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Abstract 

This paper first describes an algorithm that finds the approximate finite impulse response (FIR) inverse of an FIR filter 
by minimizing the inversion (or reconstruction) error constrained to zero-bias. The generalization of the inverse filtering 
problem in the two channel case is the design of perfect reconstruction filter banks that use critical sampling. These 
considerations lead to the derivation of an algorithm that provides a minimum error and unbiased F IR /FIR  approxima- 
tion of a perfect reconstruction I IR/FIR (or FIR/IIR) filter bank. The one-channel algorithm is illustrated with the design 
of an FIR filter to compute the B-spline coefficients for cubic spline signal interpolation. The two-channel algorithm is 
applied to the design of a F IR /FIR  filter bank that implements the cubic B-spline wavelet transform. Finally, we consider 
a modification of this technique for the design of modulated-filter banks, which are better suited for subband coding. 

Zusammenfassung 

Dieser Artikel beschreibt zunfichst einen Algorithmus, der n/iherungsweise die FIR-Inverse eines FIR-Filters durch 
Minimierung des Inversions- (oder Rekonstruktions-) Fehlers unter der Nebenbedingung eines verschwindenden 
mittleren Fehlers (Bias) findet. Die Verallgemeinerung des inversen Filterproblems im Zweikanal-Fall ist der Entwurf 
einer Filterbank mit perfekter Rekonstruktion, die kritische Abtastung ben/itzt. Diese Oberlegungen ftihren zur 
Ableitung eines Algorithmus, der einen minimalen Fehler und eine biasfreie F IR/FIR  N/iherung einer perfekten I IR/FIR 
(oder FIR/IIR) Rekonstruktionsfilterbank liefert. Der Einkanal-Algorithmus wird mit dem Entwurf eines FIR-Filters 
veranschaulicht, um die B-Spline Koeffizienten fiir die kubische Spline-Signalinterpolation zu berechnen. Der 
Zweikanal-Algorithmus wird zum Entwurf einer F IR/FIR  Filterbank, die die kubische B-Spline Wavelet-Transforma- 
tion implementiert, angewendet. Zum SchluB wird eine Modifikation dieser Technik f/Jr den Entwurf von modulierten 
Filterb/inken betrachtet, die besser geeignet sind f/ir Teilband-Codierung. 

R~um~ 

Nous pr~sentons d 'abord un algorithme qui calcule une approximation fi r~ponse impulsionnelle finie (FIR) de 
l'inverse d'un filtre FIR. Cette m6thode se base sur la minimisation de l'erreur de reconstruction sous la contrainte d'un 
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biais nul. La grnrralisation du problrme d'inversion pour deux canaux est la synthrse de bancs de filtres ~t reconstruction 
parfaite. Ceci mrne 5. la description d'un algorithme pour la determination d'une approximation FIR/FIR aux moindres 
carrrs d'un banc de filtres IIR/FIR (ou FIR/IIR) h reconstruction parfaite. Le premier algorithme est illustr6 avec la 
synthrse d'un filtre FIR permettant le calcul directe des coefficients B-splines pour une interpolation du signal par splines 
cubiques. Le second algorithme est appliqu6 ~ la synthrse d'un banc de filtres FIR/FIR permettant le calcul rapide de la 
transformation d'ondelettes de type B-spline cubique. Finalement, nous prrsentons une variation de cette mrthode pour 
la synthrse de banc de filtres modulrs qui sont plus approprirs pour le codage en sous-bandes. 

Keywords: Least-squares design; Inverse filter; Perfect reconstruction filler bank; Wavelet transform; Spline functions; 
Cubic splines; B-splines; Gabor transform; Interpolation 

1. Introduction 

There are many signal transformations that can 
be formulated in terms of shift-invariant convolu- 
tion operators. It is often of interest to perform, or 
at least approximate, the inverse transformation. 
This task involves the design of inverse or pseudo- 
inverse filters. In the one-channel case, this problem 
is equivalent to designing a deconvolution filter, 
which is especially relevant for signal restoration. 
When the initial operator has a finite impulse re- 
sponse (FIR), the inverse filter that allows signal 
recovery is generally recursive which may lead to 
instabilities and limit cycles. To avoid such prob- 
lems, Gfilboy and Geqkinli [9] have proposed us- 
ing an FIR filter approximation derived from the 
optimization of a least-squares criterion; a similar 
algorithm has also been described in [17]. The use 
of inverse filters can also be useful in other applica- 
tions, for example, polynomial spline interpolation 
for which this technique provides an efficient way 
to solve the system of banded equations that deter- 
mine the B-spline coefficients [21]. 

In the two (or more) channel case, this basic 
inversion problem is closely related to the design of 
multirate filter banks that permit perfect recon- 
struction [24, 26]. An example of a system that uses 
critical sampling and allows perfect signal recovery 
is the quadrature mirror filter (QMF) bank [3, 24]. 
Such filter banks can be applied hierarchically to 
produce subband signal decompositions. The ap- 
plication of this concept to image coding has led to 
very promising results [1, 19, 25,28]. More re- 
cently, Mallat showed that the same computational 
technique could be used to implement the wavelet 
transform [12, 13]. This latter representation is the 
expansion of a signal in terms of hierarchical basis 

functions obtained by translation and dilation of 
a single template: the wavelet function [4, 13, 14]. 

In this paper, we investigate the special case in 
which the transformations to be inverted involve 
given FIR filters. One practical problem in this 
situation is that the corresponding inverse oper- 
ators generally have an infinite impulse response 
(IIR). Our approach is to use instead a truncated 
FIR approximation with a prescribed error toler- 
ance. For this purpose, we apply a general design 
principle based on the minimization of the recon- 
struction error. One variation of this procedure is 
a constrained optimization that demands perfect 
reconstruction of the DC signal component (zero- 
bias constraint). In the one-channel case, this for- 
mulation yields a matrix algorithm for the FIR 
approximation of an all-pole filter. In the two- 
channel case, it results in a least-squares design 
technique for perfect reconstruction filter banks; 
this procedure is applicable whenever the analysis 
(or synthesis) filters are certain specified FIR ker- 
nels. This direct method provides an alternative to 
the iterative LMS-based algorithm recently pro- 
posed by Paillard et al. [15]; it also offers the 
flexibility of adding constraints to the system. The 
same computational techniques may also be useful 
in designing fast algorithms for the determination 
of the expansion coefficients of a continuous signal 
representation in terms of shifted basis functions of 
compact support. Such representations are fre- 
quently used for signal interpolation [10, 16, 21]; 
they occur as well in the context of the wavelet 
transform [22, 27]. 

The presentation is organized as follows. Sec- 
tion 2 provides a precise statement of the perfect 
reconstruction (PR) problem in the one-channel 
(inverse filter) and two-channel case. Section 3 is 
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concerned with the derivation of a constrained 
least-squares procedure for designing an FIR filter 
to approximate the inverse of a given convolution 
kernel. Section 4 extends this technique to the two- 
channel case and presents a general design tech- 
nique for a minimum reconstruction error 
FIR/FIR filter bank. Section 5 presents a few ex- 
perimental examples and compares the proposed 
approaches with a reference technique that uses 
simple truncation of the theoretical impulse re- 
sponses. The one-channel algorithm is applied to 
the design of an inverse filter for efficient implemen- 
tation of the direct cubic spline transform [21], The 
two-channel algorithm is illustrated with the design 
of a fast algorithm for the cubic B-spline wavelet 
transform [2, 23]. It is worth noting that the corres- 
ponding decomposition provides a reversible 
multiresolution signal analysis that is close to opti- 
mal in terms of its time/frequency localization [22]. 
This representation is in many respects similar to 
a hierarchical or wavelet-like Gabor  transform 
[5-7].  

1.1. Notations and operators 

A signal {a(k)}k~Z is characterized by its z-trans- 
form, which we denote by a capital letter 

+oo 
A(z) = k=~ oo a(k )z-k" (1.1) 

This zcorrespondence is also expressed as: 
a(k) ,  , A(z). The unit impulse at k = i is repres- 
ented by the symbol 

1, k = i, ~ z_i. 
hi(k) = 0, otherwise, (1.2) 

The down-sampling (or decimation) by a factor of 
two is defined by 

[a]J,2(k) = a(2k) ~ z , l(A(zl/2) + A(-- zl/2)). 

(1.3) 

The complementary operation is the up-sampling 
by a factor of two 

~a(k/2), k even, z , A(z2). (1.4) 
[a]r2(k) = [0 ,  k odd, ' 

Fig. 1. Block diagram for the inverse filtering problem 

2. Statement of the problem 

2.1. Inverse filter 

Let us consider the block diagram in Fig. 1, 
where the convolution operator 9 is an FIR filter of 
length M = k2 - kl + 1: 

k2 
9 ( k ) ,  z , G(z)= ~ 9(k)z -k. (2.1) 

k = k  1 

We seek an operator h that compensates exactly for 
the effect of g. This leads to the constraint: 

V k e Z ,  h*g(k)  = 6o(k), (2.2) 

where 6o(k ) is the unit impulse at the origin (cf. 
(1.2)). A filter satisfying (2.3) is referred to as the 
inverse filter of # and is characterized by 

h(k) = (9)-~(k) ~ z , H(z) = 1/G(z). (2.3) 

The operator is stable provided that the complex 
roots of G(z) are not on the unit circle. In general 
the inverse filter has an IIR. In Section 3, we will 
consider the problem of finding an FIR approxima- 
tion of (O)-~ that satisfies (2.2) in the least-square 
sense. 

2.2. IIR/FIR perfect reconstruction filter banks 

Fig. 2 represents the block diagram of a standard 
two-channel PR filter bank. Note that two delays 
have been included in the definition of the filters in 
the lower branch in order to simplify some of the 
notation. Here, we will consider the special situ- 
ation in which the reconstruction (or synthesis) 
filters are two FIR filters given a priori: 

k2~ 
gi(k) ~ z '  Gi(z)= ~ gi(k)z -k, i =  1, 2. (2.4) 

k = kl~ 

By expressing the effect of down-sampling and up- 
sampling in the z-transform domain (cf. (1.3) and 
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I I I I 
Analysis Synthesis 

Fig. 2. Block diagram for the two channel perfect reconstruc- 
tion problem. 

H1 (z) = - -  2G2 ( - -  z ) / G l  2 (z), 

1-12 (z) = -- 2C,1 ( - -  z) /C, ,  2 (z). 
(2.8) 

The filters Hi(z) and H 2 ( z  ) a r e  formed from the 
ratio of two polynomials, and therefore their im- 
pulse responses are generally infinite (IIR). The 
problem that will be studied in Section 4 is to 
obtain good FIR approximations of both hi and 
h2 for a given set of FIR reconstruction or synthesis 
filters 91 and g2. 

(1.4)), we get the following input/output relation: 

B(z) = al(z)½(A(z)Hl(z) + A ( - z ) H l ( - Z )  

+ Gz(z)½(a(z)Hz(z) - A(-z)Hz(z)), 

where A(z) and B(z) denote the z-transform of the 
input and output signal, respectively. Regrouping 
the terms, we get 

B(z) = a(z)½(Hl(Z)Gx(z) + H2(z)G2(z)) 

+ A( - z )½(Hx( - z )G, ( z ) -  H2(-z)G2(z)) 

From this last equation, we can easily obtain the 
conditions for a perfect reconstruction (i.e. the 
global output of the system is equal to its input) 

H1 (z) G1 (z) + H2 (z) G2 (z) = 2, 
(2.5) 

Hl(-z)Gl(z)  - H 2 ( - z ) G 2 ( 2 )  = 0 ,  

which are well known in multirate filter bank the- 
ory [24, 26]. We note that the modulated version of 
the last equation, obtained by replacing z by - z ,  
must also be satisfied. This property implies that 
perfect reconstruction is also achieved when the 
location of the analysis and synthesis filters are 
interchanged. Therefore, we can write the system of 
equations in terms of the unknowns Hi(z) and 
nz(z), 

[ G,(z) G2(z )1VHl ( z ) l=[201"  (2.6) 
Gl(-Z) - Gi(--z)JLHB(z)J 

Assuming that the polynomial in z corresponding 
to the determinant 

G,2(z) = - (G,(z)Gz(-Z) + Gl(-Z)G2(z)) (2.7) 

has no complex root on the unit circle, the solution 
is given by 

2.3. Approximation errors 

When an FIR approximation h of the inverse 
filter (g)- 1 is used, the inversion criterion (2.2) can- 
not be satisfied perfectly. This discrepancy can be 
measured by the error criterion: 

So = , /  ~o~ [h* g(k) - 6o(k)]2; (2.9) 
~/ k = - m 

e0 = 0 if and only if h(k) = (O)-l(k). A systematic 
error is introduced when the zero frequency gain of 
h(k) is not precisely equal to the reciprocal of that 
of o(k). This type of error - also referred to as bias 
- is defined as 

biaso = I1 - H(z)G(z)lz= 11, (2.10) 

where the zero frequency (i.e. z = 1) gains H(1) and 
G(1) also correspond to the summation of the cor- 
responding impulse responses over the integers. 
The bias distortion will affect the DC component of 
the signal and can therefore account for a very large 
fraction of the total energy. This is especially true in 
image processing applications where the pixel 
values are positive by definition; this implies that 
the average gray level value is always greater than 
the standard deviation of the signal. Therefore, one 
should seek a design that reduces the bias insofar as 
possible. 

For  the PR filter bank, an FIR approximation 
will introduce two types of error. The first is the 
distortion error: 

e, = , /  ~oo ½[h, *g,(k) + hE*g2(k)- 26o(k)] 2, 
~/ k =  - m 

(2.11) 
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which expresses the fact that the global system 
response is not precisely an identity. The second is 
the aliasing error introduced by the sampling 
process: 

/+Z° 
~ l k  = - ov 

where the notation ~(k) = ( -1)kg(k)  refers to the 
modulation of a signal. We note that the PR 
constraints (2.6) are equivalent to specifying an 
undistorted (e~ = 0) and alias-free reconstruction 
(~2 = 0). 

In most cases, the upper branch of the filter bank 
in Fig. 2 corresponds to a lowpass filter, while the 
lower one performs as a highpass filter. It is there- 
fore also useful to measure the bias that affects the 
global system. Assuming G2(1)= 0, the bias is 
given by 

bias1 = I1 - H i  (z)Gl(z)l~= 11. 

The design techniques presented next are based on 
the constrained minimization of these error criteria. 

multipliers, we introduce the following criterion: 

+ o o  

L(h( l~)  . . . . .  h(/2),2) = ~ ( 6 0 ( k ) -  h * g ( k ) )  2 
k =  - oo 

(' ) +2 ,~  2 h ( l ) - ~  . (3.2) 
l = l  l 

Using the fact that h * g ( k ) = ~ l ~ _  l h ( 1 ) g ( k - l )  

is a sequence of length K = M ~ - - ~ -  1 which 
is defined (i.e. not equal to zero) for 
k = kl + l~ . . . . .  k2 + 12, this criterion is rewritten in 
matrix form as 

L(h,  2) = (Gh - e)'(Gh - e) - 22(h'1 - e), (3.3) 

where G = [g~] is the K x N convolution matrix 

g i i = g ( k l + i - J ) ,  i =  1 . . . . .  K , j =  1 . . . . .  N ,  

(3.4) 

e = [e~] is the K-dimensional unit vector 

e~=6o(k~  + 1 1 -  1 + i ) ,  i =  1 . . . . .  K (3.5) 

and h = [hj] the N-dimensional vector of unknown 
filter coefficients: 

3. Inverse filter design 

Let {g(k), k = k~ . . . . .  k 2 }  be an FIR filter of 
length M = k 2 - k~ + 1. The problem is to find an 
approximation of its inverse in terms of an FIR 
filter {h(l), 1=  ll . . . . .  / 2 }  of length N =  12 - -  

11 + 1. The approach suggested by Giilboy and 
Geqkinli is to minimize a mean square error cri- 
terion equivalent to e 2 [9]. These authors propose 
a design method relying on matrix algebra for the 
particular case where N = M. 

Here, we will extend their technique in two re- 
spects. First, we will allow any given value of N, 
except that k~ + l~ ~< 0 and k 2 q- 12 >1 0 (these two 
bounds define the beginning and end points of the 
sequence h ,  g _-__ 60, respectively). Second, we will 
impose an additional constraint on the impulse 
response of the approximation: 

h(l) = 1 ~ g(k)  = c~, (3.1) 
1 = ll k = kl 

which, at least, guarantees exact inversion for 
a constant signal (i.e. biaso = 0). Using Lagrange 

h j = h ( l ~ -  I + j) ,  j =  1 , . . . , N .  (3.6) 

1 = [1 ... 1]' an N-dimensional vector of ones; the 
symbol ' denotes the transpose operator. The opti- 
mum filter coefficients are obtained by setting the 
derivative of (3.3) with respect to h to zero, which 
using standard rules of matrix differentiation [8], 
yields 

(?L 
- -  = 2 G ' G h  - 2G 'e  - 221 = 0. 
Oh 

It follows that the general solution can be expressed 
a s  

h = u + 2v, (3.7) 

where 

u = ( G ' G ) - I G ' e ,  (3.8) 

v = (G' G ) - I  1, (3.9) 

and where 2 is chosen to satisfy (3.1), i.e. 

O ~ -  l t u  

2 -  1 ' ~  (3.10) 
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We note that u provides the unconstrained least- 
squares solution and is comparable to the solution 
found by Gfilboy and Geqkinli [9]. The correction 
term v is used to impose the constraint of a nor- 
malized impulse response. 

4. Design of  FIR pseudo-inverse filter banks 

Let {0~(k), k = k~i . . . .  ,k2i}, i = 1, 2 be two given 
FIR filters of length M~ and M2, respectively. The 
problem is to find the FIR approximations {hi(1), 

l = ll i  . . . . .  121}, i = 1, 2 of length N1 and N2 of the 
analysis filters on the left-hand side of the block 
diagram in Fig. 2. We also impose a constraint on 
the lowpass branch of the filter bank: 

~" h ~ ( 1 ) - -  2 ~, fix(k) -- c~. 
I = 111 k = k .  

(4.1) 

We will solve this problem, which is a generaliz- 
ation of the previous one, by minimizing the total 
error criterion e 2 + e 2 (cf. Eqs. (2.11) and (2.12)) 
subject to the constraint (4.1). We note that the 
same procedure is also applicable when the role of 
the analysis and synthesis filters are interchanged. 
Using Lagrange multipliers, we introduce the func- 
tional 

L(hx, /12, 2) 

= ½(Glhl  + G 2 h 2 -  e)'(Glhl  + G2h2 - e) 

+ ½ ( G l h l  - -  G2h2) t ( l ~ l h l  - G2h2) 

- 2 ( l ' h  1 - ~ ) ,  (4.2) 

where the first and second quadratic terms are 
precisely el 2 and e 2. In this notation, hi = [hsx] and 
h 2 = Ehj21 are the unknown N1- and N2-dimen- 
sional filter coefficient vectors: 

h j i = h i ( l l l -  l + j ) ;  j =  1 . . . . .  Ni ,  i =  1,2, (4.3) 

with N1 = 121 - 111 - 1 and N2 =/22 - 112 - 1. 
1 is an Nl-dimensional vector of ones and e -- [el]  
is a K-dimensional vector defined by 

e i = 2 6 o ( i o -  1 + i ) ,  i = l  . . . . .  K, (4.4) 

where i0 = min{kll  + 111, k12 ÷ 112} and where 

K = max{k21 +/21,  k22 ÷ 122} 

- min{k11 +/11,k12 +/12} + 1. (4.5) 

The convolution matrices G1 = [Oisx ], G1 = [glsl ], 
G2 = [0ii2] and (~2 = [Ois2] are of size K x N1, 
K × N~, K x N 2 and K x N2, respectively. They are 
defined as 

gilk = ok(ik + i - -  j ) ,  

i =  1 . . . . .  K ; j =  1 . . . . .  NR, k =  1,2, (4.6) 

gijk : ( - -  1) ik + i -Jgk( ik  ÷ i - -  j ) ,  

i =  1 . . . . .  K ; j  = 1 . . . . .  NR, k = 1,2, (4.7) 

where the offset constants il and i2 are given by 

ik = min{k11 + 111, k12 ÷ / 1 2 }  - -  llk,  k = 1, 2. 

The minimization of (4.2) with respect to hi and 
h 2 yields the system of equations: 

[ � ]  h2 LG'~eJ ÷ 2 , (4.8) 

where the 2K x (NI + N2) matrix [W]  is defined as 

+¢;¢1 
[w] := LG, G, _ 0~, ,  G~G~ + t~0~_l" (4.9) 

This system is solved by inverting [ W]. The gen- 
eral solution can be expressed as 

= + 2 , (4.10) 
h2 u2 LU2J 

where 

us := [W]-lLGieJ  and 

[1ol, := [ W ]  - I  (4.11) 
F2 

and where 2 is chosen to satisfy the zero-bias con- 
straint (4.1): 

2 c t -  l'Ul 
2 = (4.12) 

l 'V  1 

As before, we note that the solution (4.10) is ex- 
pressed as the sum of two terms in which the first 
represents the unconstrained least-squares solution 
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(ul and U2)  , and the second is a correction term 
used to impose the constraint of a normalized im- 
pulse response. 

5. Results 

In this section, we apply the design methods 
described above to the problems of cubic spline 
interpolation [10, 21], and the decomposition of 
a signal using the cubic spline wavelet transform 
[2, 22]. We also compare the efficiency of these 
techniques to the standard design method that uses 
a truncation of the theoretical impulse responses. 
A tutorial overview of polynomial spline repres- 
entations in general, and a discussion of their rel- 
evance to signal processing can be found in [20]. 
Finally, we briefly discuss a slight variation of our 
procedure for the design of modulated filter banks 
which are better suited for subband coding. 

5.1. Cubic spline transform 

The cubic spline interpolation of a signal f (k) can 
be expressed as a weighted sum of cubic B-spline 
coefficients [18, 21]: 

+oo 

f ( x )  = ~ c(k)qg(x-  k), (5.1) 
k = - o o  

where ~o(x) is Schoenberg's cubic B-spline function 

~(x) = #3(x) :=  

2/3 -- x 2 + Ixl3/2, 0 ~ Ixl < 1, 

(2 - Ix l )3 /6 ,  1 ~ Ixl < 2, 

0, 2 ~< [xl. 

(5.2) 

Bothf(x)  and ~o(x) are continuous piecewise cubic 
functions with continuous first- and second-order 
derivatives (polynomial splines of order n = 3). In 
[21], it was shown that the cubic spline interpola- 
tion problem could be solved by direct B-spline 
filtering: 

c(k) = (b3) - '  , f ( k ) ,  (5.3) 

where (b~)-1 is the convolution inverse of a sam- 
pled cubic spline kernel (indirect B-spline filter): 

b3(k):=fl3(x)b,= k , z ,  B3(z ) = z  + 4 +  z - '  
6 

(5.4) 

We have approximated the IIR filter (b3) -1 by 
a series of symmetrical FIR filters of increasing 
length using the different design techniques. The 
corresponding reconstruction errors and biases in 
percent ({ 100 × eo, 100 × biaso }) are given in Table 
1. The standard technique is to simply truncate the 
impulse response; the impulse response is com- 
puted numerically by sampling the theoretical fre- 
quency response (1/B3(eJ2'ff)) and using a 64-point 
inverse FFT. As expected, the unconstrained least- 
squares solution (2 = 0) gives rise to the smallest 
reconstruction error. The bias as well is signifi- 
cantly reduced when compared to the truncated 
impulse response design (TIRD). The constrained 

Table 1 
Performance comparison (reconstruction error and bias in percent) of different design 
techniques for the symmetrical FIR approximation of the inverse cubic spline filter as 
a function of N 

Truncated impulse Least squares Constrained least 
N response (TIRD) (LSD) squares (CLSD) 

3 {11.32, 19.62} {9.667, 10.28} {10.99,0.0} 
5 {3.03,5.26} {2.62,2.81} {2.86,0.0} 
7 {0.813,1.41} {0.702,0.754} {0.752,0.0} 
9 {0.218,0.377} {0.188,0.202} {0.199,0.0} 

11 {0.058,0.101} {0.050,0.054} {0.053,0.0} 
13 {0.016,0.027} {0.014,0.015} {0.014,0.0} 
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Fig. 3. Experimental example: (a) 256 x 256 test image, (b) cubic spline transform, (c) first iteration of the cubic B-spline wavelet 
transform, (d) reconstructed image by indirect B-spline wavelet transform and indirect cubic spline transform. 

least-squares design (CLSD) leads to a reconstruc- 
tion error that is between that of the TIRD and 
LSD but has the advantage of a zero bias. As an 
example, we give the computed transfer function of 
an l 1-point CLSD approximation of the inverse 
cubic spline filter: 

H(z) ~- 1.73209 - 0.46405 [z + z -1]  

+ 0.124384[z -2 + z -2]  

- 0.0332243[z 3 + z -3]  

+ 0.00883099[z 4 + z -4]  

- 0.0019876[z 5 + z-S].  

This approximation has no bias and an error that is 
less than 1/1000. For two-dimensional signals, this 

filter is applied successively along the rows and 
columns to provide an image of the bicubic spline 
coefficients (direct cubic spline transform). This 
process is illustrated with the example in Fig. 3. The 
filtered image, which represents the cubic spline 
coefficients, is displayed in Fig. 3(b). The initial 
image (Fig. 3(a)) can be recovered with no notice- 
able loss by convolving with the operator defined 
by (5.4) (indirect cubic spline transform). These al- 
gorithms were coded in FORTRAN on a low-end 
workstation (Macintosh II fx) for biomedical image 
processing applications. The FIR implementation 
is computationally quite efficient. Typically, the 
direct cubic spline filtering of a 256 x 256 image is 
performed in fewer than 5 s and the indirect filter- 
ing in fewer than 3 s. 
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Fig. 4. Frequency responses of the direct cubic spline filter (solid 
line) and its 5-points CLSD approximation (dashed line). 

The frequency responses of the direct cubic spline 
filter and its 5-point FIR CLSD approximations 
are given in Fig. 4. The graph associated with the 
l 1-point approximation given above is virtually 
undistinguishable from the theoretical curve. The 
direct cubic spline filter (b3) - 1 tends to accentuate 
higher frequencies which explains why the cubic 
spline coefficient image (Fig. 3(b)) is a sharpened 
version of the original. 

5.2. Cubic B-spline wavelet transform 

As shown in [22], the cubic spline function f ( x )  
given by (5.1) can be decomposed further as 

+oo 

f ( x ) =  ~ c(1) (k)q~(x /2-k)  
k = - ~  

+oo 

+ ~ d t ~ ) ( k ) ~ ( x / 2 - k ) ,  (5.5) 
k=  - o o  

in which the first term of the sum corresponds to 
a coarser resolution cubic spline approximation 
and the second is a wavelet representation of the 
residual error, as defined in [12, 13]. The d(~)'s are 
the cubic spline wavelet coefficients at resolution 
level (1). The basis function tp(x/2) is the cubic 
B-spline expanded by a factor of two. It can be 
represented as a weighted sum of basic B-spline 
functions: 

~o(x/2)= ~ 9 , ( k ) ~ o ( x - k ) ,  (5.6) 
k = - o o  

where gl(k)  ( z ) 81(Z2 ..[_ 4z + 6 + 4z -1 + z - 2 ) .  

The function @(x/2) is the cubic spline wavelet of 
compact support and is defined as in [22]: 

+oo 

~O(x/2) = ~" g2(k + 1)q~(x - k), (5.7) 
k = - o o  

where 

92(k) ' Z ' ( 6 - 4 [ z  + z-l] + [z2 + 

x C 4 1 6 - l l 9 t [ z + z - a ] +  120[z 2 + z - 2 ] - [ z  3+z-3]) .  
5040 

This function satisfies the orthogonality condition: 
if(x/2) i q,(x/2 - k), k e Z. We can replace the basis 
functions in (5.5) by their explicit formulas (5.6) and 
(5.7), respectively. If we then equate the correspond- 
ing expression and the B-spline expansion (5.1), we 
obtain the reconstruction algorithm: 

qo)(k):= c(k) = #1 * [c(1)]T2(k) 

+ 6 - 1 * g z * [ d ( l ) ] T 2 ( k ) ,  (5.8) 

where 6g(k) is the convolution shift operator, i.e., 
6i * a(k ) = a(k - i), and where the up-sampling op- 
erator is defined by (1.4). It is the operation per- 
formed by the right side of block diagram in Fig. 2. 
The problem is to determine FIR approximations 
of the wavelet filters hx and h 2 that perform the 
decomposition 

c(1)(k) = [hi * c(0)] ~ 2(k), 

d(x)(k) = [61 * hE * C(o)] +2(k), (5.9) 

according to the procedure illustrated by the left 
side of the diagram in Fig. 2. This decomposition 
can be applied iteratively on the coarser resolution 
part of the approximation to yield a complete 
wavelet decomposition. The transfer functions of 
these filters can be determined by substituting the 
z-transforms of gl(k)  and 92(k) into (2.7) and (2.8); 
more details can be found in [23]. 

We have approximated these operators by 
a series of symmetrical FIR filters of increasing 
length (N = N~ = N2) using the different design 
techniques. The corresponding reconstruction er- 
rors and biases in percent ({100xel,  100xe2, 
100 x biasl}) are given in Table 2. Although the 
reduction of the different errors as a function of N is 
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Table 2 
Performance comparison (distortion, aliasing error, and bias in percent) of different design 
techniques for the FIR approximations of the analysis filters for the cubic B-spline wavelet as 
a function of N 

Truncated impulse Least squares Constrained least 
N response (TIRD) (LSD) squares (CLSD) 

3 {65.14, 31.97, 69.45} {45.03, 10.54, 34.10} {47.87, 10.42,0.0} 
7 {33.01, 15.29, 33.57} {22.85, 10.06, 16.78} {23.51, 10.18,0.0} 

11 {17.58,8.16, 1 7 . 5 3 }  {11.88,6.56,8.82} {12.11,6.63,0.0} 
15 {9.4,4.39,9.32} {6.28,3.77,4.71} {6.36,3.81,0.0} 
19 {5.02,2.4,4.96} {3.34,2.07,2.52} {3.38,2.09,0.0} 
23 {2.66, 1.38,2.62} {1.79, 1.12, 1.35} {1.80, 1.113,0.0} 
27 {1.39,0.93, 1 . 3 3 }  {0.95,0.60,0.72} {0.96,0.60,0.0} 
31 {0.69,0.87,0.58} {0.51,0.32,0.39} {0.51,0.32,0.0} 

Table 3 
FIR filter coefficients for the cubic B-spline wavelet transform (the kernels 91 and 92 are exact and hi and 
h2 were obtained via CLSD with N = 27) 

k h I h2 gl g2 

0 +0.892995 + 1.47401 
-- 1,1 + 0.400474 -- 0.468232 
- - 2 , 2  - 0.282547 --0.740512 
- -3 ,3  - 0.233318 + 0.345154 
- -  4,4 + 0.128883 + 0.387516 
- - 5 , 5  +0.12641 -0.195611 
- - 6 , 6  - 0.0666382 --0.204225 
- -7 ,  7 -0.0683554 + 0.104778 
- 8,8 + 0.0346756 + 0.105509 
- 9 ,  9 +0.0360809 --0.0541513 
- 10, 10 --0.0181137 --0.050628 
- 11, 11 --0.0189224 + 0.0258674 
-- 12, 12 +0.0072949 + 0.0185111 
-- 13,13 + 0.00757909 --0.0094291 

+ 0.75 + 0.601786 
+ 0.5 -- 0.458383 
+ 0.125 + 0.196032 

- 0.0415923 
+ 0.0030754 
- -  0.000024802 

not as rapid as in the previous example, the same 
qualitative observations can be made. The perfor- 
mance of CLSD is only very slightly suboptimal. 
Since it has no bias, this approach should definitely 
be recommended for image processing applica- 
tions. The detailed results of this constrained op- 
timization for N = 27 are given in Table 3. 

The corresponding symmetrical FIR convolu- 
tion operators permit the implementation of a cu- 
bic wavelet transform with a reconstruction error 
that is of the order of 1%, a level of precision that 
should be sufficient for most applications. In two 
dimensions, these operators should be applied 

successively along the rows and columns of the 
data. In this case, there are four types of basis 
functions corresponding to the different cross- 
products between the scaling function ~o and the 
wavelet ff in the spatial variables x and y. This 
decomposition procedure is illustrated in Fig. 3(c), 
which was obtained from Fig. 3(b) by filtering and 
decimation using the FIR kernels in Table 3. The 
corresponding CPU time was of the order of 13 s. 
The upper left quadrant in Fig. 3(c) represents the 
cubic B-spline coefficients at the coarser resolution 
level, while the three other quadrants contain the 
three different types of wavelet coefficients (vertical, 
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horizontal, and diagonal). This procedure can be 
re-applied iteratively on the lowpass component of 
the image (upper left corner). The B-spline coeffi- 
cients at the finer resolution level were then 
recovered by indirect transformation using the op- 
erators #1 and g2. The initial image was finally 
reconstructed by indirect B-spline transform (con- 
volution with b3); it is displayed in Fig. 3(d). The 
final reconstruction error in this example was less 
than 0.3% (SNR = 45.43 dB), which was not an- 
ticipated given the fact that FIR approximations 
have been used for both the direct cubic spline and 
B-spline wavelet transforms and that all intermedi- 
ate filtering results were truncated and stored in 
small integer format. The fact that this experi- 
mental error is much smaller than the error speci- 
fications (~1 and e2) in Table 2 can be explained by 
the fact that the filter design is based on a worst- 
case scenario in which the input of the system is an 
impulse; this latter situation is also equivalent to 
a white-noise excitation. 

The main feature of the example considered im- 
mediately above is that the underlying scaling func- 
tions and wavelets are very well localized in time 
and frequency 1-22]. These properties together with 
the fast algorithm also described above should 
make this decomposition a useful tool for the ana- 
lysis of a variety of non-stationary signals. 

5.3. Design of modulated filter banks 

In the context of subband coding, the bandpass 
characteristics of the filter bank is one of the most 
determinant factors [11, 28]. For this reason, we do 
not recommend the use of the previous decomposi- 
tion in such applications. Rather, we would like to 
have a system that performs a near perfect subband 
decomposition. One approach to obtaining such 
a filter bank is to start by designing a good half- 
band FIR filter gl (k) using any standard procedure 
[17]. The corresponding highpass filter is then ob- 
tained by simple modulation 

g2(k) = ( -  1)kal(k). (5.10) 

We can then use our least-squares design procedure 
to determine the corresponding analysis (or syn- 
thesis) filters hi (k) and h2(k). In this case, it would 

be judicious to use a slightly modified constraint: 

l 'h l  + l'h2 = ct, (5.11) 

where ~ is chosen in order to guarantee perfect 
reconstruction of the DC component. This simple 
modification of the algorithm ensures that the 
least-squares filters hi(k) and h2(k) are also 
modulated versions of each other. Moreover, by 
using the fact that G2 = t~l, we can make use of 
symmetries and reduce the total complexity of the 
procedure by a factor of two. 

6. Conclusion 

In this paper, we have studied a class of FIR 
approximation techniques for the inversion of FIR 
convolution operators. The search for an exact 
solution would require the implementation of infi- 
nite impulse response operators. Although recur- 
sive algorithms have been developed for this pur- 
pose (see, for example, [21]), the IIR approach may 
not always be practical. The main advantage of 
FIR filters is their simplicity and the fact that they 
do not require floating point storage; they are also 
immune to the propagation of roundoff errors. In 
addition, FIR algorithms are better suited for par- 
allel processing.Their principal disadvantage is that 
they give rise to truncation errors. However, an 
error of the order of 1% is usually acceptable for 
most images. 

Our design technique is based on the constrained 
minimization of the inversion (or reconstruction) 
error associated with an impulse sequence. The 
corresponding algorithms involve standard matrix 
algebra and are simple to implement. An important 
built-in feature is the precise recovery of the DC 
signal component (zero-bias constraint). This last 
property may result in a substantial performance 
improvement, especially when the DC component 
accounts for a large proportion of the total signal 
energy, as is typically the case for digital images. 

The main use of the one-channel algorithm is for 
the design of FIR inverse (or deconvolution) filters 
suitable for signal restoration. The two-channel 
algorithm is in fact an algebraic least-squares for- 
mulation of the perfect reconstruction filter bank 
problem. These procedures are also directly 
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applicable to the design of fast algorithms for con- 
tinuous signal transforms using shifted basis func- 
tions of compact support (e.g. B-spline transform 
and wavelet transform), as illustrated by our exam- 
ples. Finally, we note that the present computa- 
tional techniques can be extended for the design of 
multirate filter banks with more than two channels. 
In fact, it should be possible to derive a direct 
algebraic solution for the general N channel case 
considered in 1-15]. 
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