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ABSTRACT 

We present an iterative multiresolution algorithm for the translational and rotational alignment of digital images. An 
image is represented by an interpolating spline. Coarser versions of this continuous image model are obtained by 
using spline approximations at various scales (polynomial spline pyramid). We use a coarse-to-fine updating strategy 
to compute the alignment parameters iteratively, using a variation of the Levenberg-Marquardt non-linear least- 
squares optimization method. This approach yields very precise image registration with subpixel accuracy. It is also 
much faster and more robust than a comparable single-scale implementation, because the resolution of the underlying 
image model is adapted to the step size of the algorithm. 

1. INTRODUCTION 

Image registration techniques play a crucial role in applications in which images with different translational and 
rotational parameters need to be compared or combined for further processing2. Examples in biomedical imaging 
include averaging techniques for noise reduction in high resolution electron-micrographs4* 9, statistical analyses of 
series of PET images, multimodality imaging15, and the alignment of autoradiographic slices for three-dimensional 
volume reconstruction. Most available algorithms for translational and rotational alignment use iterative correlation 
techniques23 5, 9. As a result, they tend to be computationally quite intensive; their accuracy is also usually limited due 
to angular and translational sampling. 

In this paper, we present an alternative technique that uses a continuous polynomial spline image model and takes 
advantage of the multiresolution structure of the underlying function spaces l4 . Instead of performing a systematic 
starch over the parameter space as is done with most correlation techniques, the present algorithm uses a gradient- 
based least-squares optimization procedure. This approach is used in combination with a coarse-to-fine iteration 
strategy which substantially improves the overall performance of the algorithm. First, the computational load is 
reduced significantly since most iterations are performed at the coarser levels of the pyramid. Second, the procedure 
converges more rapidly since the spatial resolution of the underlying image model is adapted to error on the current 
parameter estimates. Finally, the algorithm is less likely to get trapped in a local optimum because the initial search is 
performed on a very coarse grid. 

A key feature of this algorithm is its ability to provide image registration with subpixel accuracy; this property 
will be illustrated with some experimental examples. Other issues that will be considered are the behavior of the 
algorithm in the presence of noise, as well as the comparison with other techniques. 

There are several reasons for using polynomial splines in this particular application. First, they provide a natural 
framework for formulating the image registration problem in the continuous domain. Second, polynomial splines 
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have a simple explicit form that makes them easy to manipulate. Finally, they are ideally suited for multi-scale 
processing because of their multiresolution properties. 

2. STATEMENT OF THE PROBLEM 

Image registration, as it is defined here, means finding a spatial rigid transformation (translation + rotation) that 
optimally maps an object image s onto a reference map r (or vice versa), In the following discussion, both images s 
and r will be represented by bidimensional spline functions of the continuous spatial variables x and y. The optimal 
mapping from one image onto another is defined as the one that minimizes the L2-norm of the difference. 

2.1 Image function spaces 

L2(R2) (which will be abbreviated to L2) is the vector space of measurable, square-integrable bidimensional functions 
s(x), X=(X,Y)E R2. L2 is a Hilbert space whose metric 11~11 (the L2-norm) is derived from the inner product 

(1) 

(2) 

In our formulation, images are represented by polynomial splines at various scales. These functions are piecewise 
polynomials of degree n with the additional smoothness constraint that the polynomial segments are connected in a 
way that insures the continuity of the function and its derivatives up to order n-l. At the finer scale, there is exactly 
one knot per pixel and the image is represented by a spline that provides an exact interpolation of the initial gray level 
values”. The corresponding fine-grid spline function space V, E L, can be defined as follows: 

v, = s,(x) = Cc(k)P”(x - k) : c(k) E Z2(Z2) ) 
keZ2 

where the 2D generating function p”(x) = p”(x) *P”(y) is a tensor-product B-spline, and where [c(~)}~=~z is a 2D 
array of B-spline coefficients. The function p”(x) is the central B-spline* of degree n. It is generated by repeated 
convolution of a B-spline of degree 0 

with 
p”(x) = p” *p”-‘(x) (4) 

pow = 1, x E [-+,+) 
0, otherwise. (5) 

To specify the corresponding multiresolution image approximations, we consider the sequence of dyadic dilations 
of our basic spline space VO. Specifically, Vi - the spline space at scale i - is defined as 

y = Si(X> = &,(k)P”(x/2’ -k) : c,(k) E Z2(Z2) 
ksZ2 1 

(6) 

One scale increment corresponds to an enlargement of the basis functions by a factor of two; the spacing between the 
knots is also increased in the same proportion. Thus, the variable i may be interpreted as a coarseness index. For y1 
odd, the following sequence of spline subspaces is nested 

-r, I*** Vo3v,..*3~-*~3v, I** 3 (01, (7) 

and this structure generates a multiresolution analysis of L2 in the sense defined by Malla@. The polynomial spline 
pyramid representation of a signal s E L, corresponds to a sequence of fine-to-coarse minimum error 
approximations14 

{so = rosEvo,...,si=~SE~,...,s,=~sEv,}, (8) 
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where the operator Pi represents the orthogonal projection on Vi, and where (Z+l) is the depth of the pyramid. The 
various levels in this pyramid are entirely specified by their B-spline coefficients c,(k) as in (6), or, equivalently, by 
their sample values at the knots q(2’k) (cardinal representation). The former characterization is well suited for the 
evaluation of derivatives12 and geometrical transformations, while the latter is more appropriate for the computation 
of error estimates. In either case, the pyramid coefficients are evaluated by repeated application of a digital lowpass 
filter followed by a decimation by a factor of two14. 

2.2 Image transformations 

The translation operator T, : L, + & with displacement vector a = (a,,~,) is defined as 
T, s(x) = s(x - a). (9) 

Rotations are all specified with respect to a central pivot point (xo,ye); typically, the center of the image. The rotation 
operator 4 : L, + L, with angular parameter 8 is defined as 

$S(X)=S(Xo+R(0)+r-xo)) (10) 

where R(0) is the 2x2 rotation matrix 

WV = [;;ze ;;“,I. (11) 

In general, translations and rotations do not commute. However, it is still possible to switch the order of application 
by using the identity 

T,$s = R,&s where a=R(B).b ti b=R(-0)-a. (12) 

Both T, and R, are isometries from L2 into L2 in the sense that they preserve the L,-norm 

VJs E L29 lb! = IlTnsll = IIResII (13) 

We can use these last two properties to derive the identity 

IlLX,,s - LJalrl~ = 11~1~~~s - rll= IIs - R-,LJI~ (14) 

with 

a, = al + R(8,)bAa 
8, =e,+Ae. (1.9 

This equation constitutes the basis for our iterative updating scheme. It will allow us to improve the current alignment 
parameters a and 8 by considering small perturbations on the signal s. 

Proof : We start with the left hand side of (14) and apply the norm-preserving inverse transformation Ta,hI 

IjT,R,os-R-o,T_a,rll=IIT$T,R,os-rll. 

We then use (12) to reverse the order of the central translation and rotation 

IIT,%,Lx,,s - rll= IIT,Jcw,).do$,R~os - rll = IIK,+x~o,~.~&,+ms - rlly 
0 which proves the desired result. 
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2.3 The multiresolution alignment problem 

The registration problem can now be stated as follows. Let s and r be the continuous representations of the object and 
reference images, respectively. Then, the goal is to find the optimal translation and rotation parameters (au, t3a) that 
minimize the error measured in the L2-norm 

(ao9*,> = a% ~g lITAs - rllzp (16) 

where T. and 4 are the operators defined by (9) and (lo), respectively. 
Our approach is to cast this problem in a multiresolution framework and to consider the signal and reference 

approximations si = pis and q = er in a spline pyramid with levels i=O,.. . ,Z. Starting at the coarser level I, we 
successively solve the sequence of problems for i=Z down to 0 

The optimum alignment parameters at scale i are determined iteratively by considering a perturbation (Au, he) on the 
previous solution. For this purpose, we use the equivalent form of the criterion given by the left hand side of (14), 
and update the new parameter values according to Eq. (15). This procedure ultimately yields the solution to our initial 
problem when i=O. The approximation problem at a given scale is solved by using a variation of the Marquardt- 
Levenberg least-squares optimization algorithm, which is iterative and requires the evaluation of the partial 
derivatives of si with respect to Au, and A0. 

3. ALGORITHM DISCRETIZATION AND IMPLEMENTATION 

3.1 Approximating the &-norm 

The formal description of the algorithm in Section 2.3 uses L2-norms which are difficult to compute in practice. To 
facilitate the implementation, we have chosen instead to use a sum approximation of the integral using the discrete 
samples of the underlying spline functions. This leads to the following discrete approximation formula of the 
quadratic error between the signals s and r at scale i 

llSi - ‘;I12 z 22i -&yk,Z) - l;‘(k,Z)]2 = 22’11s; - qq;, (18) 
(k.l)EZ* 

where the superscript “C” denotes the signal coefficients in the cardinal representation. These coefficients are obtained 
by sampling the underlying spline functions at the nodes of the pyramid 

(19) 

Note that the factor 22i in (18) provides the appropriate scale normalization. The use of this discrete approximation 
formula can be justified theoretically by the fact that there exist two positive constants A and B (that are close to one) 
such that the following inequality always holds 

vrs E &,, 22iAllsi” - );‘ll; I llsi - qlr 5 22iBlls; - <‘II; . (20) 

These constants may be determined from the extrema of the frequency response of the digital filter that performs the 
conversion between the cardinal and orthogonal spline representations l4 For n=3, the value of these bounds is . 
A=0.486 and B=l. The lower bound of this inequality represents the worst possible case; usually, the quality of the 
approximation (18) will be much better than that. Moreover, it can be shown that the distinction between the L2 and 
12-norms in (18) progressively vanishes as II increases. This result comes as a consequence of the convergence 
properties of cardinal and orthogonal spline basis functions’. ll. 
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(a) Reduction procedure for the spline pyramid 

(b) Determination of the B-spline coefficients 

r 
Ci(k,Z) - L 

-1 0 1 EM -4 0 4 
-1 0 1 

q -1 0 14 -4 0 -1 0 1 + &(2’k, ay 2’1) 

(c) Determination of the image gradient 

Fig 1 : Block diagram representation of various B-spline processing steps required for registration. The 
convolution masks in (c) are those associated with a cubic spline image model. 

The approximation formula (18) is also valid when the two functions are translated and rotated with respect to the 
initial grid, although this situation is more difficult to analyze mathematically. Here too, the quality improves 
withincreasing ~1. Asymptotically, the approximation formula is exact because the corresponding spline approximation 
is bandlimited and because the underlying sine basis functions are orthogonal”. 

3.2 Polynomial spline pyramid and B-spline processing 

The polynomial spline pyramid representations of the signal s and r are obtained by filtering and decimation14. Let 
s(k,Z) denote the initial input image array. Then, the samples of the successive levels of the polynomial spline 
pyramid are computed iteratively as 

1 
s;(k,z) = s(k,Z) 
sr(k>z) := Si(x*Y)lxz2ik,y=2ik = I I@ *S,F_I(k9z)ll(2,2) ) 

where [.]JC2V2j denotes a sub-sampling by a factor of two in the x and y directions, and where $’ is the optimal 
prefilter for the cardinal representation. For more details on the specification of the optimal decimation filter, we 
refer to our previous work14 (cf. Table III, p. 368). The sample values of the spline approximation at scale i will be 
used to specify the error criterion to be optimized. 

Also required is the B-spline representation of these signals in order to implement rotations and translations of the 
reference image r, and to evaluate the partial derivatives of s for the optimization algorithm. Each level of the 
corresponding B-spline pyramid is obtained by digital filtering of the corresponding sampled representation: 

c,(k,Z) = (b$ “si”(k,Z), (22) 
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where (b;)-’ d enotes the impulse response of the so-called direct B-spline filter. The most efficient way to perform 
lo this filtering is to use a recursive algorithm . Finally, the components of the corresponding image gradient are 

evaluated by convolution with the appropriate masks l3 . A schematic representation of these various B-spline image 
processing operations is given in Fig. 1. 

3.3 Non-linear least squares optimization 

One iteration of the optimization algorithm can be described as an attempt to find the best parameter increment (Aa, 
Ae) such that 

(23) 

where c* = R-,T_,q represents a rotated and translated version of the reference according to the current parameter 
estimates. At scale i where the step size is 2i, the discretized form of the error criterion to be minimized is 

&;(Aa,,Aa,,Ae) = ~((T,R,,si)(2’k)- q*(2’k))l, 
ks.+ 

where Ai represents the region of interest in the image. Our optimization procedure uses a slight modification of the 
standard Levenberg-Marquardt method for non-linear least squares curve fitting. This technique requires the explicit 
knowledge of the partial derivatives of the function to be optimized. The derivatives that are needed here can be 
determined as follows 

aThRA,Si(X,Y) = asi(xPY) 
il Aa, 

Aa=O,AIbO 
---%-- 

‘TbRAoSi(X, Y) = asi(xYY> 
iI Aa, 

Aa=O,AO=O 
-7 

aT,R,&,Y) 
aA Aa=O,A0=0 

(25) 

(26) 

(27) 

Since we know the values of &i/ax and asi/& at the grid points (c.f. Section 3.2), these formulas can be used directly 
to calculate the gradient of the criterion to be optimized, as well as a first order approximation of the Hessian matrix. 
The best current parameter increments (Aa,, Aa,, AO) are then computed using the recommended Marquardt rule7. 
The alignment parameters are finally updated as in (15), and the reference image is translated and rotated accordingly 
by resampling its B-spline representation on the appropriate grid. This procedure is iterated until the minimum is 
reached. 

Because of the resampling step, the optimization is always performed around the point (AapO, Aa,,=O, A8=0); this 
constitutes a variation of the standard Marquardt-Levenberg method. The benefit of this approach is a significant 
reduction in the number of computations because the partial derivatives of the function on the grid points, as well as 
the Hessian matrix, need only be computed once per scale. 

Starting at the coarser scale I, the algorithm first mimics a standard steepest descent procedure, and progressively 
switches to an inverse-Hessian method as the minimum is approached. The transition to the next finer scale (i-l) 
occurs once convergence has been reached at resolution i. The method then operates in a quasi-Newton mode until it 
finally reaches the finer level of the pyramid. The advantage of this strategy is that the largest number of iterations is 
spent during initialization at the coarser scale; all subsequent finer scale updates usually require no more than one or 
two iterations since the previous solution already provides a very close estimate. The complexity per iteration is 
@N/4’) where N denotes the total number of pixels in the image. 
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Initialization: 
Compute the polynomial spline pyramid for the object s and reference r (cf. Fig. la) 
Initialize (a, 0) 

For i=I down to 0 
Compute the B-spline coefficients for ri and Si (cf. Fig. lb) 
Compute &J& and a&y at the grid point (cf. Fig. lc) 
Compute the 3x3 Hessian matrix 
Repeat 

Translate and rotate the reference ri according to current estimate (a, 0) 
Compute the gradient of the error 
Compute the current error &F(a,8) 
Compute the Marquardt update for (Au, A@ 
Update (a, 0) 

Until convergence 
End 

Fig 2 : Summary of the iterative multiresolution registration procedure. 

4. RESULTS 

4.1 Cubic spline implementation 

We used a cubic spline image model (n=3) to implement the algorithm. All the image processing operators 
described in Section 3.2 are separable; they were implemented by successive one-dimensional processing along the 
rows and columns. 

The image translations and rotations were computed by resampling the B-spline expansion (6) at the new pixel 
locations. Since the basis functions are compactly supported, the image value at a particular location (x, y) is 
evaluated by partial summation of the B-spline contributions within a local neighborhood. The explicit cubic B-spline 
formula that was used for this evaluation is 

2/3-x2+Ixr/2, O<1x1<12 
p3(x)= l/3-I&6, 

I 

1 I /XI< 2 (28) 

0, 2 I [XI. 

An outline of the complete registration algorithm, which was partially described in Sections 3.2 and 3.3, is given 
in Fig. 2. In this formulation, it is the reference r that is brought into registration with the object image s. If instead it 
is the object that needs to be aligned as in the experiments below, then the role of the images s and r should simply be 
interchanged ~ 

4.2 Experiments 

Several test images were generated by translating and rotating a standard reference using cubic spline interpolation. 
These transformed images were then brought back into registration using our iterative procedure. The behavior of the 
algorithm is best analyzed by monitoring the evolution of the normalized quadratic error criterion (24) as a function of 
the number of iterations. Two examples of such curves are shown in Fig. 3. The displacement parameters for both 
images (Lena, and an MRI scan) were a=(15,15) and 8=15”, and the processing was performed using a five level 
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0 IO 

Iteration number 

20 

Fig 3 : Evolution of the quadratic error per pixel as a function of the number of iterations 
during the registration of the two test images “Lena” and “MRI”. 

pyramid (1=4). All parameters were initially set to zero. The arrows in Fig. 3 indicate the places of transition to the 
next scale. It can be seen that most iterations are spent at the coarsest level of the pyramid and that the initial 
improvement is quite progressive. Once the algorithm switches to the next finer scale, the convergence is almost 
instantaneous and this optimal behavior is maintained until the end. Note that a minimum of two iterations per scale 
was imposed in order to check convergence. In all the noise-free examples that we considered, the parameters were 
always estimated with a surprisingly good accuracy: Aa,, AaY ~10-3 pixels, and A&10-3 degrees. For comparison, we 
also tried a single scale optimization but this procedure did not converge unless the initial guess was within 2 pixels of 
the true solution. Even in this very favorable case, the single-scale approach took much longer than the 
multiresolution implementation. 

We also tried to determine how good the initial guess needs to be so that the algorithm converges to the correct 
solution. Although these ranges are somewhat data dependent, we were able to identify some general guidelines. We 
found that the algorithm could generally tolerate an initial angular error of 20 degrees, and some times even more (30- 
35 degrees), depending on the quality of the initial translational estimates. The algorithm is more robust to 
translational errors because of its multiscale structure. We found that the least squares procedure could usually 
tolerate errors of the order of 1 to 2 pixels at the coarser scale. Therefore, our rule of thumb for a safe behavior is that 
the initial error should not exceed the following bounds: IIAallm < 1.5.2’, IAt31 < 20”, where (1+1) is the depth of the 
pyramid. 

Next, we investigated the performance of the algorithm in the presence of noise. For this purpose, we considered 
the same experiment as before using the “Lena” picture while adding gaussian white noise with a standard deviation o 
to both the reference and transformed object images. The results are summarized in Table I. The first observation is 
that the parameter estimates become less accurate for increasing levels of noise, which is to be expected. However, 
even under the most adverse conditions (SNR=OdB), the quality of the estimation is still very good (Aa,, AaY co.2 
pixels, and A& 0.1 degrees). Moreover, the presence of noise has very little effect on the estimation of the 
parameters at the coarsest level (c.f. 2nd row of Table 1). The corresponding graphs of the error as a function of the 
iteration number are shown in Fig. 4. 
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Fig 4 : Evolution of the quadratic error per pixel as a function of the number of iterations 
during the registration of the “Lena” under various noise conditions. 

1 Signal-to-noise ratio Coarse level estimate (1=4) Final estimate I Final error I 
I 2 

EO I 

1 o=O (SNR-++-) 1 (10.6333,16.1656,14.8806) 1 (14.9996, 15.0003, 14.9998) I 1.075 I 

1 o=lO (SNR=7dB) 1 (10.5562, 16.1839, 14.9153) 1 (14.9944, 15.0072, 15.0027) I 179.745 I 

1 o=25 (SNR=3dB) 1 (10.9498, 15.9976,14.8332) 1 (14.9494, 15.0555, 15.0066) 1 1110.35 1 

lo=50 (SNR=OdB) 1 (11.5896, 14.8966,14.2377) 1 (14.8115,15.1782,15.0636) I 4426.71 I 

Table 1 : Results of the registration of the test image “Lena” with various levels of noise. The true 
parameter values are a=(15,15) and 8=15”. 

Note that in the noisy case, the error E: may increase as one jumps to the next finer scale, although the algorithm still 
converges to the correct solution. This behavior is not too surprising if one considers that the noise contribution at 
scale i is attenuated by a factor 2i so that its effect is almost imperceptible at the coarser levels of the pyramid. This 
makes the algorithm very robust to measurement noise; its convergence properties are hardly affected at all. 

4.3 Discussion 

Our experimental results indicate that the algorithm is well behaved and that it is a capable of very precise image 
registration with subpixel accuracy. We have also shown that the multi-scale formulation is truly beneficial in the 
sense that it makes the algorithm much more robust. It also reduces the computational load substantially. For noise- 
free images, the algorithm usually provides an (almost) exact alignment with a very small residual error. The reason 
why the error is not exactly zero is that the underlying spline image model is not truly shift-invariant; in other words, 
re-sampling may result in a slight loss of information, although this effect tends to disappear with higher order 
splines’* ll. 
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In the presence of noise, there is a certain uncertainty on the parameter estimates. Yaroslavkyt6 has proposed a 
theoretical analysis for the translational case. In particular, he derived lower covariance bounds that take the form of 
a ratio between the noise variance and a shape factor that is image-dependent. In practice, similar estimates of the 
error covariance can be obtained by taking the product of the residual error and the inverse of the Hessian matrix that 
are both provided by the algorithm. 

The present method has at least two advantages over standard correlation techniques2. First, it is extremely 
accurate because of the use of an underlying continuous image model. Correlation and Fourier techniques are unable 
to perform at the subpixel level because of obvious sampling limitations. Second, the present formulation offers some 
flexibility in the specification of the error criterion to be minimized which is defined over a region of interest A0 (c.f. 
(24)), which can be user-specified, It is thereby possible to mask out certain structures in the image that are not well 
reproduced from one instance to another. Alternatively, one may introduce a spatial weighting function to emphasize 
certain important characteristics. Such modifications are not so easy to incorporate into Fourier-based correlation 
techniques3p 9 which optimize a global criterion that is defined over the entire image. 

There are also ways of making the present algorithm more robust so that it can handle cases in which there is only 
a partial overlap. One approach is to subdivide the image into P regions of equal size. At the beginning of each 
iteration, a certain number of regions with potential outliers are identified based on the magnitude of their partial error 
contributions. These regions are then left out, and the estimation of the gradient and Hessian matrix is performed on 
the remainder of the set. This strategy may be appropriate for dealing with situations in which certain parts of the 
object (unknown a priori) may be missing, or when there is an incomplete match between the object and reference. 

5. CONCLUSION 

We have described a multiresolution registration procedure for the translational and rotational alignment of digital 
images. The main features of this approach can be summarized as follows: 
l The algorithm provides extremely accurate estimates of the alignment parameters. In a noise-free environment, the 

alignment is essentially perfect. This is a consequence of a consistent design that uses a continuous polynomial 
spline image model. 

l The multiresolution algorithm is superior to its single-scale version in a number of respects. First, it converges 
much more rapidly because the spatial resolution of the underlying image model is adapted to the step size of the 
algorithm. Second, it is much less likely to get trapped in a local minimum because of the smoothing effect of the 
pyramid. Finally, it is much faster because most iterations are performed at the coarsest resolution. 

l The method is iterative and is therefore somewhat sensitive to the quality of the initial guess. However, we found 
that the algorithm could easily handle angular discrepancies as large as 20 degrees, and translational errors of the 
order of 2I pixels, where (1 +l) is the depth of the pyramid. 

l The algorithm is very robust to measurement noise. Even when the signal-to-noise ratio is as low as OdB, it is still 
possible to obtain parameter estimates within a few tenths of a pixel, and less than one tenth of a degree. Noise has 
almost no effect on convergence because of the noise reduction properties of spline pyramids. 

The present method should therefore provide an attractive alternative to more traditional correlation techniques, 
especially when subpixel accuracy is desirable, or when the registration should be performed over a region of interest 
of arbitrary shape. 
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