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Fast Gabor-Like Windowed Fourier
and Continuous Wavelet Transforms

Michael Unser °

Abstract—Fast algorithms for the evaluation of running win-
dowed Fourier and continuous wavelet transforms are presented.
The analysis functions approximate complex-modulated Gaus-
sians as closely as desired and may be optimally localized in time
and frequency. The Gabor filtering is performed indirectly by
convolving a premodulated signal with a Gaussian-like window
and demodulating the output. The window functions are either
B-splines dilated by an integer factor m or quasi-Gaussians
of arbitrary size generated from the n-fold convolution of a
symmetrical exponential. Both approaches result in a recursive
implementation with a complexity independent of the window
size (O(N)).

1. INTRODUCTION

WO fundamental tools in signal analysis are the win-

dowed (or short-time) Fourier transform (WFT) and the
continuous wavelet transform (CWT) [1], [3]. Both methods
decompose a signal by performing inner products with a col-
lection of running analysis functions. Each of these templates
is predominantly localized in a certain region of the time-
frequency plane. The optimum joint localization, as specified
by the uncertainty principle, is achieved when the analysis
functions are complex modulated Gaussians, which are also
referred to as Gabor functions [4]. In the case of the WFT, the
time and frequency resolutions are both fixed, which makes
this approach particularly suitable for the analysis of signals
with slowly varying periodic or stationary characteristics. In
the case of the CWT, the analysis functions are obtained
by dilation of a single (bandpass) wavelet {S]. This property
enables the CWT to “zoom in” on singularities and makes it
very attractive for the analysis of transient signals.

A major practical issue is the computational efficiency
of these techniques. Fast recursive algorithms for the WFT
have been developed for certain special windows, including
rectangular [6], [7], Hamming and Hanning [8], and certain all-
pole structures [9]. In each of these cases, the complexity per
frequency component is O(N), where N is the length of the
input signal. Most CWTs can be computed as efficiently using
the so-called “4 trous” algorithm, provided that one restricts
the analysis to scales that are powers of two [10], [11].

The purpose of this paper is to present a new recursive
procedure for performing both running Fourier and complex
wavelet signal analyses. This method is as efficient as previous
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recursive implementation of the WFT. However, it is unique
in the sense that the time-frequency localization of the analysis
functions can be chosen arbitrarily close to the optimum. When
applied to the CWT, it is at least as performant as previous
multiresolution-based algorithms [10], [11] with the advantage
that it is also applicable to nondyadic scales. Finally, it is
substantially faster than standard FFT-based techniques that
require O(Nlog(N)) operations.

II. A COMMON ALGORITHMIC FORMULATION

This section briefly describes the modulation technique that
is the basis for the present approach.

A. Windowed Fourier Transform

Let {g(k)}c denote a discrete-time signal, and let wx (k)
represent a window sequence. The WFT of g is then defined as

Fug(lwn) = 3 glkywg (k — De®=D (1)
kezZ

where w, = ”T" ,n=0,...,K — 1. Other definitions have

been used, but they only differ by a phase factor. If wx (k)
is of length K, then {F,, g(I,wn)},—q, k1 Tepresents the
discrete Fourier transform of the portion of the signal that
is viewed through an observation window positioned at the
index 1.

The WFT may be decomposed as

Fugg(lwn) = "'y " wie(k = Dgun(k)

keZ
— ejw"l(wﬁ * gwn) (l) )
where g, (k) is the modulated signal
9w, (k) = g(k)e 7" (3)

and where wk(k) = wg(—Fk) is the time-transpose of the
window sequence. These last two equations suggest an im-
plementation based on a modulator followed by a low-pass
windowing filter [12].

B. Continuous Wavelet Transform
The CWT in the discrete case is defined as

> g(k)w(k—;—l) @

keZ

Wyg(l,a) = \if

where a is the scale parameter, and v is a Gabor-wavelet
obtained by modulation of a window function w(x)

P(x) = w(z)e I )
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Fig. 1. Modulation approach to Gabor filtering.

Defining w,(z) = w(z/a), and the auxiliary modulated signal
1 )

o — k -iQk/a 6

(k) = (ke ®

we rewrite (4) as
Wyg(l,a) = e?M/* Y~ ga(kwe(k—1) = 7%/ (w] xg0)(1).

kez
€))
This equation is almost identical to (2) except for the coupling
that now exists between the size of the window and the
modulation frequency. Accordingly, the components of both
transforms can be evaluated using the general block diagram
in Fig. 1.

1II. FAST RECURSIVE WFT AND CWT ALGORITHMS

Apart from a pre- and post-multiplication, the computational
cost of the modulation approach in Fig. 1 depends entirely
on the efficiency of the convolution with the windowing
kernel. We now consider two approaches for implementing
a symmetrical window filter (wl = w,) that is as close as
we wish to a Gaussian and yet has a complexity O(N) that
is independent of its size.

A. B-Spline Window

The central B-spline of degree n (3%(x)) is generated from
the (n+ 1)-fold convolution of a unit rectangular pulse [13]. It
is a symmetrical, compactly supported function that converges
to a Gaussian uniformly and in all Lg-norms as n tends to
infinity (cf. Theorem 1 of [14]). The corresponding discrete B-
spline window is obtained by enlarging "(z) by an integral
factor m and sampling at the integers

wm (k) = ﬂn(z)la.:k/m' ®

If n is odd, then the transfer function of this filter can be
factorized as (cf. [13])

+[n/2] ko m—1 n+1l
m -k -k
E 6" (k)z o s ( E z )

k=—[n/2] k=0 /o)

where kg = (n + 1)(m — 1)/2 is a proper offset. The
first of these factors represents the transfer function of a
symmetrical FIR filter (discrete B-spline filter), whereas the
second corresponds to the cascade of (n + 1) moving sums.
Each moving sum filter is implemented recursively with as
few as two additions per sample. Hence, the total complexity
of B-spline filtering is independent of the window size m [13].

A choice of modulation that is especially suitable for
constructing wavelets is 2 = F2x; this ensures that ¢ is an
admissible wavelet in the sense that its Fourier transform has

N

Win(z) =

77

at least one zero at the origin [15]. The resulting complex
B-spline wavelet! is

P(z) = B*(2)e??™ — P(f) = sinc"(f - 1).

The time-frequency localization of this function improves
rapidly with n since B"(zx) converges to a Gaussian. For
n = 3, the variance product is already within 0.5% of the limit
specified by the uncertainty principle (cf. Table II of [14]). This
cubic spline wavelet transform can be computed with as few as
eight (real) multiplications and 22 additions per sample. The
corresponding impulse response for m = 30 is shown in Fig.
2(a). Because of its simplicity, this technique constitutes the
method of choice for computing complex CWT’s with integer
dilation factors. Recently, we have also proposed a similar
algorithm (which does not use modulation) for the evaluation
of real-valued CWT’s [16].

(10)

B. Approximation of a Gaussian Using Exponentials

The approach that is presented next can approximate an
arbitrary Gaussian window

we (k) = L ex; —#
T Vo P\2a2 )
This is achieved by cascading n symmetrical exponential
filters

amn

Wo(2) = a- Ho(2)"? (12)

with
(1-a)?
(1-az)(1-az"1)

Ho(2) = 2 halk) = <l—_a>alkl_

1+a

13)

These kernels are chosen because they can be implemented
recursively from the cascade of simple first-order causal and
anticausal filters with as few as two additions and two multi-
plies per sample (cf. ILB of [17]). ha(k), @ > 0, is a sequence
that is symmetrical, positive, and has a sum that is one. It
may therefore be interpreted as a discrete probability density
function (PDF). The variance of this distribution is

2 o’
U2 = Zk ha(k) = m

keZ

(14)

The normalized window function w,(k)/a is the n-fold con-
volution of this density; it also represents the PDF of the sum
of n independent exponentially distributed random variables.
As n increases, this sequence converges to a Gaussian as
a consequence of the central limit theorem. In addition, its
variance is simply the sum of the variances of the individual
terms, i.e., 02 = n - uy. This property is used to determine
the appropriate value of a by solving (14) as a function of
p2, which yields

1 VIT2m
a=14— Vit (15)
H2 H2

I'This complex wavelet should not be confused with the real-valued B-
spline wavelets that have been constructed by us previously [14]. These
latter wavelets provide bases of Lo and are therefore much more constrained
mathematically. They are also well localized in the sense that they converge
to a cosine-Gabor function.
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TABLE I
RELATIVE TIME-FREQUENCY BANDWIDTH PRODUCT AS A FUNCTION OF THE MULTIPLICITY FOR THE SECOND ALGORITHM (a = 27/2)
n=1 n=2 n=3 n =4 n=>5 n==6 n="7 n=28 n =29 n =10
1.5653 1.0882 1.0395 1.0225 1.0146 1.0102 1.0075 1.0058 1.0046 1.0037

(b)

Fig. 2. Examples of impulse responses (real, imaginary, & magnitude) of
wavelet filters implemented using the modulation approach and recursive
window filtering: (a) Complex cubic B-spline (n = 3 and Q@ = 27 with
a scale factor m = 30; (b) quasi-Gabor wavelet (four cascaded exponentials
and = 7) with a nonrational scale factor @ = 22/7,

with g3 = a%/n. The response of a wavelet filter with a
nonrational scaling factor (a = 27/2) that was implemented
using this technique is shown in Fig. 2(b). The results in Table
I illustrate that the localization of this wavelet filter improves
with n; a similar convergence behavior has also been observed
for other scales. The convergence is not as fast as in the B-
spline case. The total complexity of this algorithm is (4n + 6)
multiplies + (4n + 2) adds per wavelet coefficient.

Unlike the B-spline approach, this algorithm puts no re-
striction on the selection of the scale parameter. However,
there is a small price to be paid for this increased flexi-

bility. First, the corresponding wavelet does not satisfy the
admissibility condition [(z)dz = 0, which may require
a small dc correction. Second, there is no exact analytic
wavelet formula, although the Gabor approximation (z) =
(21)~1/2¢=%"/2¢=39% should be sufficient for most applica-
tions.

IV. CONCLUSION

Two fast recursive algorithms have been proposed for
computing Gabor-like WFT’s as well as complex CWT’s.
Their most attractive features are summarized as follows:

» The complexity per channel (scale or frequency compo-
nent) is O(N); it is the same for all Gabor functions.
The resulting analysis functions approximate complex-
modulated Gaussians as closely as desired. Hence, the
decomposition is optimally localized in both time and
frequency.
Unlike previous approaches, the analysis is not restricted
to scales that are powers of two. The B-spline algorithm
can handle any integer scale, whereas the exponential one
has no restrictions at all.
* Both algorithms are noniterative and have a very regular
structure. This makes them ideally suited for parallel
implementation with one processor per channel.

°
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