Polynomial splines therefore constitute
the method of choice for designing finite element meth-
ods for the numerical solution of differential equations
[28].

These properties should simplify the development of algo-
rithms for computer vision problems that are better formulated
in a continuous framework (e.g., edge detection, feature ex-
traction) or can be specified in terms of differential equations
(optical flow, surface reconstruction, shape for shading, etc.)
[30].

The presentation is organized as follows. Section II in-
troduces some preliminary concepts and definitions; it also
provides a review of the main properties of discrete B-
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spline filters. The general problem of the minimum error
approximation of an arbitrary function in L using polynomial
splines with a step size m is solved in Section III. These
mathematical results are then used in Section IV to construct
the polynomial spline pyramid, which provides a series of
multiresolution signal approximations with an octave scale
progression. Some experimental image processing examples
and comparisons with other methods are presented in Section
V. The final part is a discussion of the main results of this
paper and how they relate to previous approaches.

II. PRELIMINARIES

In this section, we first consider a series of transformations
that operate on discrete I sequences (or signals) and describe
their effect in the z-transform domain. We then define the
function spaces that will be considered in this paper and recall
some important properties of discrete B-spline kernels, which
play an essential role in the derivation of spline filters.

A. Discrete l; Sequences

l2 is the vector space of square-summable sequences
a(k),k € Z. Any sequence a € [, is uniquely characterized
by its z-transform, which we denote by a capital letter:

+oo

Az) = Y a(k)z"

k=-—00

This correspondence is also expressed as a(k) <~ A(z). The
Fourier transform is obtained by simply replacing z by 727/ .
The convolution between two discrete sequences a € I, and
belyis

+oo

bra(k)= Y b(l)a(k — 1) < B(2)A(2).

l=—o00

It is sometimes useful to view b as the impulse response of a
shift-invariant filtering operator that is applied to a(k). This
operator is entirely described by its transfer function B(z). If
B(z) # 0 is a polynomial with complex roots that are not
on the unit circle, the inverse operator (b)~! exists and is
uniquely defined by the equation

Vk € Z, ()™t x b(k) = 8o(k)

where 89(k) denotes the unit pulse at the origin. We also define
the square-root inverse operator (b)~1/2 (if it exists):

(6) 2 (k) < B(z)72,

Another operator is the up-sampling by an integer multiple m,
which is defined as

[b]Im(k)3-_— {b(k;’) for k = mk’ (_z_) B(Zm)

Vk e Z, .
0 otherwise

The dual operation is the decimation by an integer factor m:

m-—1
Vk€Z, [b]),,(k):=b(mk) % 3 B([ZejZ‘nk] l/m).
k=0
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B. Function Spaces

L, denotes the space of measurable, square-integrable,
functions g(z), z € R. The inner product of two functions
g € Lo and h € Ly is

+oo
(g(2), h(z)) = / o(2)h(z)dz.

In this paper, we will be concerned with the problem of
constructing polynomial spline approximations of g(x). The
generic space of polynomial splines of order n is denoted
by ST, where the superscript n refers to the degree of the
polynomial segments and where the subscript represents the
spacing between the knot points (i.e., the joining points of
the polynomial segments). More precisely, ST is the subset
of functions in Lo that are of class €*~! (i.e., continuous
functions with continuous derivatives up to order n — 1)
and are equal to a polynomial of degree n on each interval
[k, k+1),k € Zwhennisodd, and [k~1/2,k+1/2),k € Z
when n is even. ST is a closed vector space and can be defined
as (see Theorem 12, p. 199, of [22]):

+ oo
ST = {g"(m) = Y k) z—k)ce 12} 1)

k=—o00
where 5™(z) is the central B-spline of order n

n+1

(-1) (n+1 n+l 1"
=3 P (e[ ntl "
= n! J 2 n
(z €eR) 22)
with the convention that [z]; = max{0,z}. The Fourier
transform of 3"(z) is given by
B"(f) = [sinc(f)]"** (2.3)

where sinc(z):= sin(nz)/7z.

To obtain a multiscale representation of g(z) € Ly, we will
consider polynomial spline functions with different spacings
A between the knot points. The corresponding function spaces
can be defined by simple scaling. In other words, if g(z) € ST,
then ga(z):= g(z/A), where A is strictly positive, is an
element of S, which is defined as

+o0

3= {gz«z) = 3 ca(R)BL(r — A Jea € lz}
fm 2.4

where B3 (z):= ("(z/A). The spacing between the knot
points A, which is also referred to as the sampling step or
resolution, determines the quality of the approximation of a
given function g(z). As A tends to zero, the Lo-approximation
error vanishes [29], which is also equivalent to say that the
union of sets Uaep+S%, is dense in L.

For simplicity, we will assume that the smallest spacing for a
multiresolution representation is unity and restrict the analysis
to integer values of A. Thus, we can define the multiresolution
spline decomposition of a function g(z) € Lo associated with
the increasing scale progression S = {my,---,mj, - -} as the
sequence of minimum error approximations of g(z): g, (x) €

Sh s Im, () €8Sn - gm, (z) €S, , - - - The polynomial
spline pyramid is associated with the scale progression S =
{1,2,---,2%,-..}, which corresponds to a doubling of the
resolution at each step. When n and m are not both even, the
corresponding subspaces are embedded in each other since it
can be shown that 87" , C S7% for any positive integer m such
that the product (n + 1)(m — 1) is even.

To illustrate the fact that polynomial spline subspaces are
nested when the step size is increased by a power of two, we
consider a function that is piecewise linear over each interval
k-2,(k+1)- 2],k € Z : gj;(z) € S5. Clearly, 9y is
also piecewise linear over the sequence of smaller intervals
[k-27,(k+1)-27],k € Z, where j < i. Hence g}, (z) € 83,
for j < 4, which also implies that --- D 83, > 8}, --- D S}..

C. Discrete B-spline Filters

Discrete B-spline kernels are obtained by sampling the
continuous B-spline functions 3™(x). These sequences play
a crucial role in the design of digital filters for B-spline inter-
polation and approximation [25], [31]. The impulse response
of the so-called indirect B-spline filter of order n is

(k)= fr(k) VkeZ

The expanded (or interpolated) version of this kernel by an
integer factor of m is

b (K):= 3" (k/m)

Except for the case when n and m are both even, we have
shown previously that the expanded B-spline kernels satisfy
the convolution property [25]

b (k) = ug, * b (k)

(2.5)

Vk € Z. (2.6)

VkeZ 2.7

where u?, (k) is a symmetric sequence that corresponds to the
impulse response of a cascade of (n+1) moving average filters
of length m. More precisely, the transfer function of uy, can
be factorized as

Zko m—1 n+l
Un(2) = — (Z Z_k)

k=0

(2.8)

where kg = (n + 1)(m — 1)/2 is a proper offset that makes
the global response symmetrical. The direct B-spline filter of
order n is definéd in [25] as

(™)~ (k) < BY(2)7!
1

= (nt1)/2 29)
)+ Y bR +27)

k=1

and has been shown to be stable for any value of n [23]. An
equivalent characterization of this operator in Fourier space is

BHe? )T = —— L (2.10)
> [sinc(f — k)"
k=—o00

which can be directly derived from (2.5) and (2.3). Some
examples of spline filters that will be useful are given in
Table L.
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TABLE 1
FILTERS FOR THE BILINEAR AND CUBIC SPLINE PYRAMIDS

Impuise Transfer function Type| Poles : {Izji<1,
response i=1,...[n/2])
bik) 1 id.
b3(k 1 -1 FIR -
(9] 6(z+4+z )
b7(k) 57146 (2416+1191[z+211+120[z242 %) +23+23) | FIR
w(k) % (4242 FIR
w3 § @raze6raziezd) FIR
3y 1k 6 2y =-24V3
®) Z+a+z! IR =-0.267949
- =-0.53528
[CORIO] 5040 mR |2=03
34+12072+11912+2416+11912 1412022423 2p=-0.122555
2+120z°+ 2+ + 2141202%+z 72=-0.009144869

D. Generalizations to Higher Dimensions

Although the theoretical presentation is concerned with 1-D
signals only, all subsequent results are directly applicable in
higher dimensions through the use of tensor product splines
[29]. The corresponding basis functions are obtained from
the product of 1-D splines defined for each index variable.
Since all basis functions are separable, the corresponding
transformations are also separable [32]. This implies that
higher dimensional versions of all algorithms that will be
described can be implemented by successive 1-D processing
along the coordinates.

III. B-SPLINE REPRESENTATIONS AND APPROXIMATIONS

Our motivation for representing a function g(z) € Lo
in terms of polynomial splines is to achieve data reduction.
This process is a particular form of discretization since g™ (z)
is entirely characterized by the [ sequence of its B-spline
coefficients. We also note that there is a reduction in the
number of samples by a factor of m between a coarse
representation in S?, and a finer one in ST.

In this section, we introduce a series of equivalent represen-
tations of splines using different sets of shift-invariant basis
functions. We then derive general computational procedures
for the multiresolution spline approximation of g(x) € Lo. In
particular, we note that g% (), which is the approximation of
g(x) at resolution m, can be entirely determined from g"(z)
since S?, C S7. These fundamental results are then used in
Section IV for the construction of polynomial spline pyramids.

A. Equivalent B-spline Representations

The classical representation of polynomial splines uses a
linear expansion in terms of B-spline basis functions: {3"(x —
k),k € Z} [22]. These functions are shifted replicates of a
scaling function 3"(z), which has the essential property of
having a compact support of minimum size [26]. However, a
whole variety of other shift-invariant representations are also
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TABLE 1l
ALTERNATIVE SETS OF BASIS FUNCTIONS
OF ST AND THEIR SPECIFIC PROPERTIES
Basic Cardinal Orthogonal Dual
Specific compact support,|  interpolation orthogonality | fast REDUCE
Properties fast EXPAND (FIR)
Basis Bh(x) nM(x) $0(x) Bx)
function
Weighting 8¢ (id) oY (b2n01)'1n 21y}
coefficients
Optimal B(x) ") O] B"C0)
prefilter

conceivable, which is a result that is expressed as follows:
Proposition 1: The set of functions

+oo

@)=Y pk)B (- k)

k=—o00

(3.1)

is a basis of ST provided that p is an invertible convolution
operator from ly into itself.

The proof of this proposition is rather straightforward and
is given in Appendix A for completeness.

Some sets of basis functions are better suited than others
depending on the type of computations or interpretations. The
basis functions that we have considered are given in Table II.
In each case, g™(z) is entirely characterized by a sequence of
discrete coefficients. One such representation is the cardinal
expansion for which the expansion coefficients are the sample
values of the g"(z)

+oo

S (kb (a - k)

k=—o00

g"(z) = 32)

and where n™(z) is the so-called cardinal spline function,
which has the fundamental interpolation property

1 ifk=0,

0 ifk#0. 3-3)

Yk € Z,n"(k) = {
Another representation uses orthogonal basis functions that
have been introduced recently in the context of the orthogonal
wavelet decomposition [13], [14], [33]. These basis functions
satisfy the orthogonality condition

n n _f1 ifk=0,
We will refer to the dual representation, which is also impor-
tant for our purpose. It is obtained from the last set of basis
functions in Table III:

+oo
g*(@) = Y a(k)B(z - k) (3.5
k=—o00
where
+oo
frzy= Y @) k) —k).  (36)

k=—o0

This decomposition has the remarkable property of simplifying
certain algorithms, as will be seen later on. Moreover, we



368 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 4, APRIL 1993

TABLE 111
REDUCTION FILTERS FOR THE GENERATION
OF POLYNOMIAL SPLINE PYRAMID

Type Impulse response Frequency response
1 q 1 1 (sin@rH Y+t
Dual 5 up(k) 5 U9<0-2nu ( sinGah)
1 .
A (G M PR S e )

100 (BYO
2 UZ(DX(lenu(ZO

1 n
orthogonal| 2 [©) T * (o) 2+ w3 00 B2

1.
3 UdOx\[ 75
272 BN

Cardinal %[bn*(blnd)“],n * (o)L x b2l % g 1)

BT(2f) BZml(ﬂ
Bi(D BT 2N

3 Ume(

Generat |3 LG*02*) Ty * p* b2 02 ) POBTO ]

1.m
7 U T
3 2(0){1)(20 Bz"”l(Zf)

(n+1)2
¥ 2bM(k)cos2rkh).
k=1

=
with n odd and BY(f) = Z [sinc(f-k)]™+! = b™(0) +
koo

Basic
standard B-splinesi (b2n+l )‘1

B"(x)

Cardinal
(sampled signal)

n"(x)

Fig. 1. Digital filters for the conversion between several equivalent polyno-

mial spline representations of signals.

will show that it is closely related to the conventional scale-
space representation obtained by convolution of the signal with
Gaussian kernels of increasing size [17], [18].

Obviously, expanded versions of these modified basis func-
tions ¢7 (z):= ¢™(z/m) can also be used to represent polyno-
mial spline functions at coarser resolution levels: g7, (z) € SZ,.
Moreover, the conversion between one representation and
another can be achieved by digital filtering, as schematized
in Fig. 1.

B. Least Squares Approximations by Continuous Filtering

We now turn to the issue of determining the multiscale
spline decomposition of a function g(z) € Lo. Since all vector
spaces S7, are closed subspaces of Lg, the minimum Ly-norm
approximation of g(z) is obtained by projecting g(x) into S7,.
The following theorem suggests a computational procedure to
accomplish this task.

Theorem 1: Let {7 (z — mk),k € Z} be a set of shift-
invariant basis functions of S},:

+oo
(@)= Y p(k)Br(z — mh)
k=—o00
where p is an invertible symmetrical convolution operator from
ly into itself. The coefficients c,,(k) of the projection of a
function g € Lo into S, in the representation

gn(x) = :f em (k) (i (2 — mh) 37
are given by _
(k) = -3 9(a) e @9
where the function ™ (z) is defined by
én(a) = f (p* b+ (R)An(z — mk).  (3.9)

k=—oc0

The proof of this theorem for m = 1 and p(k) = 6o(k)
is given in {31] and can be adapted for the present case. The
interpretation of this result is that the expansion coefficients are
obtained by sampling a continuously filtered signal (see (3.8)).

The prefilter, whose impulse response is Co " (), has a role that
is very similar to an anti-aliasing filter used in conventional
sampling theory [31]. Likewise, the function (7, (z) represents
the impulse response of an interpolator that can be applied in
a post-filtering phase to reconstruct g7 (z). It can be verified

that the functions Cofn(:c) and (7 (z) are biorthogonal. The
prefiltering functions for the spline representations considered
in Section III-A are also given in Table II. A distinctive feature
of the orthogonal representation is that the prefilter and basis
functions are identical. The basic and dual representations
are complementary in the sense that the prefilter and basis
functions are simply interchanged. The corresponding pairs
of functions for a cubic spline representation are shown in
Fig. 2. A graph of the frequency responses of these filters can
be found in [31].

The computational procedure suggested by Theorem 1 is
simplified if the signal is first prefiltered with a normalized
expanded B-spline and sampled thereafter:

am(K) = B3 (0o (310)
It is straightforward to show that the expansion coefficients in
(3.7) can then be determined by digital filtering:

cm(k) = (p)_1 * (b2“+1)_l * Ay, (K) (3.11)

which simplifies the implementation of the continuous filter
defined by (3.9). Since the optimal prefilter associated with

ﬁcfn(x) is A (z), the use of the dual representation

+o00

gm(@) =Y am(k)n(z — mk)

k=-—oc0

(3.12)
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Prefilter Basis function
(a) Basic
o
2.5, B3 [ige)]
2 0.7
1.5 0-6
. 0.5
9. 0.4
N AN 03
s -RJT - ] T \J1? 3 0.2
o 0.1
ST 2 6 H ] s
(b) Dual

. o
0.1 B3(x) Z B3

0.6 s

0.5 '1

0.4 o /\ /\

9.3

0.2 0.5 N - ° 4 °
0.1 N

-3 -z [] 4 3

(c) Cardinal

1.25 ﬁ3(x) 1 13

1.

2
630 . 63(x)
0.8
0.6t
0.4
0.2

0. ¢
0.5 0.4
0.25¢
[ - [ A 3 o
- = )
-0.25 \/ \/ -4 RVALIAVA T 6
Vay /\

aN

-Vu\/z 4 [3

-3 ) [} ‘;\ 3 13 -4
-0.2f \/ \/ 0.2

Fig. 2. Optimal prefilters and basis functions for four equivalent represen-
tation of cubic spline polynomial approximations.

where a,, (k) is defined by (3.10) has the advantage of avoid-
ing the extra convolution step in (3.11). The coefficients a,, (k)
are obtained by sampling the result of the convolution between
g(z) and % (z)/m. The convolution kernel 37 (z)/m is a
positive function with a unit integral (a property of probability
density functions) and a variance that is equal to m(n+1)/12.
For increasing values of n, the functions 37, (z)/m tend to be
increasingly Gaussian like. In fact, the resemblance with a
Gaussian pulse is already striking for values of n as low as
2 and 3 (cf. Fig. 1(c)-(d) in [25]); the integrated rms errors
for Gaussian approximations of equal variance are 3.58 and
2.38%, respectively. This procedure is therefore very similar
to the Gaussian convolution approach described by Witkin
[17], although the present interpretation of the samples is quite
different.

Finally, we note that the additional convolutions in (3.11)
can be interpreted as two successive changes of coordinate
system; (b®"+1)~! performs the conversion from dual to basic
representation (cf. Fig. 1) and (p)~! from basic to generic, as
specified in Proposition 1.

C. Least Squares Approximation by Digital Filtering

The procedure suggested by Theorem 1 is not very practical
since it involves the processing of a continuous function g(z).
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Since S, C S7 (assuming that m and n are not both even), we
can expect that g7 (x) is entirely specified from the expansion
coefficients of g™ (x) € ST. This is essentially due to the fact
that 82 (z) € ST, which is also equivalent to saying that the
expanded B-spline can be represented as a weighted sum of
finer B-splines:

+o0

Z ul, (B)3™ (x — k).

k=—o00c

pr(x) = (3.13)

We note that this expression follows directly from (2.7). By
using this result, we get the following theorem, which provides
a solution to the general Lo approximation problem.
Theorem 2: Let {C7(x—k), k € Z} and {7 (x—mk), k €
Z} be two sets of shift-invariant basis functions of ST and S7,,,
respectively. ¢?(z) and 7 (z) are represented as

+o0

(@)= > pk)B"(@—k)

k=—oc

+oo

S kB (e — mh)

k=—oc

where p and P are invertible convolution operators. The
orthogonal projection of the function g7 (z) € ST

+o0
gi@) = Y alk)f(@—k) (3.14)
k=—occ
into S, is given by
+oco
(@)= D tn(k)C(x—mk)  (315)
k=—o0

where the expansion coefficients ¢, (k) are obtained as

Em(k) = ;ln—([?*bQ"H)‘l*[p*b?"'H * U * c1]ym(K). (3.16)

The proof is given in Appendix B. The same algorithm is
also applicable for the projection of g*(z) € S? into S},
where ¢ and m are some positive integers.

As in the previous case, we note that this procedure is
greatly simplified if we choose p = p = (b>"*1)~!. The
corresponding representation of g}'(x) is the one described
by (3.5), and its projection into S7, is given by (3.12) with

am(k) = [uly ax] i (K) (3.17)
where uly (k) is the impulse response of the finite impulse
response (FIR) filter described by (2.8).

IV. POLYNOMIAL SPLINE PYRAMIDS

A. Definition

A polynomial spline pyramid is a multiresolution transform
of a signal g(z) € Lo, which satisfies the general definition
given by Mallat [14]. More specifically, it is obtained from a
sequence of approximations {g7,,(z) € 83.,i € Z} with the
property that the integrated square error (Ly norm) between
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g(z) and any of those functions is minimum. Only a few
resolution levels of this decomposition need to be determined
in practice. By convention, the initial spacing between the
knot points of the spline approximation is chosen to be one.
This spacing is then increased by a factor of two at each
iteration, and the process is stopped at a certain resolution
level K. The determination of this transform proceeds by
repeated projection of g(x) onto a sequence of embedded
subspaces of L2:ST D S%.-- D 8§ --- D Sjx, where it
is, from now on, implicitly assumed that n is odd. The spline
approximations g%\ (z),i = 0,---, K are entirely specified in
terms of their expansion coefficients. The sequence of these
coefficients leads to a discrete pyramidal representation with
a number of samples that is decreased by a factor of two at
each iteration. The present formulation differs from the one
presented by Mallat in that it considers a characterization of
the approximation functions using basis functions that are not
necessarily orthogonal.

B. A Simple Algorithm

We first describe a simple computational procedure that
takes advantage of the simplifications that occur when the
multiresolution approximations are represented as

+o0
afy(@) = Y au(k)py(z - 2'k)

k=—o0

(4.1

where the scaling function ﬂo"(z) is defined by (3.6).

To initialize the procedure, we have to distinguish between
two cases, depending on whether the input of the system is a
continuous function or a sequence of discrete sample values.
In the first case, the use of Theorem 1 yields

ay(k) = (8" * 9)(@)|o=k

which indicates that the input of the system g(z) has to
be prefiltered with a basic B-spline prior to sampling. The
principle of this approximation is further discussed in [31]. If,
on the other hand, the input is a sequence of discrete values
g(k) € I, we use the cardinal representation to determine a
spline that precisely interpolates g(k):

gin(k) = g(k) VK EZ.

To determine the coefficients of the dual representation (4.1),
this sequence is filtered as

a() (k) = 6>+ (07) ™" x gy (k)

VkeZ (4.2)

(4.3)

Vkel “4.4)

which is equivalent to performing two successive changes
of coordinate system (cf. Fig. 1). We note that 62"*! is the
response of a simple FIR filter. The convolution with (b")~*
can be performed using the recursive algorithm described in
[25].

By making use of Theorem 2, we find that the expansion co-
efficients of the subsequent approximations for (i = 1,-- -, K)
can be determined recursively as

a@(k) = 10 * agoy]iz(h)

VkeZ. (45)

This defines the basic REDUCE operation. The operator u3
corresponds to a simple FIR filter. By using (2.8), we can
show that the corresponding filter coefficients are the binomial
coefficients:

1 +1
u3<k)={"2“n(k+?n+1>/z)v k< (m+1)/2 (46)
0

otherwise.

Since this filter can be decomposed into a cascade of moving
average filters, we can use the central limit theorem [34] to
show that u3 (k) converges to a Gaussian for increasing values
of n. A simple expression for its frequency response is

. n+1
Up (ei?f) = 2% (%) =2cos"t(nf). (4.7)

Another consequence of this property is that the convolution
in (4.5) can be implemented using additions only, plus a final
(optional) normalization by 27+1.

The complement of REDUCE is the EXPAND function that
maps a coarser level of pyramid onto a finer grid. This process
is equivalent to a polynomial spline interpolation and is the
simplest to perform for an expansion in term of standard
B-splines [25]. For a given level of the pyramid (i,), the
conversion from dual to basic B-spline basis is obtained by
digital filtering:

Clinriny (k)= ey (k) = (T " xag,) (k). 4.8)
It is the initialization part of the procedure. Let c(;, ;)(k),
where i, > i, denote the extrapolation at resolution (i)
associated with the coarser level (i,) of the pyramid. By
using (3.13), it is not difficult to show that c(;_ ;)(k) can be
determined by recursive application of the EXPAND function
defined as

C(ia,) (k) = u3 ¥ [eGi, j+p)]12(k) 4.9
where j is decremented from i, + 1 down to ¢. Finally, if
desired, the corresponding image interpolation g?io,i)(k):
9:,)(2'k) at resolution (i) is determined by FIR post-filtering

gf‘imi)(k) =b"*cgi, iy (k). (4.10)
The whole algorithmic procedure is schematically represented
in Fig. 3. In this representation, we have assumed that the
input of the system is a discrete sequence of data points. We
note the striking duality between the REDUCE and EXPAND
functions. In this implementation, the REDUCE and EXPAND
filters are FIR binomial operators (cf. (4.6)). We also note
that for n = 3, the EXPAND and REDUCE functions are
almost identical to the functions proposed by Burt for the
generation of the Gaussian or Laplacian pyramid [9], [15]
(cf. discussion below). The major difference, however, is
our requirement for an initialization sequence that performs
a change of coordinates and involves an additional level of
digital filtering.
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REDUCTION PROCEDURE :

« Initialisation : (cardinal —> B-spline —> dual)

grky | (bn)‘l L pt | ag(k)
+ REDUCE (dual basis) (i=0,.,K-1)
ag, (k) __| Ly () (k)
EXPANSION PROCEDURE :

* Initialisation : (dual —> B-spline)

Ay k)| (b2ﬂ+1)'1 | Clinio (K= €y ()

» EXPAND (B-spline basis)

Clip.j+(K) n

Fig. 3. Schematic representation of the simplified REDUCE (dual represen-
tation) and EXPAND (basic representation) procedures associated with the
Loy-spline pyramid.

(j=ig = 1,u0si)

_»C(io k)

C. Generalized EXPAND and REDUCE Functions

The reduced expansion coefficients in (4.5) are obtained
by filtering and decimation by a factor of two. The same
procedure is also applicable for other representations, but the
filters tend to be more complex. Let us consider the general
spline representation

+o0
Iy(@) = Y ewk)Gi(z - 2'F)
k=—o00
+oo . )
Trn@ = Y Ly (B)G (@ ~ 27 k)

k=—o00

where (7 () and f;+1(x) are defined as in Theorem 2. By
using Theorem 2, it is not difficult to show that the sequences
of c(;)’s can be computed iteratively as

é(i+1)(k)2= REDUCE(C(Z')) = [’U * C(i)]lg(k) (4.11)

where the reduction filter v is
1 > T bt n n
v(k) = —2-[(p 02D xpx b2 (k). (4.12)

This is the most general form of the REDUCE operation.
The last expression was used to determine the filters for all
spline representations considered in Section III-A, and the
corresponding impulse and frequency responses are given in
Table III.

Likewise, the coefficients of an expanded version of the
signal in (4.9) are obtained by upsampling by a factor of

37N

two and post-filtering; this is a procedure that can be readily
extended to other spline representations.

Let us consider the signal associated with the coarser
representation at resolution level (i + 1). Since S3.., C S%;,
the same signal can also be represented using basis functions
at the finer resolution level (¢):

400

98+1)(1’) = Z 5(i+1)(k)§;z+1($ - 2i+lk)
k=—o0
+oo )
= Y cirpR)(z—2'k)  (413)
k=—o0

where the basis functions (J.(x) and f;‘,+l(x) are defined as
previously. The question now is how to determine the finer
sequence of coefficients c(; 1, ;y(k) from ¢(;41)(k). By using
(3.13) and making the suitable changes of coordinate system,
we find that

c(i+1,0)(k):= EXPAND(E(;11)) = w * [Caynli2(k)  (4.14)

where

w(k) = [z * (p) 7! * uz (k) (4.15)
which is the corresponding generalized form of the EXPAND
function. This process can be iterated in order to compute
image interpolations or representations at any finer resolu-
tion level. The general form of the impulse and frequency
response of w for the various polynomial spline representations
considered in this paper is given in Table IV.

‘We note that all filters in Tables III and IV, with the notable
exception of u5, have an infinite impulse response (IIR). Most
of these can be implemented recursively. In practice, however,
we have found it preferable to use the procedure described in
the previous section and to derive alternative representations
when they are needed using the conversion rules schematized
in Fig. 1.

A case that stands apart is the representation that uses or-
thogonal basis functions. The corresponding square-root filters
cannot be implemented recursively. However, this decomposi-
tion has the advantage that the reduction and expansion filters
are identical (cf. the third row in Tables III and IV). The
recommended filter implementation in this case is a truncated
FIR approximation. The filter coefficients can be determined
by discretizing the frequency response given in Table III and
performing the inverse discrete Fourier transform. This ap-
proach has been taken by Mallat for the design of the filter for
the orthogonal cubic spline pyramid (see table 1 in Appendix A
of [14]). In this respect, we note that the frequency responses
of the filters associated with the orthogonal transformations
given in Tables III or IV are alternative but equivalent forms of
(57) and (58) in [14]. What may be an advantage of the present
form of these equations is that they allows us to compute the
frequency responses directly by substituting the appropriate
expression of BT (f) (which are easily derived from Table I
or (2.2) and (2.5)) without having to deal explicitly with the
evaluation of infinite sums.




372 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 4, APRIL 1993

TABLE IV
EXPANSION FILTER FOR THE POLYNOMIAL
SPLINE PYRAMIDS WITH n ODD

Type Impulse response Frequency response
[®2e1y 1], * 62041 % 42 ) n B
Dual ne1y 1] el Ul BL
s . 3 3 [le ,m]
ne 1 (sin(2 +1
Basic (k) U= [s;;]n((,:tg
Ontogonal | @)y, * @) i Lo [ B
2! B%‘"’(Zf)
Cardinal [ 12 * b7 * uf ) U3(H)X Bnl ®
B(20)
. . PQf
Generl [ [Pl * @)+ w3 a0 U%(QX(EP%))

D. The Difference (or Laplacian) Pyramid
During an iteration, g("i)(ac) is approximated by gzliﬂ)(.?:).
The loss of information is measured by the residual error
E(i+1,)(2) = g(ni)(x) - g?iﬂ)(x)‘ (4.16)
We know that (41 )(z) € S, since gfj)(z) € S5 and

o
g("iH)(:l;) € 8511 C S%:. It follows that e(;1; ;)(x) is entirely

“characterized by its spline coefficients at resolution 2°, which,

due to the linearity of the expansion, are given by
Ac(i+l,i)(k) = C(i+1>(1€) — c(i+l,i)(k) (417)

where c(;41.4)(k) = EXPAND(c(;y) (cf. (4.14) and (4.15)). We
note, however, that this representation has twice as many
coefficients as necessary. In 2-D, this representation is over-
complete by a factor of 4/3. A more compact representation
can be obtained by using wavelet functions similar to those
defined by Mallat and Lemarié [14], [33]; this issue will be
addressed in greater detail in a forthcoming paper [35].

The loss of information is well visualized in terms of
its samples (cardinal B-spline representation): Ag(;y1,y(k):=
€(i+1,i)(2°k). The sequence of error images fori = 0,---, K —
1 can be displayed in the spline difference pyramid, which is a
data structure that is very similar to the one described by Burt
[9]. From our previous results, we know that this data structure
is particularly easy to construct from a standard representation
using basic B-spline coefficients:

Ay (k)= b" * (cuy(k) — uy * [cazrnlia(k)).  (4.18)

V. RESULTS AND DISCUSSIONS

In this section, we present some experimental examples
using 2-D images. We then discuss some of the implications of
our results and the way the present approach relates to several
multiresolution methods described in the literature.

A. Experimental Results

All algorithms were coded in FORTRAN on a low-end
workstation (standard 16-Mhz Apple Macintosh Ilcx). The
basic spline pyramid was implemented using a straightforward
separable extension of the procedure schematized in Fig. 3.

Fig. 4. Cardinal representation of the Lo cubic spline pyramid (sampled
image values): (0): original 208 X 222 “Lena” image. Levels (1) to (4)
computed from images (1)-(4) in Fig. 6 by successive row and column filtering
with b® (separable indirect B-spline filter of order 3).

All inverse filters were implemented recursively from a cas-
cade of simple causal and anticausal exponential filters [25].
Although all images were stored in short integer format to
reduce memory space, the intermediate results of 1-D filtering
along a row or a column were stored in a real vector to
prevent the propagation of round-off errors. The bilinear and
cubic spline orthogonal pyramids were implemented using FIR
approximations of length 13 and 23, respectively. For the latter
case, we found our filter design to be consistent with the one
reported in Table I of Appendix B of [14] with the exception
of the sign of coefficients h(5) and h(6), which should be
interchanged.

Another important practical issue is the specification of
boundary conditions since the signals encountered in practice
have a finite extend. For practical convenience and to avoid
discontinuities, the signals at the finer level were extended on
both sides by using their mirror image, which is a standard
practice in image processing. Compatible boundary conditions
were used at the coarser resolution levels.

To illustrate the concepts described in the previous section,
we first present some examples of polynomial spline pyramids
for n = 3 (cubic splines). The original test image is shown in
Fig. 4 at resolution level (0). The cubic spline pyramid was
computed using the dual representation. The initial image was
first prefiltered (initialization procedure) to obtain level (0) in
Fig. 5, which is a slightly blurred version of the original image.
The frequency response of this filter, which slightly attenuates
higher spatial frequencies, is provided by the lower curve in
Fig. 7. The remaining levels of the pyramid were obtained by
successive low-pass filtering and decimation along the rows
and columns using the binomial kernel u3(k) of length 5 (cf.
Table I). The resulting image pyramid is shown in Fig. 5,
with all levels appearing as somewhat smoothed copies of the
original image. We note that this representation is extremely
similar to the commonly used Gaussian pyramid proposed by
Burt [9], {15]; the only difference is the use of a prefilter
in the initialization phase to determine level (0) so that in our
case, it is different from the original image. The corresponding
cardinal (Fig. 4) and basic B-spline pyramids (Fig. 6) can be
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Fig. 5. Dual representation of the Ly cubic spline pyramid. This image
pyramid was computed using the simplified REDUCE procedure schematized
in Fig. 3.

Fig. 6. Basic representation of the Ly cubic spline pyramid (standard
B-spline coefficients). Levels (0) to (4) computed from images (0)-(4) in
Fig. 5 by successive row and column filtering with (b7)~! (separable direct
B-spline filter of order 7).

determined from the dual representation by digital filtering of
each level using the conversion rules given in Fig. 2. The basic
representation has the property of enhancing high frequencies,
which is a fact that has been pointed out previously [25]. No
such distortion occurs for the cardinal representation because
it preserves the original image at level (0). In terms of fidelity
of the representation, this decomposition is visually the most
satisfactory one. It also stands between the dual and basic
representations, which have the tendency to enhance lower
or higher spatial frequencies, respectively. This qualitative
observation is supported quantitatively by the analysis of the
frequency responses of the conversion filters between the
sampled (cardinal) and the other representations (cf. Fig. 7).
The orthogonal pyramid, which is not shown here, is al-
most indistinguishable from the cardinal representation since
the conversion filter is essentially an all-pass filter with the
exception of a slight attenuation of higher frequencies.

A visual display of the loss of information that occurs
during resolution conversion is provided by the difference
pyramid described in Section IV-C. Fig. 8 provides a com-
parison between this data structure for n = 3 and Burt’s

T
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Fig. 7. Frequency responses of the conversion filters from cardinal
to orthogonal, dual, and basic spline representations for n = 3 (cubic splines).

Fig. 8. Comparison between the Burt’s Laplacian pyramid (a) and the
cardinal representation of the difference cubic spline pyramid (b).

Laplacian pyramid with a parameter value of a = 3/8 [9].
The same intensity scaling factors were applied to all images
to facilitate the comparison. For Burt’s Laplacian pyramid, the
amount of information displayed at each resolution level is not
insignificant, and the main subject is still readily recognizable.
In the case of the cubic spline pyramid, the energy of the
Laplacian is reduced drastically, and only very high-frequency
details are visible in this representation.

The quality of the image approximation associated with a
given level of the polynomial spline pyramid can be assessed
using a standard measure of the signal-to-noise ratio (SNR)
in decibels:

(gmax - gmin)z )
72 T Y (Agaoyk, l))2(5 )

The quantities gmax and gpi, refer to the maximum and
minimum gray level values of the K x L reference image,
and Agg; 0y(k, 1) denotes the error between the original image
and the full-resolution approximation (cardinal representation)
obtained from resolution level () of the pyramid. The image
pyramid can be stored in any of the forms described previously
since all these data structures are equivalent representations of
the same information. The results of these computations for the

SNR(Z,U) =10 10%10
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TABLE V
COMPARISON OF IMAGE PYRAMIDS IN TERMS OF THE
SIGNAL-TO-NOISE RATIO ASSOCIATED WITH THE
DIFFERENT LEVELS FOR THE TEST IMAGE IN FIG. 4

Pyramid level 1 level 2 tevel 3 level 4
L, spline (n=1) 27.55dB 22.59 dB 19.21 dB 16.19 dB
L spline (n=3) 28.64 dB 23.02dB 19.51 dB 16.43 dB
Gaussian (Burt) 2370 dB 19.44 dB 16.48 dB 14.21 dB
Orthogonal (n=1) 27.46 dB 22.40 dB 19.01 dB 16.06 dB
with no conversion
Orthogonal (n=3) 28.59 dB 2297dB 19.47 dB 16.41 dB
with no conversion
Dual (n=3) 28.60 dB 22.95dB 19.47 dB 16.40 dB
with no conversion

test image in Fig. 4 for n = 1 (bilinear pyramid) and n = 3
(cubic spline pyramid) are given in Table V. We have also
performed these experiments for the Gaussian pyramid (GP)
described by Burt using the same parameter as before. We
note that in all cases, the polynomial spline pyramids performs
better than the GP. In fact, the SNR values obtained at a given
level (3) for the Ly spline pyramids are comparable with those
obtained with GP at resolution (i — 1) with four times the
sample size. As will be demonstrated below, the compara-
tively poor performance of GP is mainly a consequence of a
suboptimal design of the corresponding EXPAND function. The
cubic spline pyramid performs slightly better than the bilinear
pyramid, which is a result that is not surprising given the better
smoothness properties of the approximations of the former.
Similar results have been obtained with all other images to
which we have applied the procedure.

We have already pointed out that the orthogonal repre-
sentation is extremely close to the cardinal one. It therefore
appears legitimate to substitute the initial pixel values for
the orthogonal spline coefficients at level 0 and vice versa.
However, while doing so, one has to be aware of the fact that
the underlying continuous signal that one is approximating is
not the same as before in the sense that it does not interpolate
the pixel values of the image precisely. The main advantage is
that one avoids the use of pre and postfilters for the conversion
from and to cardinal representation while the procedure is still
coherent. We note that this approach has been taken implicitly
by Mallat for his experiments with the wavelet transform [14].
The SNR values obtained in this case are also given in Table V
and can be seen to be only very slightly below those obtained
with the previous approach. In fact, the same strategy can
also be used for the dual representation, which essentially
amounts to using Burt’s method of constructing the Gaussian
pyramid with the modified EXPAND function specified by the
first line in Table IV with n» = 3. Here too, the results are
virtually undistinguishable from those obtained with the L,
cubic spline pyramid, and the improvement over Burt’s initial
scheme is quite significant. It is important to keep in mind,
however, that the underlying continuous signals used in these

T -

different experiments are not the same, which also means that
the approximations computed in each case are not equivalent.

B. Discussion

I) Equivalent Polynomial Spline Pyramid Representations:
An important point that has been emphasized all along the
presentation is the availability of a variety of equivalent
polynomial spline representations (cf. Proposition 1). These
representations are associated with different sets of shift-
invariant basis functions but are all equivalent characteriza-
tions of the underlying continuous signal approximations. The
conversion between any two of these representations (change
of coordinate system) occurs by digital filtering, which is
a particular form of linear transformation (cf. Fig. 1). Four
such representations have been considered in more detail
because of their distinctive properties. For instance, the dual
representation is associated with the simplest REDUCE filtering
operator (binomial filter), which facilitates the generation of
the polynomial spline pyramid. This decomposition, which
tends to emphasize lower spatial frequencies, is also the one
that is the most similar to other frequently used approaches,
such as scale-space filtering [17] and the Gaussian pyramid
[9]. The standard B-spline representation is associated with
the simplest possible form of the EXPAND function and there-
fore simplifies image interpolation and zooming. It is also
especially suited for signal analyses involving operations such
as differentiation, integration, searching for extrema, etc- - -,
which are well expressed in terms of B-spline coefficients [36].
The cardinal representation is the one that provides the best
rendition (i.e., precise sampling) of the underlying continuous
signals. From this perspective, it appears to be the most
appropriate for conventional digital signal processing. Finally,
the orthogonal representation has the remarkable property of
using identical REDUCE and EXPAND operators. Moreover, it
preserves Lp-norms, meaning that the square integral of the
difference between two continuous signal approximations is
equal to the sum of squares of the difference between the
corresponding coefficients of the orthogonal representation.

2) Interpolation Versus Extrapolation: The EXPAND func-
tion provides a general mechanism for extrapolating any of
the spline representations that have been considered at a
finer resolution level. We have intentionally used the term
extrapolation to distinguish between this operation and an
interpolation. By interpolation, it is usually meant that the
signal values at the grid points are preserved; this is generally
not the case for the operation described by (4.14). In effect, a
true interpolation occurs only when the cardinal representation
of the pyramid is used. This property is a consequence of
the vanishing of the underlying basis functions 7™ (z) at all
nonzero integer values (cf. (3.3)), which is a feature that these
functions share with sinc(z)—the classical interpolation kernel
for bandlimited functions. We can also see from Fig. 2(d) that
the orthogonal basis functions for cubic splines differ very
slightly from a true interpolator. In practice, this means that the
coefficients of the orthogonal representation will be very close
numerically to the sampled values of the underlying continu-
ous signal approximation. The observation is also supported
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by examination of the frequency response of the conversion
filter between cardinal and orthogonal representations, which
indicates that these representations only differ very slightly in
their higher frequency content. Thus, it appears justifiable to
substitute any of these representations for the other, provided
that one is aware of the approximations that are involved. From
these considerations, we can also conclude that the /3-norm of
the cardinal representation provides a good approximation of
the Ly-norm of the interpolating signal; this is not surprising
since the former provides a Riemann sum approximation of
the integral in the latter.

3) Implementation Considerations: Some of the filters re-
quired for the construction of polynomial spline pyramids
are simple indirect-spline or binomial FIR kernels, whereas
others are IIR (cf. Table I). Most of the IIR operators, with
the exception of the filters for the orthogonal representation,
can be implemented exactly using the recursive algorithms
described in [25]. We note, however, that for image processing
applications where the intensity values are typically quantified
with 256 gray levels, the use of truncated FIR approximations
with a limited number of coefficients is usually acceptable;
the only requirement is that the truncation error be below
the required level of precision. In terms of efficiency, the
selection of a given implementation depends strongly on
the configuration of the image processor. For our low-cost
Macintosh II image processing workstation, we found the
recursive implementation to be the most suitable. In the case
of an orthogonal representation, one has no choice but to
opt for an FIR approximation. Fortunately, the corresponding
impulse response tends to decay rapidly, and a 15- to 20-
point FIR approximation seems to be sufficient for most
image processing applications. Moreover, the same filter can
be used for the REDUCE and EXPAND operations. It also
appears from Fig. 2 that the orthogonal representation offers
a sort of compromise in terms of localization for both the
prefilter and basis functions, which is a property that translates
into a relatively fast decay of the impulse response of the
corresponding digital filters.

4) Link with Other Approaches: The close similarity be-
tween the present signal analysis and a variety of other
methods has already been brought into prominence at var-
ious stages of the presentation. The dual polynomial spline
representation introduced in Section III is especially useful in
bringing out such relations. The analogy with the scale-space
analysis by Gaussian filtering [17], [18] stems from the fact
that B-spline functions are Gaussian-like kernels, especially
for higher order splines. This property follows from the well-
known convolution property of B-spline functions [29]

Bw) = 2% B0 - % BO(x)
N———

n+1times

(5.2)

and is a consequence of the central limit theorem, which states
that the repeated convolution of any given probability density
function with bounded mean and variance (in our case 3°(z))
converges to a Gaussian [34].

The close relationship with the method proposed by Burt is
striking and is especially satisfactory, given that the justifica-
tion for this latter approach is largely empirical. To be more
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specific, we recall that the Gaussian-like kernel used by Burt
for the generation of the Gaussian or Laplacian pyramids has
the following z-transform representation:

W(z;a) = <% - a) (272422 + %(z_1 +2)+2a (5.3)

where a is an adjustable parameter. For a = 3/8 = 0.375,
this filter is equivalent to the operator U3(z) (cf. Table I)
used in the generation of the cubic spline pyramid by the
dual representation. This particular choice of a is close to
the value 0.36 recommended by Burt for greatest reduction
of the side lobes of the transfer function [15]. Moreover, we
have another equivalence for @ = 1/2, in which case, Burt’s
operator is identical to U} (z) and corresponds to a first-order
spline interpolator. This particularly simple weighting kernel
is also used frequently .in the implementation of multigrid
methods [4].

Another point is that the filters used in the generation of the
dual spline pyramid fall into the class of generalized binomial
kernels considered by Lindeberg [21]. Since sampling does not
introduce any new local extrema, we can use the theoretical
results of Lindeberg to show that the dual representation is
a valid discrete scale-space representation in the sense that
the occurrence of new minima or maxima at lower resolution
levels is prohibited. This particular feature can be interpreted
as a “structure preserving” property. The spline pyramid also
satisfies a causality principle in the sense that a coarser
level is entirely determined from any finer resolution level.
These properties are very similar to those associated with
the Gaussian kernel in conventional scale-space filtering (i.e.,
causality, shift invariance, and structure preservation) [19].

Finally, we note that the polynomial spline approximation
problem can also be formulated in a purely discrete framework
replacing continuous functions by discrete signals. In this case,
the basis functions are discrete, and the minimization uses
the discrete [2-norm [37]. The corresponding discrete cardinal
spline filters are slightly different from those derived in the
present study, but these differences get smaller for coarser-
level approximations.

5) Consistent REDUCE and EXPAND Functions: An important
aspect of the present formulation is to provide a consistent
design for the REDUCE and EXPAND functions to minimize
information loss during resolution conversion, which is a
feature that is not shared by many of the approaches discussed
previously. We have shown that the optimal REDUCE and
EXPAND filtering operators are generally not identical unless
the underlying basis functions are orthogonal, precisely, the
case in the construction method proposed by Mallat [14]. The
fact that an EXPAND function of the type described by Burt
is not optimal has been illustrated by Fig. 8. Our theoretical
results also suggest two simple ways to correct for this
limitation. The first is to choose as EXPAND operator the true
complement of a given REDUCE function (cf. Tables III and IV)
that is associated with the same basis functions. The second
solution is to perform a change of coordinate system and to
expand the image in the basic B-spline representation, which
is the approach we have taken for most of our experiments. We
conjecture that the use of these techniques could significantly
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improve the performance of the coding scheme described in
[9]. These modifications may also be useful to improve the
rates of convergence of some multigrid procedures.

Based on its excellent data-reduction properties, the poly-
nomial spline pyramid should provide an attractive alterna-
tive to the standard Gaussian (or Laplacian) pyramid that is
commonly used in image processing and computer vision.
This representation may therefore be potentially useful in
applications such as image segmentation [38], edge detection
[39], feature extraction [15], and a variety of computer vision
problems that are best formulated in a continuous framework
and may benefit from a multiresolution implementation [5],
(7}, [30].

6) Link with Conventional Sampling Theory: The standard
signal processing approach for sampling rate conversion is dic-
tated by Shannon’s sampling theorem [40]. The data sequence
is first bandlimited by prefiltering with an ideal low-pass
filter and down-sampled thereafter. This band-limited signal
may be reconstructed without any loss from its samples by
upsampling and postfiltering with the same low-pass filter that
implements an ideal sinc interpolator [41]. We note that the
pre and postfilters used in this approach are identical and that
the corresponding reconstruction is obviously a valid form of
interpolation. These observations suggest that the underlying
orthogonal and cardinal representations are equivalent, which
is indeed the case. In fact, we have demonstrated that the
standard sampling/reconstruction paradigm for bandlimited
signals corresponds to a particular form of spline interpolation
for which the order tends to infinity [23]. We have also
shown that among the basis functions and optimal prefilters
discussed in Section IIL, the functions n™(z), 7" (x), and ¢™(z)
all tend to sinc(z) as n goes to infinity [31]. These results also
indicate that the differences between orthogonal and cardinal
representations should vanish for higher order splines, which is
fully consistent with our experimental observations for linear
and cubic splines.

7) Relation with the Wavelet Transform: In this study, we
have used the Laplacian pyramid to display the loss of
information that occurs during resolution conversion. In fact,
the same information can be represented in a more efficient
way using the elegant method of the wavelet transform [13],
[14]. This approach has the great advantage of using the
same number of coefficients as does the conventional discrete
signal representation. The details for the construction of an
orthogonal spline wavelet transform are given in [14] and [33].
We have extended this approach for nonorthogonal polynomial
spline basis functions [35]. In particular, it is possible to
construct wavelets with a compact support that are the natural
counterpart of the classical B-spline functions [42], [43].
Unlike Lemarié’s functions, these wavelets, which are very
similar to Gabor functions, do not form a fully orthogonal
set. However, they still have the remarkable property of being
orthogonal between resolution levels.

Finally, we note that the present construction of a multires-
olution transform using nonorthogonal basis functions is not
restricted to. polynomial splines. It is applicable with minor
modifications in the more general context of an arbitrary
scaling function defined by Mallat and others.

VI. CONCLUSION

In this paper, we have described an extended class of
polynomial spline pyramids. Each pyramid level contains the
expansion coefficients of a continuous polynomial spline that
provide the best (minimum L-norm) signal approximation at a
given resolution. The decomposition in scale-space is obtained
by reducing the number of parameters (spline coefficients) by
a factor of two from one level to the next, which results into
a fine-to-coarse sequence of signal approximations.

The algorithms that have been presented can be completely
described in terms of simple linear filtering operations and
sampling rate converters. For instance, the successive levels of
the pyramid are generated recursively by suitable prefiltering
and downsampling by a factor of two (decimation). Likewise,
any coarser representation can be expanded to a higher res-
olution by upsampling and postfiltering (interpolation). The
impulse and frequency responses of the underlying filters have
been derived explicitly for polynomial splines of any order.
These results should provide some general tools for the design
and implementation of such systems.

A concept that has been emphasized throughout this study
is that a variety of alternative (but equivalent) polynomial
spline representations based on different sets of shift-invariant
basis functions are available. The conversion from one repre-
sentation to the other (change of coordinate system) occurs
by reversible filtering. We have shown how the choice of
an appropriate representation (dual or B-spline) can result
in some useful simplifications of the underlying filters (e.g.,
simple binomial or recursive filters). Moreover, the dual spline
representation provides a number of interesting links with
several multiresolution techniques (scale-space filtering and
Gaussian and Laplacian pyramids) that have been proposed
previously.

We have shown that the selection of a modified EXPAND
function, as specified by our theoretical results, can substan-
tially reduce the energy of the Laplacian pyramid described
by Burt and Adelson. These preliminary results suggest some
interesting possibilities for image coding and other related
image processing tasks. Polynomial spline pyramids should
also be useful for the design of multigrid algorithms, which
are becoming increasingly popular in a variety of applica-
tions (numerical methods, applied mathematics, and computer
vision).

APPENDIX A
A PROOF OF PROPOSITION 1

We need to show that the functions {("(z — k), k € Z} are
linearly independent and that they form a complete set for ST.

1) Linear Independence: To prove the linear independence,
we consider the equality

+N
> el)Me-1)=0 VzeR
I=—N
which also implies that
+N
S e (k=) =pxbtxclk)=0 Vk€Z.
{=—N
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It follows that Vk € Z,c(k) = 0, provided that the inverse
operator (p * b")~! = (p)~! x (b”)7! exits, which is in
accordance with our initial requirement. We note that the
stability of (b")~! is guaranteed from the theoretical results
in [23].

2) Completeness: This property will be demonstrated by
showing that any basic basis function of ST, 5" (x —k),k € Z
can be expressed as a linear combination of (™’s. Let us
consider the sum

+oo
S )@ -k - 1)

Y Y

l=—o0cl'=—00

ez~ U =1~ k).

By making the change of variable ¥’ = I’ + [, we get

+oc

> E -k -1

S Y o

— )ﬂn( _ k)
l=—o00 k'=—00
+o0
= > )7 tepR)B (- K — k)
k'=—oc
= Z So(K")B™ (x — K — k)
k'=—oc
which finally yields
pM(x k) = Z () ')z —k—1) VkeZ
l=—oc
APPENDIX B

PROOF OF THEOREM 2

Since S}, is a closed subspace of ST, the process of deter-
mining the minimum L9-norm approximation g, (z) of g}*(x)
is equivalent to projecting g7'(xz) into S,. Consequently, the
residual error [g}(z) — g7 (x)] is orthogonal to S”,, which
implies that

(91 (2) = g (@), Gr(x —mk)) =0 VkeZ

or equivalently

Vke Z.

(BI)
Let us first consider the left-hand side of this equality and
define

(97 (), Gz — mk)) = (g7 (), Cs (x — mk))

r(l') = (g} (=), Ch(z = 1)), U € (B2)
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By using (3.14) and (3.15), this expression is rewritten as
+o0 +o0

r(l'):< S oak)
k=—oc

k'=—oc0

Z [ * B"(w—l—l’)>

p(E)B" (x — k — k'),

l=—oc0

“+o0 400

=Sl S ) S e

k=—o00 k!=—o00 l=—00
(B (x = k= K), B"(x = 1= ).

Using the well-known property that 3™ x 3" (z)
we find that

U (1)

+oo G0

ST oak) D k) Z []1m

k=—oc k'=—o0 l=—cc
wt (DB E 4+ K — 1= 1),

The next step is to eliminate [, &', and k by successive
identification of convolution sums:
+o0 +o0
> alk) >
k=—o00 k'=—00

B+l % B2 (4 K 1)
+o00 +o0
> alk) >
k=—o0 k'=—00
P J1m * un,
+o00

2.

k=—o00

=crxp*[f]im*u

r(l')y =

r(l') =

w DL~ — k)

ca(k) * p# [ g * up, + 62" — k)

mox b (B3)

where p'(k) = p(—k) and where the transition from the first
to the second line is justified by the fact that u™ and 42" *! are
symmetrical convolution kernels. The left-hand side of (B1)
is finally obtained by decimating (B3) by a factor of m

[lim(k) =« [px " sl s crlim(K)  VE € Z (B4)
where we use the fact that [P m (k) = p(k).

Second, we consider the right-hand side term in (B1) and
define

s(l') = (gn(2).(n(x=1))  U€Z (B5)
which is expanded as
oo “+oo
sty= > [émhm(k)< D [Blim *up (k)
k=—o0 k'=—0c0
X %z —k - k),
+oo
> Wltm xupn () @ — 1 — z'>>
l=—o00
+o00
= Y [nlim(k Z [Bl1m + wm (k)
k=—00 k'=—occ
x Z [l g (0 (s + K — 1= 1),
l'=—oc0
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By using the same technique as for the derivation (B3), we
find that

s(') = [Emltm * Blm * uy * [ 1+ up, 871, (B6)

We then use-the convolution property of discrete B-spline
kernels (2.7) to show that

B2 s wu® (k) = m - b2 FI(k). (B7)

A simplified expression for the right-hand side of (B1) is found
by substituting (B7) in (B6) and performing a decimation by
a factor of m:

[s]im (k) = &' 5 * [m - 67+ i (K)

=« prm- b ai (k) Yk € Z. (BS)

To complete our proof, we equate (B8) and (B4):
m(P * p* b2 x & (k)
= *[p* b2 Tl % c1]pm (k) VkeZ

and solve this equation by taking the inverse of the convolution
operator that acts on &, (k), which finally yields (3.16). Q.E.D.
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