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Fast Implementation of the Continuous
Wavelet Transform with Integer Scales

Michael Unser, Akram Aldroubi, and Steven J. Schiff

Abstract—We describe a fast noniterative algorithm for the evaluation
of continuous spline wavelet transforms at any integer scale m. In this
approach, the input signal and the analyzing wavelet are both represented
by polynomial splines. The algorithm uses a combination of moving sum
and zero-padded filters, and its complexity per scale is O(V), where N
is the signal length. The computation is exact, and the implementation
is noniterative across scales. We also present examples of spline wavelets
exhibiting properties that are desirable for either singularity detection
(first and second derivative operators) or Gabor-like time-frequency
signal analysis.

1. INTRODUCTION

The continuous wavelet transform (CWT) of a continuous-time
signal s(z) is defined by the convolution integral (cf. [1], [2])

oo _.
Wys(a,b) = %/ s(.r)u’r<b - I)dr )

where ¢(z) is the analyzing wavelet, and « and b are continuously
varying shift and scale parameters, respectively. Because of its unique
localization and scaling properties, this representation provides an
attractive tool for the analysis of signals with nonstationary charac-
teristics [1], [3].

For implementation purposes, the parameters a and b are usually
discretized. In the dyadic case, the analysis is restricted to scales that
are powers of two: @ = 2° and i € Z*. If, in addition, the wavelet
¥ is derived from a multiresolution analysis [4], it is possible to
compute the wavelet transform in a very efficient fashion. In the
critically sampled case, the discretization is a = 2°, b = 2'k, k € Z,
and one can use Mallat’s algorithm, which relies on the use of two
complementary low- and high-pass filters and has an overall O(N)
complexity {3], [4]. A similar strategy is also applicable for the
oversampled case (@ = 2°, b = k) using zero-padded (or “a trous”)
filters [5], [6] with an O(N) complexity per scale.

All the procedures described above are computationally very
efficient and therefore widely used in practice. Unfortunately, they
are limited to the computation of dyadic wavelet transforms. Here, we
will consider an alternative scheme that allows for a finer discretiza-
tion of the CWT at the integers (¢ = m, b = k) and has a complexity
per scale that is comparable with that of Shensa’s algorithm (O(N)).
This greater freedom in the choice of a is possible only because we
are restricting ourselves to the class of polynomial spline CWT’s and
exploiting some very special scaling properties of the corresponding
basis functions (B-splines). In addition, for a fixed integer value
of a, the corresponding CWT is itself a polynomial spline and is
therefore continuously known. Consequently, the method provides an
exact computation. The disadvantages are minimal because splines
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are flexible enough to approximate virtually any desirable wavelet
shape. In addition, splines provide the standard illustration of a
multiresolution analysis; as a result, there are many examples of such
wavelet bases in the literature [4], [7]. In addition, unlike other scaling
functions and wavelets, splines have a simple explicit analytical form
in both the time and frequency domain, which often facilitates their
manipulations.

II. FAST WAVELET TRANSFORM ALGORITHM

In our formulation, the input signal s(x) and the wavelet ¥ ()
in (1) are both polynomial spline functions of degree n, and no,
respectively. Let us therefore start by introducing the relevant spline
representations and reviewing some of the important properties of
B-spline basis functions.

A. Basic Spline Properties

The splines considered here are constructed from polynomial
segments of degree n of unit length that are joined together at the
knots' in a way that ensures the continuity of the resulting function
and its derivatives up to order (n — 1). Such splines are characterized
through their B-spline expansion

s(z) =Y c(k)B"(z — k) @

keZ

where A" is the central B-spline of order » and where the c(k)’s
are the B-spline coefficients [8]. The B-splines are Gaussian-like
functions of compact support that are generated from the repeated
convolution of a B-spline of degree zero

3 (x) =8« 3" (z) 3)

where ﬁ“(z) is the centered unit rectangular pulse.

The spline formalism provides a convenient mapping between the
discrete and continuous signal domains [9]. Specifically, there is
a one-to-one relation between a discrete signal {s[k]}recz and its
polynomial spline interpolant, which can be represented by the B-
spline expansion (2). This mapping is expressed by the following
discrete convolution equations [10]

s[k] i= s(2)|ozk = " ) (k) & (k) = (") xs) (k) @
where
b (k) == 3" (2)|a=k (&)

is the discrete B-spline kernel of degree n and where (b")~" denotes
the inverse filtering operator.

Another key property is that there exists a simple mechanism
for dilating the underlying basis functions. It is well known that a
polynomial spline of degree n (odd) enlarged by an integer factor
m is also a spline with (finer) knots at the integers. Therefore, there
must exist a sequence uj, (k) such that

B"(xfm) =Y un (k)" (x - k), ©6)
kez

where the left-hand side represents a B-spline dilated by a factor of
m. In fact, (6) is also valid for splines of even degree, provided that
m is odd.

1For n odd, the knots are at the integers, whereas for n even, they are at
k+1/2, ke Z.
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Proposition 1: The z-transform of the sequence um(k), where n
and mn are not both even, is given by

Zko m—1 n+l
Unl2) = — (Z zk) ™

k=0

with ko = (n 4+ 1)(m — 1)/2.

Note that this result constitutes the continuous counterpart of the
discrete B-spline convolution properties (3.5) and (3.6) described in
[9].

Proof: A DB-spline of order n is obtained from the convolution
of (n + 1) rectangular pulses. Therefore, the Fourier transform of a
B-spline expanded by a factor of m is

f)’"(r/m)ngfrB;(f) =m - sinc" T (mf).

Next, we rewrite B}, (f) as

BZ(f):i(Sinﬂ-mf>"+l.(Sinnf)n+l

m™ \ sinwf nf

and note that the first of these factors has period one whenever the
product (n + 1) X (m — 1) is even. The term sin(mm f)/ sin(w f)
with an appropriate phase correction is then identified to be the
Fourier transform of the discrete rectangular pulse with z-transform

m—1

oo 2. Therefore, we find that
BL(F) = Un(e®™) - sinc™ ()

where Ur, () is given by (7) and where kq is an offset that ensures
that v}, is symmetrical. [}

B. A Digital Filtering Waveler Algorithm

Let us now assume that the function to be analyzed s(x) is a spline
of degree n1 specified by its B-spline representation (2) withn = n;.
Likewise, the analyzing wavelet y)(z) is a spline of degree no with
corresponding B-spline expansion

Y(z) = Zp(k)ﬁ"‘z(r — k). (8)
kez
Using (8) and Proposition 1, we show that the wavelet expanded by
a factor of m is given by

Um(2) = 0(x/m) =" ([plim * u22) (k)3 (x — k) (9)

kez

where the notation [p];m(k) represents the upsampling of the se-
quence p by a factor of m (i.e., insertion of m — 1 zeros in between
taps). Next, we recall that the convolution of two splines of degree
71 and ny is a spline of degree (n1 4 na + 1) and that this operation
can be implemented by a simple convolution in the discrete B-spline
domain (cf. Section IV-B of [9]). Therefore, the continuous wavelet
transform of s(x) at scale m is given by

Wos(m.b) = (¢ % 5)(0) = 3 ([plim * uli? % ¢) (k)
kez
x gritratlp gy (10)

which is the D-spline representation of a spline of degree (n; +
n2 +1). This formula provides an exact representation of the wavelet
transform at scale m as a function of the continuous shift parameter b.

For visualization purposes, a representation in terms of sampled
values is usually more appropriate. To obtain these samples, it is
sufficient to consider the values of the B-spline basis functions in
(10) at the integers. The whole computation is therefore equivalent
to the following cascade of convolutions:

win (k) = Wyslm, k] = (plim * un? x5 42T ) (k) (1)

where 3™1%"2 1 js the discrete B-spline of order (n1 + ng + 1) (cf.
(5)). The samples w, (k) also provide a unique characterization of
the wavelet transform (10) at scale me. In fact, it is easy to recover
the B-spline coefficients using the inverse mapping described by (4).

C. Fast Implementation

The fast implementation of (10) for any integer scale m is achieved
in three steps, which are described next. The whole procedure is
schematically represented in Fig. 1.

i) Initialization: This part of the calculation is only performed
once. It combines the evaluation of the B-spline coefficients
c(k) that interpolate the input signal s(k) (cf. (4)) and the
convolution with the kernel representing the basis functions
for the wavelet transform (cf. (11)). We thereby compute the
auxiliary signal

si(k) 1= (s(x),8"%(z — k))
— b"1+n2+1 " (bmv)—l * S[k] o B2 s[k] (12)

The filter b™1*"2%! is 4 symmetric finite impulse response
(FIR) kernel, which is characterized by a vector b of size n;
that contains the filter coefficients (cf. Table I). The inverse
filter (5"*)™" can be implemented very efficiently using the
recursive algorithm described in [10]. Note that this operation
is an identity for ny = 1 (piecewise linear signal model).
Alternatively, we may use the right-hand side formula, which
provides the discrete approximation of the L-inner product.
ii) Irerated Moving Sum: The next step is to compute the quantities

Sm (k) := (s(2), 8™ ((z — k)/m)) = ul? + 5, (k). (13)

This filtering can be done in a very efficient manner since it
is equivalent to a cascade of (n + 1) moving sums (cf, ).
Specifically, we have that

W)=l el (k) (1)
————

(ng+1) times
where the moving sum filter is defined as follows:

kt+ig4+m
ri—1{l) (15)

I=k+ig+1

ri(k) = up, ¥ 71 (k) =

and where lo is an appropriate offset. Clearly, this filter can
be evaluated with two additions per sample using a recursive
updating strategy

ri(k) =ik = 1) +risy(k+lo+ m) — ri_y (k+10)  (16)

with the initial condition ro(k) = s;(k). Therefore, the
computational cost for evaluating (13) is only of 2(ns + 1)
additions per sample, irrespective of the value of the parameter
m. Note that all multiplicative factors to be applied to the
wavelet coefficients (the factors 1/m"? in (14) and 1//m in
(1)) can be included in the last filtering step by appropriate
rescaling of the filtering template p.

iii) Zero-Padded Filter: Last, the wavelet coefficients are obtained
by filtering with the up-sampled kernel representing the B-
spline coefficients of the wavelet v, i.e.

W (k) = [plim * sm (k). am

The FIR operator p is characterized by a vector p of size
np (cf. Table I). Thus, the complexity of this part of the
algorithm is n,/2 multiplications and n, — 1 additions per
sample, assuming that p is either symmetric or antisymmetric.
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Initialization:
n -1 C(k) i+l
s[k] —»{ (™) > b e 5,(k)
(@)
Individual scale processing
(m+1) times
Y 5, (k)
s,(k) - > [P, [—mw, (k)
iterated moving sum zero-padded filter
(b)
Fig. 1. Schematic representation of the fast wavelet transform algorithm: (a)

Initialization; (b) individual scale processing.

III. RESULTS AND DISCUSSION

The present algorithm allows for an exact computation of poly-
nomial spline wavelet transforms with integer scales. If the desired
wavelet prototype is not a spline, we can still approximate it by
constructing its least squares approximation [11] or by simply in-
terpolating the function values at the integers. In practice, however,
the exact shape of the wavelet is not necessarily the most important
factor. It is usually preferable to identify a specific property that is
particularly relevant for the application at hand. For instance, if the
goal is to analyze and characterize singularities, then the wavelet
should correspond to the first (or second) derivative of a smoothing
function that is well localized in time and frequency [12]. A typical
example is the Canny operator, which detects edges from the maxima
of the gradient [13]. Alternatively, singularities may also be found
from the zero-crossings of a smoothed Laplacian (second derivative
operator) such as the Marr-Hildreth or mexican hat detector [14].
If, on the other hand, the goal is to perform some kind of time-
frequency signal analysis, then the choice of a wavelet with (near)
optimal localization is more appropriate. Several such examples of
spline wavelets are presented next.

A. Examples of Spline Wavelets

o First and Second Derivative Wavelets: B-splines of higher degrees
are particularly well localized in both time and frequency because
they converge to a Gaussian as n goes to infinity (central limit
theorem). For n =3, the time-frequency bandwidth product is already
within 0.5% of the limit specified by the uncertainty principle [15].
It is therefore justified to select B-spline smoothing functions for the
design of derivative operators.

The first-order derivative of a B-spline (with a change of sign) is
given by (cf. [9])

yr(a) = —% =g (r+ %) +3"! (r - %) (18)

It corresponds to a particular instance of (8) with p; = (—1,1), pro-
vided that we shift the origin by half a sampling step. Alternatively,
if we want an operator that is truly antisymmetric, we can take the
derivative of a B-spline enlarged by a factor of two, which leads to the
sequence p§2) = (—1,—4,-5,0,5,4,1). The graph of this wavelet
for ny = 3 is given in Fig. 2(a). Also represented is the derivative of
a Gaussian that is frequently used as an approximation to the optimal
Canny detector [13]. These functions are all qualitatively very similar.
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TABLE I
FILTER PARAMETERS FOR THE FAST WAVELET TRANSFORM ALGORITHM
Filter/wavelet type Template
Discrete B-splines:
1
Cubic spline (n=3) b’=g(- .41

1
Quintic spline (2=5) bs=1—23(‘- 66,26, 1)

1
7th order spline (n=7) b7=m(" 2416, 1191, 120, 1)

Cubic spline wavelets (n,=3):

1st derivative P=(-1,+1), PP=(-1,4,-5, 0,45,+4,+1)
pu=(*,2-1)

Pu=(+, 0.6018, -0.4584, 0.196, -0.04159, 0.003075,-0.0000248)

2nd derivative

B-spline wavelet

Examples of non-wavelet filters (n,=3):

Quasi-gaussian
Lowpass
(cardinal spline)

Po=(1) (identity)
Pla=(+, 17321, -0.4641, 0,12436, -0.03332, 0.00893,
-0.00239,0.0006410, -0.0001718, ...)

that the

Note : The symbol + indi q is sy

5
6
_5.
(a)
1
4
-0.5

(b)

Fig. 2. Examples of cubic spline derivative wavelets (solid line): (a) First
derivative of a fourth-order B-spline expanded by a factor of two and its
Gaussian (first derivative) approximation (dashed line); (b) second derivative
of a quintic B-spline and its mexican hat approximation (dashed line).

The second derivative of a B-spline of order n (with a change a
sign) is a symmetrical spline of order n—2 that is given by (cf. [9])

d2a" (x
Yir(x) = ——/d#

=—8"" e+ 1)+28"2) - 4" Ha—-1). (19)
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0.25
6
-0.25
Fig. 3. Cubic B-spline wavelet (solid line) and its Gaussian envelope

(dashed line).

The corresponding B-spline coefficients are p;; = (—1,2,—1). The
second derivative cubic spline wavelet is shown in Fig. 2(b) together
with its mexican hat approximation (second derivative of a Gaussian):
o B-Spline Wavelets [15], [16]: These functions are perfect candi-
dates for time-frequency signal analyses because of their excellent
localization properties; they have been shown to converge to cosine-
Gabor functions as the order of the spline increases [15]. The
B-spline wavelets are also compactly supported and are splines by
construction. The corresponding weighting sequence pyyy for ny=3
is given in Table I. The cubic B-spline wavelet and the Gaussian
envelope of its Gabor approximation given by (2.9) in [15] are
shown in Fig. 3. This wavelet is unique in the sense that it can be
used to construct dyadic wavelet bases of Lg; it also has a simple
reconstruction algorithm associated with it [17].

B. Additional Remarks

The overall complexity of the algorithm for these various spline
wavelets is O(V-M), where N is the total number of samples, and A/
is the number of desired scales, which is a factor log N improvement
over comparable FFT-based approaches [18]. Overall, the algorithm
is relatively straightforward to implement. To avoid discontinuities
at the boundaries, we have extended the signal on both ends by
using mirror reflections: a standard practice in signal processing. In
addition, we have chosen n» to be odd in order to be able to apply the
algorithm for all positive integer scales m; otherwise, the procedure
would be valid for odd dilation factors only (c.f. Proposition 1).

There are a few practical issues in the computation of (13) using
iterated moving sums. First, the sums have to be initialized at the
starting position at the cost of m additional operations. Second, the
offset parameter lo in (15) must be chosen in an appropriate way.
When m is odd, all windows are simply centered on the current
position. When m is even, the window can no longer be centered,
and we use a simple alternating shifting scheme to produce a response
that is globally symmetrical; this is possible because the number of
iterations is even.

We have implemented the algorithm using the Pro-Matlab software
with some of the critical subroutines (iterated sum and zero-padded
filter) coded in C to speed up computations. The area of application
in which we have been particularly involved is the analysis of EEG
recordings for seizure detection [19]. Thanks to the new algorithm,
we were able to reduce the CPU time for processing a 6144-point
EEG signal with 64 scales from several days on a Sun SparcStation
IPx (using a direct O(N?) method, as described in [20]) to 30 s
on a Macintosh IIfx computer. Finally, we note that the present
approach may also provide very efficient computational solutions for
other signal processing tasks such as scale-space signal analysis and
narrow-band low-pass filtering (cf. the two last filter examples in
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Tabie I). The last set of coefficients corresponds to the cardinal (or
fundamental) spline; a function that converges to the ideal low-pass
filter as n goes to infinity [21].

IV. CONCLUSION

The spline CWT algorithm that has been described has the follow-
ing attractive features:

« It can handle any integer dilation factor and is not restricted to
powers of two.

» The complexity per scale is O(N) with a proportionality con-
stant that can be surprisingly small. For example, the second
derivative cubic spline CWT requires no more than 10 additions
plus two multiplications per output sample (neglecting the
initialization phase which is only performed once).

« For spline wavelets, the computation is exact, and the CWT at
scale m is continuously known.

» The algorithm is noniterative across scales, and its structure is
very regular. It is therefore well suited for a parallel implemen-
tation with one processor per scale.

+ The procedure offers flexibility in the choice of wavelet shapes,
as illustrated by our examples.
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A Note on the Error Propagation Analysis
of Recursive Least Squares Algorithms

Bin Yang

Abstract— This correspondence comments on the error propagation
analysis of recursive least squares algorithms presented by Ljung and
Ljung, Verhaegen, and Haykin. In particular, it corrects some incorrect
statements about the error propagation given in the literature.

1. INTRODUCTION

Recursive least squares (RLS) algorithms are used in a broad
class of applications. Since some internal variables of these algo-
rithms are computed recursively, round-off errors of past and present
computations propagate into future time instants resulting in error
accumulation. Due to the potential danger of divergence, there has
been much interest to study the error propagation and accumulation
of RLS algorithms.

Ljung and Ljung [!] have presented possibly the first rigorous
single-error propagation analysis. However, they studied only the
error propagation in the recursive equation for updating the weight
vector. Verhaegen [2] has given a more detailed single-error propa-
gation analysis. He also investigated the error propagation through
the inverse correlation matrix. His work reveals the root of explosive
divergence of the classical RLS algorithm and proposes a stabilization
scheme. Haykin summarized in [3] the main results of both works.

We find, however, that some of their statements are not precise or
wrong. We will show that the propagation of a single error through
the weight vector or the inverse correlation matrix is not contractive
for the growing memory RLS algorithm (A = 1) even if the input
data is persistently exciting. The error may grow in norm, but the
growth is bounded. This noncontractive error propagation explains the
divergence of the growing memory RLS algorithm in finite-precision
computations [4].

In the following, an underlined character represents a column
vector, and a boldface character signifies a matrix. The superscript
T describes transposition. || || denotes the 2-norm for both vectors
and matrices.
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TABLE 1
SUMMARY OF VERSION I OF THE RLS ALGORITHM

P(0) = 671, w(0) =0
FORt=1,2,..D0 + x +

1) h(t) =Pt - 1)z(t) N(N-1} N?

2)  eft) = 1/{A + 2T (t)h(t)] N N 1

3) g(t) = k()a(t) N

1) P(t) =27 [P(t —1- g(t)ﬁT(i)] N? 2N?

5) e(t,t —1) = y(t) — wT{t - z(t) N N

6) w(t)=wlt—1)+g(tet,t— 1) N N
END ¥ ANTH2N  3NP4AN 1

II. RLS ALGORITHMS

We consider the problem of spatial adaptive filtering using the RLS
minimization. Let «;(t) (i = 1,2,...,N) be the observations of
N input signals at the discrete time instant ¢ > 1. Using a linear
combination of them, a desired signal y(t) has to be estimated.

In vector notations, the estimate is §(t) = w? (t)z(t), where
z(t) = [x1(2), z2(t),.. .., xn(t)]7 is the N x 1 input data vector, and
w(t) = [wi(t), walt),..., wn(t)]7 is the weight vector involved.

The purpose of least squares estimation is to choose w(t) to
minimize the sum of exponentially weighted squared errors £(t) =

T AT y(d) — w” (#)a(i)]?. 0 < A < 1 s the forgetting factor.

It ;s intended to ensure that data in the distant past are “forgotten”
in order to provide the tracking capability when the system operates
in a nonstationary environment. The solution of the above problem
is well known. Let
t
ct)= Y N Te(a () = AC(t = D +a(z’ () (D)
i=1

be the correlation matrix of the input data vector, and let A(t) =
St AT z(i)y(4) be the cross-correlation vector between z () and
y(t), respectively. The weight vector minimizing £(t) is given by
w(t) = C71(t)A(t), provided that C(t) is of full rank.

There exist various algorithms to compute w(t) recursively. We
consider, in this correspondence, RLS algorithms based on the appli-
cation of the matrix inversion lemma to (1). In the literature, different
versions of the RLS algorithm are available [1)-[3], [5]. Tables
I to Il summarize three widely known versions for convenience
of discussions. The first two RLS schemes in Tables I and II are
discussed in detail in [2], [3]. They are referred to as versions I and
II. Version III of the RLS algorithm in Table III is the most efficient
one because it computes only the upper (or lower) triangular part of
P(t) as indicated by the operator Tri{}. Note that P(¢) = c (1)
is the inverse correlation matrix. g(t) = P(t)z(t) is the so-called
gain vector, and e(t.t — 1) is the a priori estimation error. The total
operation counts listed in the tables are given for the case A<l
and that all divisions by X are replaced by multiplications with the
precalculated factor AT

III. ERROR PROPAGATION ANALYSIS

A. Error Propagation Through the Weight Vector

The propagation of a single error in the weight vector to subsequent
recursions in infinite-precision computations has been studied in
[11-[3]. We first recall some of the results of these studies.

Let W(to) = w(to) + Sw(ta) be the erroneous version of w(to).
The error vector Sw(to) describes a perturbation to w(to), which
may arise from the quantization of w(to). If all other variables of
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