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ABSTRACT

We present a general framework for the design of discrete
geometrical transformation operators, including rotations and
scaling. The first step is to fit the discrete input image with a
continuous model that provides an exact interpolation at the pixel
locations. The corresponding image model is selected within a
certain subspace V() L,(R") that is generated from the
integer translates of a generating function @; particular examples
of this construction include polynomial spline and bandlimited
signal representations. Next, the geometrical transformation is
applied to the fitted model, and the result is re-projected onto the
representation space. This procedure yields a solution that is
optimal in the least squares sense. We show that this method can
be implemented exactly using a combination of digital filters and
a re-sampling step that uses a modified sampling kernel. We
then derive explicit implementation formulas for the piecewise
constant and cubic spline image models. Finally, we consider
image processing examples and show that the present method
compares very favorably with a standard interpolation that uses
the same model.

1. INTRODUCTION

The standard approach for implementing geometrical
transformations (translation, rotation, scaling, etc...) is to fit the
image with a continuous model (image interpolation), and then
re-sample this two-dimensional function on a new sampling
grid[1, 2]. The most commonly used methods are nearest
neighbor and bilinear interpolation, which correspond to zero
and first order spline models, respectively. Unfortunately, these
simple approaches have several problems associated with them :
(a) they frequently introduce noticeable image distortions
(blocking artifact, smoothing), especially when lower order
models are used, and (b) they are not well suited for image

reduction because of potential aliasing problems.
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An attractive solution for improving the quality of these
reconstructions is to reformulate the problem as an optimization
task where the goal is to minimize an error criterion that is
entirely specified in the continuous domain. The demonstration
that such a least squares approach can result in significant
performance improvement for image scaling (expansion and
reduction) was provided recently in [3]. In this paper, we
extend this formulation to the more general class of affine
transformations (including rotations and scaling), and present
general computational solutions. In addition, we consider a
more general class of continuous image models and provide an
explicit (non-tensor-product) formulation for multi-dimensional
signals defined over R”.

Specifically, the problem that we address is the following.
Assuming that the input image s,(x) is continuously defined,
we want to find a good digital approximation of its affine
geometrical transformation

(Ars)x)=5,(Tx -1)), (n

where T is a given pxp non-singular transformation matrix
(e.g.. a combination of rotations and scalings), and ¢ a
translation vector. Since the output needs to be represented on a
digital grid, we have to expect some potential loss of
information. Our goal here will be to minimize this error and
improve the standard interpolation solution, which computes the
digital approximation by mere sampling: s,[k}= (Ars, )(x)L:k .
1.1 Mathematical notations

L,(R") is the vector space of measurable, square-
integrable p-dimensional functions f(x), x = (x,x,)€R".
It is a Hilbert space whose metric ||| (the L,-norm) is derived
from the Ly-inner product (f,,f,)= Ldﬁf,(x)fz‘(x)dx. The
Fourier transform f of f is f(®)=(f,e/*) where w=
(®@,,---,w,) is the p-dimensional frequency variable.

L(Z") is the space of square summable p-dimensional
sequences (or discrete signals) a(k),k € Z”.
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Fig.1 : General block diagram of the least squares transformation algorithm.

2. PRELIMINARIES

The continuous multi-dimensional image model s(x) is
This
generated from the integer translates of the

selected within a certain subspace V(¢) of L,(R").
subspace is
generating function @:

Vi) = {s(x) = Y cth)px —k) k) e IZ(Z”)}. )

The only constraint on ¢ is that there exist two strictly positive

constants A and B such that

A< Zkgz,.lif)(er 21tk)|1 <B, ae A3)

where @ is the Fourier transform of ¢. The admissibility
condition (3) insures that V(@) is a well-defined subspace of
L,(R") with {¢(x-k)},_ ,, as a Riesz basis [4]. In other
words, any function in V(¢) has a unique and stable
representation of the form given by (2). Note that the basis is
orthonormal if and only if A=B=1 in (3).

The present signal model turns out to be quite general and
covers many special cases that have been considered in the
literature. For instance, if we choose @(x)=sinc(x), then
V(@) is the traditional space of bandlimited functions. Another
very relevant family of functions that fall into this framework are
the polynomial splines of degree n [5, 6]. In the simplest case of
tensor-product splines, we have @(x)=p"(x, )[5"(-":)“'3"()‘,,)»
where B"(x) is the univariate B-spline of degree n, which can
be constructed from the (n+1)-fold convolution of unit
rectangular pulse.

The general sampling theory for the approximation and
representation of functions in V(@) was formulated in [4] for
the univariate case, and can easily be extended for higher
dimensional signals. A key result is that the expansion
coefficients in (2) of the least squares (minimum Lj-norm)
approximation in V() of any function r(x)e L,(R") can be
obtained by simple inner-product

c(k) = (r.d(x k) @)
where @ € V(o) is the dual generating function, which is

defined as follows
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Specific results for polynomial spline approximations can be
found in [7].

3. THE ALGORITHM

Our least squares (LS) transformation method is schematically
summarized in Fig. 1. It uses the three basic steps that arc
described below.

3.1 Image interpolation
We start by fitting our digital image with a continuous
function s, € V(¢,) of the form

50 =3, ke x-k). (6)

The requirement at this stage is that the model provides an exact
interpolation of the initial pixel values s[k] € £,(Z"). It is not
difficult to show that the corresponding expansion coefficients
¢,[k] (one per pixel) can be determined by digital filtering (pre-
filtering)

(k)= (b)" *slk] M

where b, (k)= (pl(x)’mk is the sampled generating function, and
where (b,)" denotes the corresponding convolution inverse. In
the B-spline case, the pre-filtering in (7) can be performed very
cfficiently using the recursive algorithm described in [8].

3.2 Transformation and approximation
The next step is to apply the affine transformation operator
Ar 1 L(R") > L,(R”) defined by (1) to the fitted image model
5,(x). The transformed model (A,s,)(x) is then approximated
in the least square sense by another continuous function
s, € V(@,) of the form
@)=, c()g,(x—k).

Using the results in Section 2. we show that the optimal image

(€))

coefficients are given by

ey ()= (A5, (x). 9, (x = 1)),

= > kXA, (x — k). $,(x ~ )

kez"

=Y alk) & x—t-T"h)_,

kez"

9



where &, is the modified sampling kernel defined by
)= [0(Tx)by(x - y)x.

xeR”

10)

The result given by (9) is quite general but this form may not
always be very appropriate for an explicit numerical evaluation.
The problem is that the summation for a given index I may
involve an infinite number of terms, unless, of course, &, is
compactly supported. This property can be enforced by
selecting the generating functions ¢, and ¢, appropriately. For
the polynomial spline model, the most judicious choice is
@, (x)= (52(x) = [}"(xl)B"(xZ)-<B"(xp), since the B-splines are
compactly supported by construction. With this particular
choice, the evaluation of (4) will provide us with the expansion
coefficients of s, in the so-called dual spline representation [9].

The other practical difficulty is that we will also need an
explicit formula for the modified kernel (10), which can be
rather challenging to obtain analytically since it depends heavily
on the transformation matrix T. There is another more
pragmatic approach (not pursued here) which is to pre-compute
a digital approximation of the convolution product (10) on a
multi-dimensional grid with step size A<<1. This computation
can be done efficiently using FFT-based convolution
techniques. The values of £,(y) lying in-between grid points
can then be approximated as required using bilinear
interpolation.

3.3 Model resampling
The last step is to display the resulting approximation
s,(x). The pixel values s,[k] are obtained from the c,(k) by
discrete convolution with the sampled kernel b, (k) := (pz(x)L:k .
5,[k]= b, *c, (k). (1
In our experiments, we have chosen ¢, to be the dual B-spline
which corresponds to the post-filtering kernel

byk) = (") b k), (12)

where b" denotes the separable discrete B-spline of degree n.
This digital filter can also be implemented recursively using the

same technique as before [3].
4. RESULTS

We have implemented this least squares procedure for
computing rigid 2D image transformations (translation + rotation
+ scaling) using both zero order and cubic spline image models
(LS-n, n=0, 3, resp.).
algorithms (INT-n, n=0,1,3 ) can be described by a formula

Note that the standard interpolation

similar to (9), with the difference that the sampling kernel &, is
replaced by ¢, (the interpolation function).

560

For the zero-order case (¢, = ¢, =(i52 =rect(x) - rect(y)),
we were able to derive the analytical form of the modified
sampling kernel in (5) as a function of the rotation angle 6 and
the scaling factor a. Despite the simplicity of the model, this
kernel turns out be a rather involved piecewise bilinear function
(first order spline) with up to 41 different subregions. No
prefiltering and post-filtering is necessary since both @, and @,
are true interpolating kernels. It can also be shown that the zero-
order algorithm (LS-0) is equivalent to a bilinear interpolation
(INT-1) in the case of a simple translation (T = 1.

For the cubic spline case (¢, = ¢, : bicubic B-spline), we
used a separable (and isotropic) Gaussian approximation of the
convolution product in (10) of the form &, (x)= & (x)E,(x,)
-+&,(x,) where

2 _ex - |x|<—n+](l+a)
£.(¥)=12r0, P 2

2 (13)
0, otherwise
and
n+l )
= /—(1+a 14
o, =\ 1+a’) (14)

with n=3. This approximation formula is based on the fact that
the cubic B-spline is extremely close to a Gaussian and that the
convolution of two Gaussians is also a Gaussian whose
variance is the sum of the variances of the individual
components. This argument is also supported by the central
limit theorem. In fact, this approximation is valid for higher
order splines and its accuracy improves with increasing n. The
corresponding pre- and post-filters in Fig. 1 were all
implemented recursively. In any case, digital filtering is not the
time consuming part of the algorithm; most of the computational
effort is spent in the evaluation of the 2D summation formula
9).

To assess the performance of a given algorithm, we
followed the initial transformation (rotation by 6 and reduction
by a factor of a) by its inverse using the same algorithm; a
signal-to-noise ratio was then computed on the central 128x128
part of the image. Some of those results for the test image Lena
are summarized in Table 1. The results obtained with other test
images (Mandrill, MRI) were qualitatively very similar. In our
experiments (0=0, 15, 30, 45° a=2"""%, 27", 27%), LS-0 was
consistently superior to INT-0 (nearest neighbor) with
improvements of the order of 2 to 5 dBs, depending on the
image, and the reduction factor. The most promising approach
was undoubtedly LS-3 which outperformed all other standard
methods (including INT-1) by several dBs. In most cases, the

performance of LS-0 and INT-1 (bilinear interpolation) was



TABLEI
COMPARISON OF GEOMETRIC TRANSFORMATION
ALGORITHMS FOR THE TEST IMAGE LENA

0=0° 0=15° 0=30°
a= 27!/2
INT-0 2201 dB 2223 dB 22.17dB
LS-0 25.26dB 25.29dB 25.31dB
INT-1 2541 dB 25.35dB 25.39dB
INT-3 27.38dB 27.04 dB 2674 dB
LS-3 28.07 dB 27.84dB 27.73dB
a=2"
INT-0 19.65 dB 19.94 dB 20.33dB
LS-0 23.14dB 23.14dB 23.29dB
INT-1 23.22dB 2334 dB 23.39dB
INT-3 22.99dB 23.27dB 23.15dB
1.8-3 2479 dB 2472 dB 2470 dB
a=27
INT-0 17.30dB 17.40 dB 17.64 dB
1.S-0 20.02dB 19.90 dB 19.96 dB
INT-1 19.34 dB 19.96 dB 20.01dB
INT-3 18.89 dB 19.19dB 19.24 dB
1.8-3 21.14dB 21.10dB 21.14dB

essentially equivalent. However, we found a slight advantage
of LS-0 over INT-1 for images with a strong high frequency
content and for large reduction factors; that is, when the effect of
aliasing is quite significant. In any case, for a given image
model, the least squares algorithm always outperformed the
corresponding interpolation and produced images of much
better quality. In addition, the transformed images did not
exhibit the characteristic artifacts (blocking, or excessive
smoothing) that are usually associated with low order
interpolation methods (INT-0 and INT-1). Finally, we found
that the proposed LS techniques would usually also result in
some improvement for image magnification and zooming.

5. CONCLUSION

In this paper, we proposed a new least squares
formulation for the geometrical transformation of images. The
resulting procedure is similar to a standard interpolation, except
that it uses a modified sampling kernel which depends explicitly
on the transformation parameters. The method also requires an
additional post-filtering step. For a given image model, the LS
algorithm generally outperforms the corresponding interpolation
solution in the sense that the transformed image is a more
faithful copy of the original. Advantages of the method include
lesser visual distortions and an improved suppression of aliasing
artifacts.  Its only drawback is that it requires more

computations because of the increased size of the local
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neighborhood that needs to be considered for the evaluation at a
particular image location.

As a future direction of research, we intend to develop
faster sub-optimal versions of these algorithms, and consider the
application of these techniques to the registration of volumetric
data in medical imaging (PET and MRI).
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