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Abstract—We first describe the general class of approximation
spaces generated by translation of a function ¢ (x), and provide
a full characterization of their basis functions. We then present
a general sampling theorem for computing the approximation
of signals in these subspaces based on a simple consistency
principle. The theory puts no restrictions on the system input
which can be an arbitrary finite energy signal; bandlimitedness is
not required. In contrast to previous approaches, this formulation
allows for an independent specification of the sampling (analysis)
and approximation (synthesis) spaces. In particular, when both
spaces are identical, the theorem provides a simple procedure for
obtaining the least squares approximation of a signal. We discuss
the properties of this new sampling procedure and present some
examples of applications involving bandlimited, and polynomial
spline signal representations. We also define a spectral coherence
function that measures the “similarity” between the sampling and
approximation spaces, and derive a relative performance bound
for the comparison with the least squares solution.

I. INTRODUCTION

AMPLING is the process of representing functions of a

continuous variable = by sequences of numbers (discrete
signal representation). A classical approach to this problem
is provided by Shannon’s sampling theorem which states
that a bandlimited function g(z) is entirely characterized
by its samples taken at an appropriate rate [1]-[3]. The
corresponding sampling/reconstruction procedure is described
by the block diagram in Fig. 1(a), where n(z) = sinc(z) is
the interpolation kernel. Similar interpolation schemes have
also been defined for other function spaces, including bandpass
functions [4], and polynomial splines [5]-[7].

If the functions to be processed are not bandlimited (e.g.,
g(x) € Ly), the standard procedure is to use an additional
prefiltering module (ideal low-pass filter), which acts by sup-
pressing aliasing (cf. Fig. 1(b) with 4(z) = sinc(z)) [1], [8].
The corresponding bandlimited reconstruction §(x) then turns
out to be the orthogonal projection of g(x) on the subspace
of bandlimited functions. This observation suggests a second
interpretation of the sampling process as an approximation
procedure. This point of view has led to the formulation of
least squares sampling theories for polynomial splines [9],
[10], as well as for more general classes of functions generated
from the integer translates of a generating kernel ¢(z) (to
be defined in Section II-A) [11]. A related development
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Fig. 1. Block diagram representation of three sampling procedures: (a)
Interpolation; (b) least squares approximation; (c) sampling with nonideal
acquisition device. The sampling operation is modeled by a multiplication
with the sequence of Dirac impulses 3, ., §(x — k). The solid rectangular
boxes represent convolution operators (analog filters). The exact meaning of
the symbols used is clarified at the end of Section 1.

is Ogawa’s generalized sampling theory for approximating
functions in finite dimensional vector spaces [12], [13]. The
principle of a minimum error signal approximation (orthog-
onal projection) is also used explicitly in the multiresolution
formulation of the wavelet transform proposed by Stéphane
Mallat {14], [15]. A property that is shared by all these
representations is that the discrete expansion coefficients are
obtained by simple inner product between the input signal
g(z) and an appropriate (biorthogonal) analysis function. At
a fixed resolution, this process is equivalent to prefiltering the
signal and sampling thereafter, as illustrated in Fig. 1(b). The
optimal (least squares) prefilter »(—z) is uniquely specified by
the approximation space [11] (cf.-Table I on the next page);
in the orthogonal case, it simply is the generating function
itself.

In most applications, the analysis function is given a priori
and corresponds to the impulse response of the acquisition
device, which we denote by £(x). Clearly, the approximation
error is minimized if and only if £(z) = $(—x); this situation
corresponds to the case of an ideal (or optimal) acquisition
device. If this condition is not satisfied, different types of errors
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(distortion, aliasing) are introduced into the discretization
process; this may result in a significant loss of performance.

In this paper, we address this problem and propose a
corrective procedure that takes the form of a digital filter. For
this purpose, we develop a new sampling theory that offers the
flexibility of an independent specification of the sampling (or
analysis) and approximation (or synthesis) spaces. The corre-
sponding system is shown in Fig. 1(c); it includes a model of
the acquisition device as well as a digital deconvolution filter q.
The generating kernel ¢ in the post-filtering module specifies
the approximation space. It may also represent the impulse
response of a particular physical reconstruction device.

The present theory is based on a simple consistency princi-
ple. The basic requirement is that the resulting signal approx-
imation j(z) if re-injected into the system must result in the
same measurements as the original signal itself. As far as the
sensing device is concerned, the signal and its approximation
are therefore equivalent. We will see that this formulation
is quite general in the sense that it includes conventional
and least squares sampling procedures as particular cases. An
implication of these results is a restatement of Shannon’s
sampling theorem for nonideal acquisition devices: under
suitable conditions (i.e., the invertibility of a given discrete
convolution operator), a bandlimited function g(z) (or, by
extension, §(z) € V where V is the representation space)
is completely determined from its measured sample values
€ % §(x)|g=k- This also means that the function §(z) can be
recovered without any loss from its measurements.

The presentation is organized as follows. In Section II, we
define the relevant approximation spaces, and give a complete
characterization of their basis functions. The general sampling
theory corresponding to the block diagram in Fig. 1(c) is
derived in Section III. We also define a spectral coherence
function that provides a measure of the discrepancy between
the sampling and approximation spaces. In Section IV, we
consider the issue of performance and derive a theoretical
bound that allows the worst case comparison with the optimal
(but non-realizable) least squares solution. Finally, in Section
V, we consider some examples of application. These include a
new formulation of the standard deconvolution problem, and
several examples involving bandlimited and polynomial spline
representations of signals.

A. Notations and Operators

L is the space of measurable, square-integrable, real-valued
functions g(z),z € R. L, is a Hilbert space whose metric || ||
(the Ly-norm) is derived from the inner product

(9, h) = (g(a), h(z)) = /

—00

+o0o
9(x)h(z)dx ey

1
o0

wa- ([ ; Pir) . @

The basic (or generic) generating function of a subspace
V C Ly is denoted by ¢; i.e., V(p) = span{p(z — k) }xez.
Occasionally, we will use another Greek letter to indicate a
certain characteristic property, as specified in Table 1. The
symbol “°” is used to represent the dual (or biorthogonal)

lgll =

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 11, NOVEMBER 1994

TABLE 1
Various TYPES OF EQUIVALENT GENERATING
FUNCTIONS WITH THEIR SPECIFIC PROPERTIES

Fourier transform of the
Type Symbol weighting sequence p Property
. Admissibility:
Basic or 5=
generic o) pn=1 0<asy Jr-if <8
Cardinal or . _ 1 Interpolation:
inerpolating | %) b= T8 -D k=3,
5.4 = 1 Orthogonality:
Orrogonal | 80 PADTTS -k ORSELN
N 5.7 1 Biorthogonality:
P, =S s o F o
Dral M B W T @0 =84,

operator. An approximation in V of the function g € Lo
is usually denoted by g; the same notation may also be
used to indicate that the function is already included in the
approximation space (cf. Fig. 1(a)).

I, is the vector space of square-summable sequences (or
discrete signals) a(k),k € Z. The convolution between two
sequences a and b is denoted by b x a(k). The sequence b(k)
can be viewed as a discrete convolution operator (or digital
filter) that is applied to the signal a € l5. This filter is charac-
terized by its transfer function b(f) = ¥, b(k)e~72/. An
important result concerning the stability and the reversibility of
such operators is given by the following proposition (cf. [11]).

Proposition 1: A sequence b(k) defines an invertible dis-
crete convolution operator from l; into itself if and only
if there exists two positive constants m and M such that
m < |b(f)] < M, almost everywhere (a.e.).

This condition insures the existence and stability of the
inverse filter, which we denote by

()~ (k) TS 1/b(f). ©)

If in addition b is symmetrical, we can also define its square-
root convolution inverse

(6)V2(k) " 1/ /b(S). “

II. PRELIMINARY NOTIONS

In this section, we first define the notion of “shift-invariant”
approximation space and give the necessary and sufficient
conditions for such a construction. We then indicate a general
procedure for generating equivalent sets of basis functions.

A. Subspaces Generated by Integer Translates

The purpose of discretization is to represent a function g(x)
of the continuous variable z by a discrete sequence of samples.
Such a discrete signal representation is often better suited for
signal processing and for data transmission. In order to define
a coherent sampling procedure, we first have to select a subset
(or subspace) of functions entirely characterized by such a
sequence of coefficients.

Without loss of generality, we assume that the sampling
step is one. Further, we require our sampling procedure to
be invariant with respect to integer translates. This implies
that our signal representation must also be shift-invariant.
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Accordingly, we can specify our prototype function space V,
as in [11]

V={hz) =Y c(klp(z k), ce L} ®

keZ

where () is the generating function. The only restriction
on the choice of the generating function is that the integer
translates of ¢ define a Riesz basis! of V. This insures that V is
a well-defined (closed) subspace of Lo and that the process of
approximating a function g in V' makes sense. Practically, this
mathematical requirement translates into a relatively simple
condition on ¢(f), the Fourier transform of ¢(z).

Proposition 2: {p(x — k)}rez is a Riesz basis of V C Ly
if and only if A < 3, |3(f —1)|? < B, ae., where A and
B are two strictly positive constants.

A proof of this result is given in [11]. Note that the central
term in the inequality represents the Fourier transform of the
sampled autocorrelation sequence

a(k) = (p(2), p(z - k) "5 a(f) = 3 |o(f - )2 ©)

i€Z

Hence, the admissibility condition in Proposition 2 is equiva-
lent to the requirement that a(k) defines an invertible convo-
lution operator from I, into itself (cf. Proposition 1).

The class of functions that can be constructed by a gen-
erating kernel as in (5) is quite general. For instance, if we
choose ¢(z) = sinc(z), we get the subspace of functions in
L; that are bandlimited to f € {—1, 1]. This is precisely the
class of functions considered in Shannon’s Sampling Theorem
[1]. The corresponding frame constants in Proposition 2 are
A = B =1, which reflects the property that the sinc basis
is orthogonal.

Another choice is ¢(x) = 3"(z), where 8"(z) is Schoen-
berg’s central B-spline of order n [6], [7]. These kernels are
constructed recursively by repeated convolution of a B-spline
of order 0

BM(z) = 0% 7 (z) KT sincm (1) o)
where (3%(z) is the characteristic function in the interval
(-3,3). In this case, p(z) generates the basic space of
polynomial splines of order n. These functions are polynomials
of degree n within each interval [k — 1,k + 1),k € Z when
n is even, and [k,k + 1),k € Z when n is odd, with the
constraint that the segments are connected in a way that insures
the continuity of all derivatives up to order n — 1. For n = 0
(resp., n = 1), we have the simple family of piecewise constant
(resp. linear) functions.

Another special case occurs in the context of the wavelet
transform where ¢ may represent any valid scaling or wavelet
function. This connection is further discussed in [16].

By definition, a set {e;};cz of the Hilbert space H = span{e;}cz
is a Riesz basis if there exist two posmve constants A and B such that:

Ve€ly, A-lellf, < | Siez ei)e:||” < B-flell?,
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B. Equivalent Basis Functions

@(x) is not the only function that generates the generic
signal subspace V defined by (5). In fact, alternative sets
of shift-invariant basis functions can be constructed by suit-
able linear combination, a property that is expressed by the
following proposition.

Proposition 3 [11): Az) = 3> ,c,p(k)p(z — k) is an
equivalent generating function of V C Ly iff. p is an invertible
convolution operator from I, into [5.

In fact, the operator p can be chosen so that the basis
functions satisfy certain prescribed properties. The details of
such a construction can be found in [11]. A summarized
description of the main types of generating functions is given
in Table 1. For each set of basis functions, there is a unique
set of coefficients that characterizes the function h € V.
The selection of the most appropriate representation generally
depends the application.

A good illustration of these concepts is provided by the
example of polynomial splines [10], [17]. Some examples of
such generating functions are shown in Fig. 2. Note that all
the functions in solid lines are true interpolation kemels (i.e.,
they vanish for all integers except the origin where they take
the value one). The B-spline of order O (Fig. 2(a)) and the
sinc function (Fig. 2(d)) are also orthogonal.

Here, in addition to the basic expansion, we will use the
orthogonal representation of a function h € V

=Y ck)or =Y d(k)ox @®)

kez kez

with the short form convention: ¢, = ¢(z~k). The orthogonal

generating function is given by
+oo

> (a)V2(k)p(z — k) )

k=—o0

#(z) =

where (a)71/2 is the square-root convolution inverse (cf. (4))
of the autocorrelation sequence a defined by (6). The property
of the orthogonal representation that is the most important
for our purpose is that the Ly-norm of a signal b € V is
also equal to the ly-norm of its coefficients in the orthogonal
representation; i.e.

+oco
> d2(k).

k=-o00

RllL, = lldlle, = (10)

III. GENERAL SAMPLING THEORY

The orthogonal projection of a given function g € Ly on V
provides the optimal representation in the sense that the Lo-
approximation error is minimized. Moreover, this least squares
solution can be computed simply by prefiltering and sampling
[11]. The corresponding optimal prefilter ¢ € V is uniquely
specified and corresponds to the dual of the generating function
@ (cf. Table I).

In practice, the prefilter (or sampling kernel) typically
corresponds to the impulse response of the acquisition device.
In most cases, this operator is specified a priori and it is there-
fore usually not possible to obtain the least squares solution
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Fig. 2. Examples of polynomial spline basis functions. (a) B-spline of order 0, (b) B-spline of order 1, (c) cubic cardinal spline (solid line) and B-spline
(dashed line), (d) cardinal sinc function (n — +oc). The B-splines and cardinal splines for » = 0 and n = 1 are identical.
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Fig. 3. General sampling block diagram.

directly. For this reason, we will consider a more general
sampling procedure that allows an independent specification
of the sampling space.

A. Axiomatic Formulation

Our system is schematically represented in Fig. 3. It will
acquire uniformly spaced samples at the output of the acquisi-
tion device and produce an approximation § € V5 of the input
function g € L;. The relevant parameters are:

* p1(—z): the impulse response of acquisition device;

* Q: a linear deconvolution operator to be specified; and

* o(x): the generating function of the approximation space

Va.
We also introduce the notion of sampling space V; which is
generated by ;. Both V) and V5 are defined by an equation
equivalent to (5); o1 and ¢, both satisfy the admissibility
condition in Proposition 2.

To specify the signal approximation §, we also introduce
the following constraints on our system:

(i) linearity and shift-invariance for integer translates;
(ii) consistent measurements:

c1(k) = (g(z), pr(z - k)) = (3(x), o1(z — k)). (1D

The first condition is a standard one. The second indicates
that the signal g and its approximation § are essentially

equivalent, at least as far as the sensor is concerned. It also
implies that the system globally acts as a projector.

Before stating our main result, we define the correlation
sequences

(i, =1,2).

(12)
For i = 1 and j = 2, we get the sequence ai2(k) which
corresponds to the cross-correlation between the input and
output sampling functions.

Theorem 1: A unique solution satisfying constraints (7) and
(4t) exists iff a12(k) is an invertible convolution operator for [,
into [3. The solution is the projection of g on V5 perpendicular
to V;

aij(k) = (pi(x ~ k), 9;(2)) = {@ik, ©j0),

G=g12="Po1g=Y ca(k)pak
kez

where ca(k) = (a12)7! * c1(k).

An implicit requirement for this result is that the sequence
of measurements c; (k) is in lp. This condition is insured by
the admissibility constraint on the sampling function ;. This
latter constraint can be dropped provided that the input signal
g is sufficiently well behaved. An example in which ¢, is a
distribution is presented in Section V-B.

Theorem 1 can be applied directly to design of the correction
filter in the block diagram in Fig. 1(c). Specifically, by using
Poisson’s summation formula, we obtain a simple expression
for this filter in the Fourier domain

e 1
W)= L a -6l =
= : : - 5 (14)
Yiez &(f —D)o(f 1)
L]
where £(f) is the transfer function of the acquisition device
(&(z) = @1(—1)), and where (f) is the Fourier transform of

the generating function p(z) = @o(x).

13)
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Proof: Condition (i) implies that ¢c; = Qc;, where Q
is a linear shift-invariant operator. This operator is therefore
equivalent to a digital filter with an impulse response ¢. Hence,
the function § can be written as

+oo
@)= Y (gxe)(k)pslz — k).

k=—c0

(15)

If we reinject this function in our system, we get the following
measurements

c21(l) = (g(z), o1 (z — 1))
+00
= Y (axe)(k)(wa(a — k), o1(z — 1))
k=—c0
+o0
= 3 (gxcr)(k)ara(l - k).

k=—o00

(16)

By using this result together with condition (ii), we have the
equality

Cl(l) =Qq*aj2* C](l)

from which we deduce that ¢ = (a;5)"!.

Equation (15) defines a linear operator P: Ly, — V. To
prove that P is the projection on V; perpendicular to V;, we
need to show that P has the following properties

VheV,, Ph=h (17)
VgeL;, g—PgeVit (18)
Yee Vi*,  Pe=0. (19)

First, we represent the function h € V5 by its expansion

h=Y"cl)pa(z 1.

lez

Using (11) and (15), we can determine the expansion coeffi-
cients of Ph as follows

+oo +oo
Z (a12)71 * (h, p1(z — k) = Z (am)_l * c* arz(k)
k=—o00 k=—o0
= c(k)

which proves (17). At this point, we have established that P
is a projector on V5. Next, we consider the inner product

(9 — Pg,o1,k) = (9(2), p1(x — k)) — (g12(2), p1(z — k)).
Using (11) and (16) together with ¢ = (a;2)~", we find that
(9= g12,014) = e1(k) — (a12) "' xagp * c1(k) = 0

which proves that the projection error is orthogonal to V; (cf.
(18)). Finally, we can use the fact that

Ve € ‘/1-]_# (e', Wl,k) =0

which, together with (11) and (15), implies that (19) is satisfied
as well. O
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B. Discussion and Properties

The sampling procedure described by Theorem 1 turns out
to be quite general. We will now identify some of its key
properties:

1) Equivalent Biorthogonal Expansion: The output of the
system described by Theorem 1 can also be represented as

g= Z(Q; P12,k)02,k (20)
kez
where the equivalent sampling function is given by
Gra(z) = Y (a12) " (k)r(z — k). 2D

keZ

The corresponding basis functions are biorthogonal in the
sense that

(G125, P2,1) = ks (22)

The direct interpretation of this result is that the function po(z)
(or any of its integer shifts) can be reconstructed exactly if it
is injected into the system.

2) The Minimum Error Solution: If Vi = V, then § = Pyg
is the orthogonal projection of g onto V; this corresponds
to the case of the least squares sampling theory developed
in [11]. Therefore, the system provides the minimum error
approximation g € L, if and only if ¢; € V5. In this special
situation, the equivalent biorthogonal function (21) is precisely
the dual of the generating function described in the last row
of Table I, and the procedure is optimal. Otherwise, we will
obtain an approximate solution, the quality of which depends
on the “similarity” of the functions spaces Vi and V5. A
detailed investigation of this issue will be given in Section IV.

3) The Connection with Shannon’s Theory: We have al-
ready ‘seen that the functions included in the approximation
space V, are left unchanged (cf. (17)). An. equivalent
formulation of this property is that all functions h € V,
can be reconstructed without any loss from their sampled
measured values. This statement is very similar to Shannon’s
original sampling theorem [1]; the main distinction is that we
are now talking of measured values instead of signal samples.
The class of functions considered here is also more general
than the family of bandlimited signals.

4) Signal Approximation in the Sampling Space: The ap-
proximation of function g given by (13) contains all the
information necessary to compute P; g, the projection of g on
V1. Specifically, we have that

Vg € Ly, Prg = PPy g
= Z(au)_l * a1 * ca(k)o1k

keZ

(23)

where cy(k) are the expansion coefficients of gio = P 1g in
(13). The stability of the inverse filter (a;;)~! is guaranteed
by the fact that ¢; satisfies the admissibility condition.

5) Extension to Higher Dimensions: The generalization of
these results for higher dimensional signals such as images
should not present any major difficulty. This extension is
straightforward if both the sampling and generating functions
are separable; i.e., they can be obtained from the product of
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1-D functions defined for each index variable. In this case, all
transformations are separable and the linear operator Q can be
implemented by successive 1-D filtering along the coordinates.

C. Input/Output Coherence Measures

An important practical issue is how good the computable
approximation P, g is compared to the optimal least squares
solution Ppg. In order to provide a quantitative answer to this
question, we now define an input-output coherence function
that measures the “similarity” between the functions spaces
Vi and V5.

Our initial assumptions on ¢; and ¢, insure that both
aj; and agy are invertible convolution operators. It is thus
possible to construct the orthogonal sampling functions ¢, (z)
and ¢, (z) defined by (9). We then compute a normalized form
of the cross-correlation sequence aq2(k) which is given by

r12(k) = (p1(z ~k), d2(2)) = (a11) "2 xa12%(azz) "2 (k).

(24)
Note that the sequence r12(k) also provides the orthogonal
coefficients of the projection of ¢; on V,. Taking the Fourier
transform, we obtain

a12(f)
a11(f)a2a(f)
To get a measure that is symmetrical with respect to the indices

1 and 2, we take the modulus of 712(f). This leads us to the
definition of the spectral coherence function

f12(f) = (25)

Gt - K)galf - k)[

T e - DS ] - R

(26)
which has been expressed as a function of the Fourier trans-
forms of the kemels ¢; and ¢, using Poisson’s summation
formula. Note that this quantity takes the form of a correlation
coefficient between the spectral components of ¢; and ¢,.
Some of the relevant properties of this function are listed in
the following theorem:

Theorem 2: 1f the generating functions ¢; and ¢ satisfy
the admissibility condition in Proposition 2, then the spec-
tral coherence function defined by (26) has the following
properties:

(i) |#12(f)| is periodic and is independent of a particular
choice of generating functions for the subspaces V; and
Va.

(i) |F12(f)| < 1,Yf € R. Moreover, |712(f) = 1,Vf € R
if and only if V; = V5.

(iii) If in addition ¢, and ¢, are in L and their Fourier trans-
forms both decay like O(|f|™"),r > 1, then |F12(f)| is
continuous.

[F12(f)]

The concept of equivalent generating functions is discussed
in Section II-B. The interpretation of property (ii) in this
context is that |#12(f)| is invariant to changes of coordinate
system.

The spectral coherence function can be used to compute an
average measure of coherence between the subspaces V; and
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Vo

1 1/2
0< ( / ffu(f)l"’df) el <1 @D
0

where the central equality is provided by Parseval’s identity.
In particular, it has the property that it is equal to one if and
only if V) = V5, in which case the approximations g, ; and
g2 are equivalent (cf. Condition (ii) in Theorem 2). Note that
lr12]| also provides the Lo-norm of the projection of ¢; on
Vo (cf. (24)).

D. Proof of Theorem 2

Property (i): The periodicity of |#12(f)| follows from
the periodicity of its individual terms. The invariance property
can be verified simply by computing the spectral coherence
for generalized generating functions \;(z) and As(z) of the
type defined in Proposition 3.

Property (ii): We write Schwarz inequality for a fixed
value of f

“+oc

>

k=—00

P1(f = k)o(f — k)

+o0 +o0
< ( > |¢1<f—k>|2>( > |</32(f—k)|2)
k=—oc k=—o0c

which directly implies that |F12(f)| < 1. The equality holds
for some frequency f, if and only if there exists a constant p
(which depends on f,) such that ¢1(fo—k) = p(fo)P2(fo—k).
The condition Vf € [0,1],|712(f)| = 1 is therefore equivalent
to

Vk € Z,01(f — k) = p(f)g2(f — k)
from which we conclude that p(f) = #(f — k),Vk € Z. This
equation also implies that

+o0

Y e - k)

k=—o0

o0

=P D 1ea(f - RB)2

k=—c0

Since 7 and @, both satisfy the conditions in Proposition
2 with frame constants (A;, B;) and (As, Bs), we get the
following inequality

0 < (A1/By) < IB(f)I? < (B1/A»)

which proves that p( f) is the Fourier transform of an invertible
convolution operator on [; which we denote by p (cf. Proposi-
tion 1). Hence, we conclude that ¢ (x) = 3, ; p(I)p2(z —1)
and that the functions ¢; and ¢, generate the same subspace
(cf. Proposition 3).

Property (iii). By the Riemann-Lebesgue Lemma,
@1(f) and 2(f) are both continuous. If these functions also
decay like O(|f|™") for some r > 1/2, then the series

ai;(f) < D 165(f = B)gs(f = k)]

keZ

oo
< const Y [k[7",i,5 = 1,2,
k=1



UNSER AND ALDROUBI: A GENERAL SAMPLING THEORY FOR NONIDEAL ACQUISITION DEVICES

are absolutely convergent independently of f. Thus, these
series are continuous on {0, 1]. Since the terms in the de-
nominator of (26) are nonvanishing, we conclude that |#12(f)|
is continuous as well.

IV. SPECTRAL COHERENCE AND ERROR ESTIMATES

It is clear from the previous results that if the acquisition
device is such that ¢; € V, then the procedure described by
Theorem 1 will indeed provide us with the minimum error
approximation. Otherwise, we will obtain an approximate so-
lution. In this section, we will derive a theoretical performance
bound that corresponds to a worst case scenario. In order to
state our main result (Theorem 3), we need to introduce several
geometrical quantities that can be derived from the spectral
coherence function defined above.

A. An Analogue of the Geometric Notion of Angle

Given two closed subspaces V, and Vj of a Hilbert space
H, we define the quantity

(| Poull
weVo\ {0} ||ull

R(V,, V) = cos(fr) = (28)
where P is the projection operator of H on V. This quantity
provides a worst case estimate of the relative length reduction
when a vector of V,, is projected on V}. Using the analogy with
conventional Euclidean geometry, we interpret the quantity 5
as the largest angle between the subspaces V, and V. We note,
however, that R(V,,V}) is not necessarily symmetrical with
respect to the indices a and b.

In order to determine this quantity for the signal spaces V;
and V5, we use the orthogonal representations of a function
g1 and its projection P,g,

g1(z) = Z di(k)d1 k (29)
kez

Pygi(z) = Z dia(k)da k. (30)
kez

Using the linearity of the projection operator P, together with
(24), we find that

Pagi(z) = Zdl(l)P2¢>1,z

leZ

=D )Y ($rndo)bak = Y 1z * da (K)o

lez kezZ kez

It follows that the coefficients of Pyg, in (30) are related to
those in (29) by a simple convolution
dlz(k) = T12 * dl(k) (31)

where the operator r;2 is the normalized cross-correlation
sequence defined by (24). This equation corresponds to a
product in the Fourier domain. Therefore, using (10) together
with Parseval’s identity, we get that

1 1
1Pagal? = / \dua(f)2df = / (o ()Pl ()[2df

2 1
> <essfér[})f:l] |f12(f)|) /0 |d1(f)|2df (32)
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1 ~
loall? = /0 \dy(F)12df. (33)

The next step is to minimize the ratio of these two quantities
over all possible d;’s, which yields

|1 P2g1 |
A

= :=ess inf |7 . 34
P12 felf(l)’%]|7‘12(f)| (34)

7 EIVL\{O}
This lower bound is obtained by taking the essential infimum
of the spectral coherence function defined by (26). If the
requirements for condition (iii) in Theorem 2 are satisfied (i.c.,
|#12(f)| is continuous in the interval [0, 1]), then the essential
infimum reduces to the minimum of this function. We can also
restrict the analysis to the interval [0, 1/2] since this function is
symmetrical. Note that the bound given by (34) is symmetrical
with respect to the indices 1 and 2 since |F12(f)| = |F21(f)|-
Accordingly, we have that R(V;, V) = R(V,, Vi) = pia,
where pi12 is entirely specified by the kernels ; and o
through (26) and (34).

B. Error Bound

An answer to the question of how close the approximation
given by Theorem 1 is compared to the optimal least squares
solution is provided by the following result.

Theorem 3: Let V; and V; be two closed subspaces of L,
generated by 1 and o5, respectively. Then, for any g € Lo,

ISSHP{HQ—QZHH}SL: i 1 _
gel, | Ilg — g2l p1z  essinfrepo1/9|712(f)]
(35)

where g211 = PZng and g2 = Pzg and where |’f‘12(f)| is
given by (26).

It is important to keep in mind that the right hand side in
(35) corresponds to the worst possible case and that this bound
may not necessarily reflect what really happens in practice. A
more realistic estimate of the error ratio may be ||r12]|~! where
|lr12]| is the global coherence measure defined by (27). This
latter measure is an average performance index in the sense
that it weights to all frequency components equally. It also
corresponds to the case of an impulse or white noise signal.
Further, we have the property that ||r;2|| = 1 if and only if
p1z = L

As a corollary of Theorem 3, we get a measure of the
maximum discrepancy between g, and go, 1

92 — 921
sup loz = gzll _ V1-rla

= (36)
g—g21evir{oy llg = g211l

In particular, we note that if p;» = 1 (or, equivalently,
lri2]l = 1) then ||g2 — g211]| = O, which means that the
corresponding approximations g1 and g are equivalent.

C. Proof of Theorem 3 and Related Results

The proof of Theorem 3 uses an argument that is almost
purely geometrical and can be understood intuitively from
the schematic representation in Fig. 4. We start with some
preliminary results and definitions for the geometry of Hilbert
spaces in general.
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Fig. 4. Graphical representations of the various approximations and errors
in the simplified case of one-component signal spaces.

Proposition 4: Let V be a closed subspace of the Hilbert
space H. Then, for all z € H

&y

= 37
wevi{oy Jull

where P is the orthogonal projection of H onto V.
Given two closed subspaces V, and Vj, of the Hilbert space
H, we define the quantity

| Pyl
weva\{o} lull

where P, is the orthogonal projection of H onto V. Again,
using the analogy with Euclidean geometry, we interpret fg
as the small angle between the subspaces V, and Vj. Unlike
the large angle defined by (28), the small angle is always
symmetrical with respect to the indices a and b:

Proposition 5:

3(Va, Vo) = cos(fs) =

(3%

A i

Va\{o
ueV\{0

S(Vaallb) = S(‘/bvva) =

The proof of this result directly follows from the application
of Proposition 4 with (V =V, and z € V;) and (V = V; and
z € V,), respectively.

We also need the following Lemma which relates the large
angle between two subspaces to the angle between their
orthogonal complements.

Lemma 1: Let V, and Vj be two closed subspaces of the
Hilbert space H. Then

R(Vav Vb) = R(VbJ_ﬂ ‘/L_L)

where the quantity R is defined by (28).
Proof of Proposition 4: Using the Projection Theorem,
we have that

(39)

(z,u) = (Pz + Az, u)
where Pz € V and Az € V1. Clearly, since the vectors
u € V and Az € V- are orthogonal, we get
(z,u) _ (Pz,u)
lull ]
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Equation (37) then directly follows from the Schwarz inequal-
ity. Note that the maximum is attained when the unit vector
u/||u|| is precisely in the direction of Pz. O

Proof of Lemma 1: Let us consider a vector z € H\{0},
which we decompose as

z=Pz+(I-P)z

where P is the orthogonal projection of H onto a closed
subspace V. From the properties of projectors, we have that
Pz € V and (I — P)z € V*. Hence, we can use the
Pythagorean relation to show that

I =Pzl _

B e (“uiTl“)z‘

Clearly, maximizing the left hand side in this equation is
equivalent to minimizing the last term inside the square root,
and vice versa. By taking z € V,\{0} and P = P, in (40),
it is not difficult to show that

=Pzl _ gy, vy TR,

IEd]
@én
Similarly, by taking z € V;*\{0} and P = P, in (40), we
obtain

ing M= Fa)zll R(ViH VA =4/1 - 82V, V).
evivfoy |2l

42)

From Proposition 5, we know that S(V;:,V,) = S(V,, V;b).
Hence, we can substitute the right hand side of (41) into (42),
which finally yields (39) since R(V,,V}) is positive. g
Proof of Theorem 3: We first define the following errors

(40)

sup
zeVh\{0}

€211 =9211— ¢
€2=0g2—4g
Ae=g311—- g2

43)

where €317 € Vi, ey € Vi~ and Ae € Vs, respectively. A
simplified graphical representation of these quantities is given
in Fig. 4. Clearly, ez, 1 = Ae+ ey, where Ae and e, are both
orthogonal. It follows from the Projection Theorem that

Ae = Pz@z_]_l (44)

ez = (I — Py)ep s (45)

which is also equivalent to say that e; is the orthogonal
projection of ep;; € Vi* on Vi, Hence, we have that

inf lleall _ I = Po)ea|
a1 €Vi\{0} llezt1ll  eannevitnioy  lezial]
= R(Vi" V5")
By using Lemma 1, we get
”eZH _ R(VQ, ‘/1)

e211€VH\{0} llezr1l] B

which, together with (34), yields the left hand side inequality
in (35). The right hand side inequality simply follows from
the fact that ||jg — Pag|| < |lg — ||, Vh € Va. a
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To establish the corollary (36), we consider (44) and note
that

Al _

e211€VA\{0} leausll

S(*Va) = 5(va. Vi)

where the right hand side follows from Proposition 5. The
result then directly follows from (41) by taking V, = V5 and
P, = P,.

V. EXAMPLES OF APPLICATIONS

We now present some examples that illustrate the theory
and concepts discussed in the previous sections.

A. The Basic Deconvolution Problem

We first show that the present theory provides an alternative
formulation of the basic deconvolution (or inverse filtering)
problem. For this purpose, we consider an acquisition device
with an impulse response £(z) = ;(—z) and assume that
the reconstruction is bandlimited with @o(z) = sinc(z). The
discrete Fourier transform of the correction filter specified by

i) = 5

Theorem 1 is given by
11
P i f € I:__v_:|'
¢1(f) 2°2

Note that this result is identical to the traditional inverse filter
solution [18], [19]. Clearly, this operator is stable provided that
the frequency response of the acquisition device £ (H)y=91(H)
has no zeros in the frequency interval [—3, 1].

If ¢, satisfies the admissibility condition, we can compute
the spectral coherence function

A () 11
ITIQ(f)l: ’ fe e
Vi lon(f - P 23]
“47)

Note that this formula is identical to that of the frequency
response of the orthogonalized sampling function ¢; defined
by (9). If ¢, is bandlimited (i.e., ¢; € V) then [F12() =1,
in which case a perfect signal recovery is possible. Otherwise,
our theoretical results indicate that the ideal bandlimited signal
approximation g can, in general, not be obtained exactly from
the samples, unless the input signal g is itself bandlimited (cf.
Property (17)).

(46)

B. Inter;polative Signal Model

In the absence of a priori knowledge, the simplest choice
for p1(z) is the Dirac delta function 6(z) (ideal sampling
device). In this case, ; is an element of S’ (the space
of tempered distributions), and is no longer an admissible
generating function in the sense defined by Proposition 2. A
sufficient condition for ¢; to be in I3 is that the input signal
g is continuous and decays sufficiently fast (e.g., g(z) =
O(lz]™",r > 3).

The appropriate correction filter then corresponds to the
convolution inverse of the sampled generating function; i.e.

if) = .

e — 48
Sz 2l =) “9)
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Fig. 5. Spectral coherence function |712(f)| between 1 (z) = sinc(z) and
p2(x) = B™(z), for n = 0, 1, and 3.

Interestingly enough, this solution leads to a signal model
that provides a perfect interpolation of our discrete input
signal; i.e., §(«)|z=+ = g(k). The system is therefore globally
equivalent to the block diagram in Fig. 1(a). The impulse
response of this interpolator is precisely the cardinal function
n(z) that is described in Table I.

C. Bandlimited Acquisition and Spline Reconstruction

Another interesting combination is ¢1(z) = sinc(z) and
@2(x) = [™(z), which corresponds to an ideal acquisition
device and a signal approximation using polynomial splines
of order n. Using (7) and (26), it is not difficult to show that
the corresponding spectral coherence function is given by

s+l

sinc™*(f) , fe [17 l}
\/Z::ioo sinc2n+2(f _ k) 2'2

49

The right hand side term in this equation is also identical to
the Fourier transform of the orthogonal spline basis functions
considered in [10]. The graph of this function for different
values of n is given in Fig. 5. Table II provides the cor-
responding values of the worst case and average coherence
measures py3 and ||r12]|. These results clearly indicate that the
quality of the approximation improves with increasing order
n. This tendency, however, is not reflected by the value of the
worst case bound, since the minimum of #15(f), which occurs
at f = 1/2, remains approximately constant, irrespective of
the value of n. We can use Theorem 3 in [10] to obtain the
asymptotic behavior of 715(f) as the order of the spline tends
to infinity

f12(f) =

11
Jim ey ={, by TS CRY.

This convergence result implies that

L 1/2
i { ([ 1trriar) } = Jim_{lrialh} =1,
(51

This is a way of indicating that the subspaces of bandlimited
and polynomial spline functions are essentially equivalent
as the order of the spline goes to infinity. This property is
consistent with a number of theoretical results reported earlier
(51, [20], [21).

) (50)
2
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Fig. 6. Frequency response of the digital correction filter for a piecewise
constant signal reconstruction.

TABLE 11
WORST CASE AND AVERAGE COHERENCE MEASURES
BETWEEN ¢ (x) = sinc(x) AND p2(x) = 37 (r),
AS A FUNCTION OF THE SPLINE ORDER 7t

n Pia = min [, () bal,

0 0.636 0.880

1 0.702 0.955
2 0.707 0.971

3 0.707 0.978

4 0.707 0.983

5 0.707 0.986

A potential application of these results is the design of
correction filters for improving the rendition of digital images
on a display device (e.g., video monitor, film recorder, etc.).
We will make the standard assumption that the digital images
were acquired using an acquisition procedure that conforms
with Shannon’s sampling theory and consider the case of a
display device that use piecewise constant interpolation. The
corresponding basis functions ¢;(z,y) = sinc(z)sinc(y) and
wa(z,y) = B%=)B°(y) are separable in the x and y coor-
dinates (z and y represent the horizontal and vertical spatial
dimension, respectively). We can therefore use our theory to
derive a separable correction filter that is implemented by
successive 1-D processing along the rows and the columns of
the image. We find that the Fourier transform of the resulting
1-D digital filter is

N 1 11
Q(f)=m»f€ [—575} (52)

This function is plotted in Fig. 6. The effect of this filter is
to enhance higher spatial frequencies, which corresponds to a
special form of image sharpening.

D. Gaussian-Like Acquisition Device

As our last example, we consider the case of an acquisition
device that has a Gaussian-like response. To simplify matters,
we assume that the impulse response can be represented by
a B-spline of order p: ¢1(x) = AP(x), which is a good
approximation of a Gaussian, especially for higher order
splines. Based on an asymptotic result in [22], we have the
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TABLE III
WORST CASE AND AVERAGE COHERENCE MEASURES BETWEEN i1 () = 3P(x)
AND y2(x) = 33(x), (CUBIC SPLINE) AS A FUNCTION OF THE SPLINE ORDER P

P s, p1; = min [£,(FX kol
2 0.5 0.995 0.999
3 0.577 1 1
0.645 0.997 0.999
5 0.707 0.991 0.998
6 0.764 0.983 0.997
7 0.816 0.975 0.996
8 0.866 0.967 0.995
9 0.913 0.958 0.994

following Gaussian approximation

1 z2 _ [{(p+1)
Vemo, xp (—27‘5) o= 12 3

which improves rapidly for increasing values of p (for p = 3,
the approximation error is already less than 1%).

We also choose to represent our signals using splines of
order n with pa(z) = p"(z). The corresponding cross-
correlation sequence is

ara(k) = BPHHL(k) .= Ptk

ph(z) =

(54)

The optimal correction operator ¢ = (b™)~! is the so-called
direct B-spline filter of order m = p + n + 1, which has been
shown to be stable for any value of m [5]. This filter can be
implemented using the fast recursive algorithm described in
[23].

The spectral coherence function for this example is given by

BI*TH())
VB (H)B()

where B7(f) denotes the Fourier transform of a discrete B-
spline of order n. The corresponding worst case and average
performance measures for n = 3 (cubic splines) and various
values of p are given in Table III. Obviously, for n = p = 3,
V1 = V5 and we get the ideal least squares solution. For higher
values of p, there is a slight but progressive degradation.

f19(f) =

(55)

VI. CONCLUSION

We have presented a sampling procedure that allows a rather
general specification of the approximation space and also takes
into account the characteristics of the acquisition device. The
approximation space is usually determined by the digital-to-
analog conversion algorithm; for example, zero order splines
in the case of a piecewise constant interpolation. The only
addition to the standard procedure is a digital correction filter.
This technique should therefore be applicable to most practical
situations.

In this study, sampling has been considered from the point
of view of signal approximation. No special constraint, such
as bandlimitedness, is imposed on the input signal. OQur only
requirement is that output of the acquisition device remains
unchanged if the signal approximation is re-injected into the
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system (consistent measurements). The present formulation is
general in the sense that it includes least squares approximation
as a particular case. Moreover, it provides a restatement of
Shannon’s sampling theorem for real measured signal values;
Le., samples obtained after convolution with the impulse
response of the sensor. Another important aspect of this theory
is the issue of performance. The spectral coherence function
has been introduced precisely for that purpose; it can be used to
obtain a quantitative comparison with the optimal least squares
solution.

One may be tempted to view the present algorithm as a
special type of inverse filtering or deconvolution technique.
The main difference with those methods is that our approach
combines the task of signal approximation and correction for
sensor distortions. Moreover, the resulting algorithm is digital
although the problem is initially formulated in the continuous
signal domain. In this sense, the present formulation provides
a proper discretization of an analog deconvolution problem.

Finally, there are several related problems that could be
investigated in the future. First, the present scheme does not
take into account measurement noise. The problem of additive
noise could in principle be dealt with using an approach
similar to the Wiener filter [8]. Second, there are cases in
which the signal recovery problem may be ill-posed; i.c., it
may be difficult (or even impossible) to compute the inverse
discrete convolution operator (a5) . Generalized inverse or
regularization techniques could be developed to deal with such
instabilities.
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