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Abstract - A new approach to the characterization of texture
properties at multiple scales using an overcomplete wavelet
transform is described. It is shown that this representation
constitutes a tight frame of /; and that it has a fast iterative
algorithm. A texture is characterized by a set of channel
variances estimated at the output of the corresponding filter-
bank. Classification experiments with 12 Brodatz textures
indicate that the discrete wavelet frame (DWF) approach is
superior to a standard (critically sampled) wavelet transform
feature extraction. This result also suggests that this approach
should perform better than most traditional single resolution
techniques (co-occurrences, local linear transform, etc...). A
detailed comparison of the classification performance of various
orthogonal and biorthogonal wavelet transforms is also
provided. Finally, the DWF feature extraction technique is
incorporated into a simple multi-component texture segmentation
algorithm and some illustrative examples are presented.

1. INTRODUCTION

Most traditional statistical approaches to texture are restricted to
the analysis of spatial interactions over relatively small
neighborhoods. As a consequence, their performance is best for
the class of so-called micro-textures. One way to overcome the
intrinsic limitations of a single-scale analysis is to use the
discrete wavelet transform (DWT), which provides a precise and
wnifying framework for the characterization of a signal at
multiple resolution [1]. Besides the pioneering work of Mallat
on texture analysis [1], there have now been several studies on
texture classification with particular attention to the use of
wavelet packets [2, 3], which constitute a multiband extension
of the pyramid-structured wavelet transform.

This paper introduces the use of an overcomplete wavelet
decomposition (discrete wavelet frame - DWF) in which the
output of the filter banks are not subsampled. Unlike other
wavelet-based approaches, this should result in a texture
description invariant with respect to translations of the input
signal. The main aspects of this wavelet representation that are
investigated in this work are as follows:

« The study of the properties of the DWF : energy
conservation, fast algorithm, and the link with the mathematical
concept of frame.

» The experimental comparison of the performance of various
feature extraction techniques for the classification of 12 Brodatz
textures. The comparison includes standard single resolution
techniques, as well as biorthogonal wavelet transforms (B-
splines and D-splines) that are very similar to a hierarchical
Gabor transform [4].

* The extension of this approach for texture segmentation.
Morevover, it will be shown that a single scale DWF feature
extraction is in fact equivalent to an analysis by local linear
transform [5, 6]. One of the benefits of this connection is that
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this latter method is well understood,; it also compares favorably
with most traditional approaches to texture and can therefore be
considered as the reference method for single scale analysis.

2. DISCRETE WAVELET FRAMES

2.1 Filter bank specification and properties

The wavelet representations considered here are entirely
specified in terms of a prototype lowpass filter A that satisfies
the standard quadrature mirror filter condition:

H(HE ")+ H(-2)H(-2T") =1, (1)
where H(z) denotes the z-transform of 2. The complementary
highpass filter g is obtained by shift and modulation

G(z)=zH(-z"). 2
The wavelet filterbank is then defined iteratively in the z-
transform domain using the scale index i :

{Hm(z) = H(z*)H (2)
Gn@ = Gl H (D) 3

with the initial condition Hy(z)=1. It is not difficult to verify that
these filters satisfy the identity
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and therefore provide a full coverage of the frequency domain.
Because of its intrinsic multiresolution structure, such a filter
bank can be implemented very efficiently using the procedure
summarized in Fig. 1. Note that the complexity of this algorithm
is the same for all iterations.
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Fig. 1 : Fast itcrative implementation of the discrete wavelet frame
decomposition.



It is possible to define an orthogonal DWT in /; by
considering the basis functions generated by translating the
impulse responses of this filterbank with a step size 2¢[7]. Such
a DWT could, in principle, be obtained by decimating the
outputs of the filterbank in Fig. 1 by a factor 2/, although there
is a much more efficient algorithm that essentially uses the same
filters A and g over and over again [1, 7).

2.2 Wavelet frames of I

A simple integer shift of the input signal will usually
result in a non-trivial modification of the DWT, as it is usually
defined. As far as feature extraction is concerned, this behavior
is inadequate since one usually thinks of "texture" as a
translation-invariant (or stationary) property. A natural way to
overcome this limitation is to perform an analysis in terms of the
family of functions § = {g,(k—1),---,g,(k - 1),k -D),;.
which is precisely what is done with the algorithm in Fig. 1.
This decomposition has a number a remarkable properties which
are associated with the mathematical concept of a frame. These
include energy conservation and a particularly simple
reconstruction algorithm.
Proposition 1 : The family of sequences § is a tight frame of
the Hilbert space ;.
A proof of this result is given in [8].
2.3 Texture characterization

To extend these approaches to higher dimensions, we use
a standard tensor product formulation. In two dimensions, there
will be four distinct types of basis functions (or filters)
corresponding to the different cross-products of the 1D
functions A; and g;.

The filter bank analysis system shown in Fig. 1 can be
viewed as a special case of the local linear transform method [6].
In this approach, we rearrange the output of the filter bank into
the N-component vector and interpret the result of the analysis
for a given spatial index (k) as a local linear transformation of
the input vector x(k,/); the latter is just a block representation of
the input image centered on the current position. The texture is
then characterized by the set of N first order probability density
functions. Alternatively, we can get a more compact
representation in terms of the channel variances. A statistical
justification for this approach can be found in [6]. The success
of this method obviously depends on the judicious selection of
the filter bank.

In practice, the channel variances are estimated from the
average sum of squares over a region of interest R of the given
texture type.

3. TEXTURE CLASSIFICATION

Classification experiments were conducted using 12 standard
256x256 Brodatz textures. The images had their histogram
equalized with a requantization to 32 levels making them
indistinguishable on the basis of first order statistics only. The
wavelet and filter bank decompositions were performed by
processing the individual images globally. For each texture, a
total of 64 independent feature vectors (channel variances) was
evaluated over a series of 32x32 non-overlapping sub-regions.
The class conditional probability density functions were
assumed to be multivariate Gaussian and the subimages were
classified using a minimum error Bayes classifier. For each
pattern tested, the training was performed on the remaining set
("Leaving one-out" method) using the maximum likelihood
estimates of the distribution parameters.
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Type of decomposition n=0 n=l n=3
1 scale (4 features)
DWT 91.93 % 91.80 % 86.72 %
DWF 96.48 % 93.88 % 91.54 %
2 scales (7 features)
DWT 95.44 % 98.18 % 97.92 %
DWF 98.83 % 98.70 % 98.44 %
3 scales (10 features)
DWT 96.35 % 98.44 % 98.31 %
DWF 99.35 % 99.22 % 99.22 %

Table 1 : Percent of correct classification for various orthogonal discrete
wavelet transforms (DWT) and wavelet frames (DWF) as a function of the
order n and the number of scales /.

We chose to compare the performance of the discrete
wavelet transform (DWT) and wavelet frame (DWF)
approaches. For this purpose, we considered the series of
quadrature mirror filters associated with the Battle-Lemarié
orthogonal spline wavelet transforms [1, 4].

The classification results for splines of degree #=0,1, and
3 are given in Table I. The first observation is that the DWF
method always outperforms the DWT, which is consistent with
our expectation. In some cases, the improvement is quite
substantial. It is also clear that a true multiresolution feature
extraction with 2 or 3 levels is preferable to a local analysis with
one level only. In fact, the DWF with n=0 and /=1 is equivalent
to the local linear transform (LLT) method using the 2x2
Hadamard transform described in [6].

Other non-orthogonal spline wavelet transforms were also
considered [4]. Additional classification experiments and
comparisons are reported in [8].

4. TEXTURE SEGMENTATION

The DWF approach to feature extraction can also be integrated

into a simple multi-component texture segmentation algorithm

that is very similar to the system developed in [9]. A detailed

description of this procedure together with some experimental

results can be found in {8]. The results obtained are quite

encouraging.
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