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Texture Classification and
Segmentation Using Wavelet Frames

Michael Unser, Senior Member, IEEE

Abstract— This paper describes a new approach to the char-
acterization of texture properties at multiple scales using the
wavelet transform. The analysis uses an overcomplete wavelet
decomposition, which yields a description that is translation
invariant. It is shown that this representation constitutes a tight
frame of /> and that it has a fast iterative algorithm. A texture is
characterized by a set of channel variances estimated at the out-
put of the corresponding filter bank. Classification experiments
with 12 Brodatz textures indicate that the discrete wavelet frame
(DWF) approach is superior to a standard (critically sampled)
wavelet transform feature extraction. These results also suggest
that this approach should perform better than most traditional
single resolution techniques (co-occurrences, local linear trans-
form, and the like). A detailed comparison of the classification
performance of various orthogonal and biorthogonal wavelet
transforms is also provided. Finally, the DWF feature extrac-
tion technique is incorporated into a simple multicomponent
texture segmentation algorithm, and some illustrative examples
are presented.

I. INTRODUCTION

OST traditional statistical approaches to texture anal-

ysis (e.g., co-occurrence matrices [1], second-order
statistics [2], Gauss-Markov random fields [3], local linear
transforms [4], [5], etc.) are restricted to the analysis of spatial
interactions over relatively small neighborhoods [6], [7]. As a
consequence, their performance is best for the analysis and
segmentation of the class of so-called microtextures. Recent
models for human and mammalian vision suggest the existence
of an internal spatial/frequency representation that is capable
of preserving both local and global information [8]-[11].
These findings have been the basis for several approaches to
texture using banks of Gabor filters with different scale and
orientation tuning [12]-[ 15]; these templates are obtained from
the modulation of a Gaussian function and are therefore well
localized in space and frequency. However, there has been
no study providing a clear demonstration of the superiority of
these approaches over the more traditional ones.

A potential disadvantage of decompositions of the latter
type is that they are computationally quite intensive, especially
for the evaluation of low-frequency components. In addition,
the outputs of Gabor filter banks are not mutually orthog-
onal, which may result in a significant correlation between
texture features. Finally, these transformations are usually not
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reversible, which limits their applicability for texture synthesis.
Most of these problems can be avoided if one uses the
wavelet transform, which provides a precise and unifying
framework for the analysis and characterization of a signal
at different scales [16]-{19]. The use of a pyramid-structured
wavelet transform for texture analysis was first suggested
in the pioneering work of Mallat [19]. This initial proposal
has been followed by several studies on texture classification
with a particular attention to the use of wavelet packets [20],
[21], which constitute a multiband extension of the pyramid-
structured wavelet transform.

In this paper, a variation of the discrete wavelet transform
is introduced for characterizing texture properties. This tech-
nique is applied to the problems of texture classification and
segmentation. The present analysis method, which is described
in Section II, uses an overcomplete wavelet decomposition
(the discrete wavelet frame (DWF)) in which the output of
the filter banks is not subsampled. Unlike other wavelet-based
approaches, this should result in a texture description invariant
with respect to translations of the input signal. This property,
which appears to be quite desirable in the present context,
should yield a better estimation of texture statistics and a
more detailed texture characterization at region boundaries.
In addition, the oversampled wavelet transform can be viewed
as a direct multiscale extension of the local linear transform
approach, which is a method that is well understood and that
compares favorably with most traditional approaches [5].

Another crucial point is the experimental evaluation of
wavelet transform feature extraction techniques and the com-
parison with other methods. This issue is addressed in Section
IIT, which presents a comparison of classification performance
for several orthogonal and semiorthogonal spline wavelet
transforms [19], [22]. The influence of the regularity param-
eter (number of vanishing moments) is also investigated. A
representation of special interest is the Gabor-like B-spline
(resp. D-spline) wavelet transform for which the synthesis
(resp. analysis) filters provide very close approximations of
modulated Gaussians [23]. Finally, a simple way of integrating
wavelet-based feature extraction into a multicomponent texture
segmentation algorithm is described in Section IV.

II. WAVELET TRANSFORMS AND FRAMES

The wavelet transform is usually described as a multires-
olution decomposition for finite energy functions f of the
continuous variable z (ie., f(z) € Ly) [16], 191, [24].
In the present context, it is more appropriate to consider
wavelet representations for discrete signals in I, (the space
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of square summable sequences), which was a formulation
initially proposed by Rioul [25]. This section starts with a
definition of the underlying filter banks and then provides a
brief review of the main properties of the orthogonal wavelet
transform in 5. In Section II-C, this approach is extended to
the case of an overcomplete representation, and the concept of
an orthogonal (or tight) wavelet frame is introduced. Finally,
this decomposition is related to the method of local linear
transforms, which leads naturally to a characterization of
textures in terms of simple channel statistics (histograms and
variances).

A. Filter Bank Specification and Properties

The purpose of this section is to characterize the perfect
reconstruction filter banks underlying the definition of the
various types of wavelet transforms considered here. Such
systems are entirely specified in terms of a prototype filter
h that satisfies the standard quadrature mirror filter condition

HH(EY+H(-2)H(-z"Y) =1 @))

where H(z) denotes the z-transform of h. The filter h is
also required to satisfy the lowpass constraint H(z)|,=1 = 1.
A complementary highpass filter is obtained by shift and
modulation

G(z) = zH(-2z71). 2

These prototypes are then used to generate, in an iterative
fashion, a sequence of filters of increasing width (indexed by

&)

Hiji(z) = H(z?i)Hi(z) 3)
Gip1(z) = G(Z¥)Hi(2), (i=0,....,0—1) (@)

with the initial condition Hg(z) = 1. Equivalently, in the
signal domain, we have the two-scale relation

{hi+1(k) = [h]y2: * hi(k)

git1(k) = [g]roi * hi(k) &)

where the notation [-];,, denotes the upsampling by a factor
of m. The effect of one iteration is more or less to dilate
the filters h; and g; by a factor of two.! Such a sequence of
filters can therefore be used to decompose a signal in subbands
of approximately one octave each. The properties of such a
decomposition are best understood by analyzing the multiband
characteristics of the underlying filter bank; some examples are
shown in Fig. 1. It is not difficult to verify that such sequences
of filters also satisfy the identity

|Hi(e™ )+ |Gr(e?™ )2 =1 ©6)
k=1

and therefore provide a full coverage of the frequency domain.

'In the continuous formulation, it is precisely a dilation by factor of two.
In the discrete case, it is only approximatively the case unless the filter h
satisfies an additional interpolation condition.
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Fig. 1. Frequency responses of the discrete filter bank associated with the
Battle/Lemarié spline wavelet transform for n = 0 (Haar) and n = 3 (cubic
splines).

B. Orthogonal Wavelet Bases of >

The sequence of discrete filters defined above can be used
to construct an orthogonal wavelet decomposition of [ [25].
For this purpose, one defines the discrete normalized basis
functions

@it(k) = 27/%hi(k — 21) )
Pia(k) = 229 (k — 20 (8)

where ¢ and [ are the scale and translation indices, respec-
tively; the factor 2*/2 is an inner product normalization. We
then consider the sequence of nested subspaces I, = Vy D
Vi oV D oo DV, where V; = span{p;}icz is the
approximation space at resolution 7. Note that the embedding
of these subspaces comes as a direct consequence of the
two scale relations (5). We also introduce the subspaces
Wi, (i =1,...,1), where W; is the residue (or detail) space
at resolution 7 and is defined as the orthogonal complement of
V; with respect to V;_; (i.e, Vio1 =V, + Wy and V; L W)).
It can be shown by induction that the families of sequences
{¢ii1}icz and {9;;}i1cz provide orthonormal bases of V; and
W;, respectively. We can therefore evaluate the coordinates
of the orthogonal projection of a discrete signal z € Iy in
the spaces V; and W, by forming the inner product with the
corresponding basis functions. Specifically, the minimum [-
norm approximation of x at scale 4 (orthogonal projection into
V;) is given by

x5y (k) = Z sy (i 9)
lezZ

sy (l) = (x(k), pi(k)), (10)
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where (-, -);, denotes the standard /5 inner product and where
@io(k) = 2/2h;(k) is the discrete scaling function at res-
olution 4. Likewise, the corresponding residue, which is the
projection of x into W;, is given by the complementary
wavelet expansion

Tiiy(k) — x(5)( Z deiy(D) i (11)
lez
deiy(l) = (x(k), i i (k)), (12)

where v; o(k) = 27/2g;(k) is the discrete wavelet at scale i.
Finally, by combining the residues over all scales down to a
given depth I, we obtain the full discrete wavelet expansion
of a signal z € [,

I
Z san(Dera + Z Z deiy (D

lez i=11eZ

z(k) = (13)

where the d(;)’s are the wavelet coefficients and where the
s(1y’s are the expansion coefficients of the coarser signal
approximation z(ry (cf. (9)). It also follows from this construc-
tion that the family of sequences {¢; 1, V11, ¥21, ..., Y11 ez
constitutes an orthonormal basis of /5.

What is important in the context of texture analysis is that
the analysis formulas (10) and (12) can be interpreted in terms
of simple filtering and down-sampling operations. Specifically,
we can write that

{ sn(l) = 2172 [h] ] 21 (1)

(d)i(1) = 2/2[g * ] (1) a4)

(i=1,....1)

where the symbol 7 denotes the reversal (or transpose) opera-
tor (i.e, K™ (k) = h(—k)) and where [] |, is the downsampling
by a factor of m. However, this approach is not the one that
is usually used for computing the discrete wavelet transform.
There is a much more efficient algorithm that uses the filters
h and g directly and performs the decomposition using a
critically sampled tree-structured quadrature mirror filter bank
[19].

Finally, note that there is a direct equivalence between
wavelet transforms and perfect reconstruction filter banks. It
is possible, for instance, to drop the quadrature mirror filter
requlrement (1) and extend the construction to the biorthogonal
case [17], [26]. This approach offers greater flexibility in the
choice of the basis functions at the expense of orthogonality.
An example worth mentioning is the B-spline wavelet trans-
form, which has the property that the basis functions are very
similar to Gabor functions [23]. This representation provides a
link between the wavelet formulation and some of the Gabor
transform approaches to texture mentioned in the introduction.

C. Wavelet Frames of |,

As already pointed out in the introduction, a simple integer
shift of the input signal will usually result in a nontrivial
modification of the discrete wavelet transform, as defined in
Section II-B. As far as feature extraction is concerned, this
behavior is inadequate, for one usually thinks of “texture” as
a translation-invariant (or stationary) property. A natural way
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to overcome this limitation is to perform an analysis of the
input signal in terms of the overcomplete family of templates

S = {gl(k‘ - l), e ,g[(k — l),h](k‘ - l)}leZ

which is similar to computing the discrete wavelet transform
for all possible integer shifts of the input signal. This approach
leads to the simple decomposition algorithm

APWF (k) = (k= 0otk = F ot
SPWE(k) i= (hy(k — Da(k))y, = T valk)

(15)
which is the nonsampled version of (14). From now on, we
will primarily consider such redundant representations and
drop the superscript “DWF,” which has been used here to
distinguish these values from the wavelet coefficients in the
previous section. Because of the special structure of the anal-
ysis filter bank, this decomposition has a number a remarkable
properties that are associated with the mathematical concept
of a frame [27], [28]. These include energy conservation and
a particularly simple reconstruction algorithm.

Proposition 1: The family of sequences S is a tight frame
of the Hilbert space [5.

Proof: To prove that S constitutes a frame of /o, we need
to show that there exist two constants A and B such that

A flll?, < (alk), bk — 1))
lEZ
+ZZ (k) gi(k = 1))> < B - [lz[|%. (16)
i=11ez

We start by using Parseval’s formula to compute the energies
in the different channels

1 .
nwm=é|@wmﬂmxuW#

1
wmi=AmeﬂﬂmXuW#

where X (f) denotes the Fourier transform of the input signal.
We then sum the individual terms and use (6) to show that we
have the energy conservation property

1 I
lell, = [ IXGOPaf = bl + 3 Nl )
i=1

By definition, s;(!) = (z(k),hi(k — 1)) and d;(I) =
(z(k), gi(k—1)). Therefore, we can rewrite this last formula in
the form of inequality (16) with the simple bounds A = B = 1,
which also proves that the frame is tight. O
A remarkable property of tight frames in general is that
they lead to a representation of a signal that is analogous
to that associated with an orthogonal basis. Specifically, if
S = {pi}icz is a tight frame of a Hilbert space H, then
Vz € H, x=%2(z,ap,~)H i (18)
i€Z

where (-,-)y is the corresponding inner product [28]; the
fundamental difference with an orthogonal system is that the
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Fig. 2. Signal analysis and synthesis using the discrete wavelet frame
decomposition.
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Fig. 3.
position.

Fast iterative implementation of the discrete wavelet frame decom-

representation may be redundant. In the present context where
H = [,, this property, together with the definition of the
wavelet coefficients in (15), leads to the simple reconstruction
formula

w(k) =Y siDhr(k =)+ 3> di(D)gi(k —1) (19

lez i=11€eZ

which can also be interpreted in terms of a reconstruction
filter bank

I
a(k) = hrx si(k)+ Y gi + di(k).

i=1

(20

The principle of this decomposition is illustrated in Fig. 2. The
fact that the whole system acts as the identity operator also
follows directly from (6).

To simplify the implementation, we take advantage of the
two-scale relation (5) and obtain a fast iterative decomposition
algorithm

{3i+1(k) = [hlta: * si(k) (i=0
diy1(k) = [gl12: * si(k)’ o

with the initial condition so = z (cf. block diagram in Fig. 3).
Each step involves a convolution with the basic filters & and g,
which are expanded by insertion of an appropriate number of
zeros between taps. A similar procedure can also be used for
the implementation of the reconstruction formula (20). Note
that the complexity of this type of algorithm is the same for all
iterations. It is simply proportional to the number of samples.

Such an overcomplete analysis can also be extended to the
biorthogonal case. In this more general situation, one looses

D@
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the energy conservation (or tight frame) property but one has
more freedom in the choice of the filters H and G. It is not
difficult to show that the frame condition (16) can be translated
into a simpler constraint on the frequency response of these
filters

0<m < |[H(EE@™ N2+ |G )< M < 400 (22)

where m and M are two positive constants. This relation
guarantees the reversibility of the decomposition. In fact, we
obtain a reconstruction algorithm that is almost identical to

(20) if we can find two biorthogonal filters h and 5 such that

HHGEY) + GG = 1. (23)

D. Texture Characterization

‘To extend these approaches in higher dimensions, we use a
standard tensor product formulation [19]. In two dimensions,
there will be four distinct types of basis functions (or filters)
corresponding to the different crossproducts of the 1-D func-
tions ¢ and . The decomposition can thus be obtained by
successive 1-D processing along the rows and columns of an
image. The same system can also be used for the analysis of
signals that are realizations of wide-sense stationary processes.
For this purpose, however, it is necessary to replace the
previous notion of the squared [>-norm by the average power
E{z?*} (or variance if the signal is zero mean) and modify all
energy formulas accordingly.

The filter bank analysis system specified by (15) can be
viewed as a special case of the local linear transform method
[5]. In this approach, we rearrange the output of the filter
bank into the N-component vector, where N is the number
of subbands

y(k, 1) = (yi(k,1))iz=1,..N
= [sr(k,1) di(k,1)

and interpret the result of the analysis for a given spatial
index (k,l) as a local linear transformation of the input
vector x(k,[); the latter is simply a block representation of
the input image centered on the current position. A 2-D
separable wavelet transform with a depth I typically yields
N = 1+ 3I such feature channels. The texture is then
characterized by the set of N first-order probability density
functions p(y;), ¢ = 1,...N. Alternatively, we can get a
more compact representation in terms of the channel variances
Var{y;}. A statistical justification for this approach can be
found in [5]. The success of this method obviously depends
on the judicious selection of the filter bank.

In practice, the channel variances are estimated from the
average sum of squares over a region of interest R of the
given texture type

v=gp 3 vk

(k,1)ER

di(k,D)]" @4

(25)

where #R denotes the number of pixels in R. Note that
the lowpass condition H(z)|,=; = 1 implies that E{y,} =
E{z}, and E{y;} = 0, for i = 2,...,N. It may therefore
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Fig. 4. Twelve Brodatz textures used for classification experiments.

be advisable to adjust the feature computed in the lowpass
channel by subtracting E{z}? to get a better variance estimate.
If the analysis is performed through the discrete wavelet
transform, there will be fewer coefficients in a given channel
because of subsampling. We can still obtain variance estimates
from the average sum of squares of the available wavelet
coefficients in the region of interest. The expected values of the
texture features will be the same as in the previous case (up to
a proportionality factor), but their variability will be increased
with a possible adverse effect on classification performance.

III. TEXTURE CLASSIFICATION

A. Experimental Data Set

We performed classification experiments using the 12 Bro-
datz textures displayed in Fig. 4. The original photographs
were digitized and converted into 256 x 256 image arrays
with 256 levels of gray. The spatial uniformity of these images
was improved by using a local standardization procedure
with local mean and variance estimates computed over a 65
X 65 sliding window. In order to make the classification
task more difficult, the images had their histogram equalized
with a requantization to 32 levels. The experimental data
were therefore indistinguishable on the basis of first-order
statistics only. The wavelet and filter bank decompositions
were performed by processing the individual images globally.
For each texture, a total of 64 independent feature vectors

v = (vy,..., vN) was evaluated, using (25) over a series of
32 x 32 nonoverlapping subregions.

B. Classification Algorithm

The class conditional probability density functions were
assumed to be multivariate Gaussian with mean vectors and
covariance matrices (my, Cy), (k = 1,...,K), where K =
12 is the total number of classes. Under such an assumption,
the minimum error Bayes classifier is equivalent to assigning a
texture sample with feature vector v to the class with minimum
distance value

de(v) = (v - m)T'C (v — my) + log(det(Cy)). (26)

For each pattern tested, the training was performed on the
remaining set (leaving-one-out method) using the maximum
likelihood estimates of the distribution parameters.

C. Classification Results

In a first series of experiments, we chose to compare
the performance of the discrete wavelet transform (DWT)
and wavelet frame (DWF) approaches. For this purpose, we
considered the series of quadrature mirror filters associated
with the Battle-Lemarié orthogonal spline wavelet transforms.
This family is indexed by the order of the spline n, which also
characterizes the regularity of the underlying continuous basis
functions. This choice was made for the following reasons.
First, the underlying (discrete or continuous) basis functions
are symmetrical, which means that there is no phase distortion
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TABLE I
PERCENT OF CORRECT CLASSIFICATION FOR VARIOUS ORTHOGONAL
DISCRETE WAVELET TRANSFORMS (DWT’S) AND WAVELET FRAMES
(DWF’s) as A FUNCTION OF THE ORDER n AND THE NUMBER OF SCALES [

Type of decomposition n=0 n=1 n=3

1 scale (4 features)

DWT 91.93 % 91.80 % 86.72 %

DWF 96.48 % 93.88 % 9154 %
2 scales (7 features)

DWT 9544 % 98.18 % 97.92 %

DWF 98.83 % 98.70 % 98.44 %
3 scales (10 features)

DWT 96.35 % 98.44 % 98.31 %

DWF 99.35% 99.22 % N2 %

and that the spatial localization of the wavelet coefficients is
well preserved. We feel that this property is extremely relevant
for our purpose, especially for texture segmentation. Second,
this family includes two important limiting cases. For n = 0,
we have the Haar transform with the simplest possible filter
HO(z)(1 + 271)/2. At the other extreme, for n — o0,
we obtain the bandlimited sinc-wavelet, which corresponds
to the ideal lowpass filter h°°(k) = sinc(k/2). Increasing n
will result in a progressive spatial delocalization of the basis
function, but the benefit will be a decrease in the correlation
between the various branches of the filter bank.

The classification results for n = 0, 1, and 3 are given
in Table I. The first observation is that the DWF method
always outperforms the DWT, which is consistent with our
expectation. In some cases, the improvement is quite sub-
stantial. It is also clear that a true multiresolution feature
extraction with two or three levels is preferable to a local
analysis with one level only. In fact, the DWF with n = 0
and I = 1 is equivalent to the local linear transform (LLT)
method using the 2 x 2 Hadamard transform described in
[5]. For comparison, the LLT using the nine-channel variances
associated with the 3 x 3 discrete sine transform yields 99.22%
correct classification. Those results are mentioned because
the LLT usually compares quite favorably with most other
standard statistical methods (co-occurrence, correlation, etc.)
and can therefore be used as the reference method for a single
resolution analysis A detailed comparison can be found in [5].
Finally, note that increasing the regularity of the filter bank
does not necessarily imply better classification performance.
In fact, the results obtained with the DWF for the simplest
case n = 0 are surprisingly good.

A second series of experiments was conducted to compare
the performance of various orthogonal and nonorthogonal
wavelet transforms. We were especially interested in deter-
mining the properties of the representation (space-frequency
localization, orthogonality, regularity, etc.) that are regarded
to be the most relevant for texture discrimination. We chose
to compare the performance of several members of the class
of polynomial spline wavelet transforms [22]. For a fixed
value of n, these DWT’s are equivalent in the sense that
they use the same underlying approximation subspaces, but
they differ in the shape and properties of the basis functions.
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TABLE 11
PERCENT OF CORRECT CLASSIFICATION FOR VARIOUS DISCRETE WAVELET
TRANSFORMS AS A FUNCTION OF THE ORDER n AND THE NUMBER OF SCALES /

‘Wavelet transform n=0 n=1 n=3

1 scale (4 features)

Battle/Lemarié 9193 % 91.80 % 86.72 %

B-spline 87.89 % 76.30 %

D-spline 9154 % 87.63 %
2 scales (7 features)

Battle/Lemarié 95.44 % 98.18 % 97192 %

B-spline 95.18 % 8555 %

D-spline 9779 % 96.35 %
3 scales (10 features)

Battle/Lemarié 96.35 % 98.44 % 98.31 %

B-spline - 9557 % 8176 %

D-spline - 9.09 % 96.88 %

In addition to the orthogonal Battle-Lemarié transform, we
considered the B-spline and D-spline wavelet transforms. The
B-spline transform was chosen because the underlying basis
functions are very close to Gabor functions and therefore opti-
mally localized in space and frequency [23]. The biorthogonal
analysis filters, on the other hand, have a comparatively poor
localization with a much slower decay in space. The D-spline
representation is the dual of the B-spline wavelet transform,
which means that it is the analysis filter bank that inherits the
good space-frequency localization properties. Texture features
were extracted using the standard fast wavelet algorithm that
produces a critically sampled representation [22]. The results
of classification are summarized in Table II. Here again, the
percentage of correct classification improves with the number
of scales. On the other hand, increasing the order of the splines
does not necessarily have a beneficial effect. The behavior of
the orthogonal and D-spline representations is very similar.
Both of these transforms clearly perform much better than the
B-spline DWT. This suggests that a good space localization
of the analysis filter bank is more important for discrimination
than the localization of the basis function themselves. If one
also takes into account the number of computations, it appears
that the most promising approach is the D-spline wavelet
transform for which the analysis filter bank is FIR. In practice,
we would recommend using either the Haar transform (with
n = 0) or the D-spline transform with n = 1. One should also
expect a further improvement (as in Table I) for an analysis
based on an overcomplete representation.

Another observation that holds for this whole series of ex-
periments is that classification errors usually occurred between
textures pairs that are the most difficult to discriminate visually
(see, for example, the confusion matrix in Table III).

IV. TEXTURE SEGMENTATION

The next question is how to modify the previous wavelet-
based feature extraction method to make it suitable for texture
segmentation. The approach taken here is a variation of
the multiresolution feature extraction and selection method
developed previously for the LLT [29]. The key idea is
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Fig. 5. Block diagram of an image processing system for the wavelet-based segmentation of textured images.

TABLE 111
DETAILED CLASSIFICATION RESULTS OBTAINED
USING THE HAAR DWF witH Two LEVELS

Assigned class —>

1 2 3 4 s 6 7 3 9 0 11 12

1 64 0 0 0 0 0 0 ) 0 0 ] 0
2 0 o 0 0 0 0 0 0 0 0 0 0
3 ] 0 64 0 0 )] 0 0 0 0 0 0
4 0 0 0 6 0 0 0 0 0 0 0 0
s 0 0 0 0 64 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 62 0 0 0 0 2
8 0 [ 0 0 0 0 0 64 0 0 0 0
9 ] ) 0 0 0 0 0 0 64 0 0 0
10 0 0 0 0 0 0 0 0 0 64 0 0
1 ] 0 0 0 0 0 0 1 0 0 63 0
12 0 0 0 0 0 0 s 0 0 1 0 S8

Number of errors =9 (out of 768)
Total score = 98.83 %

to use local estimates of the wavelet variances as texture
features and to apply an appropriate feature reduction to
simplify the segmentation process. This is achieved indirectly
by performing an image analysis at two different scales
(m) and (2m). The corresponding system is schematically
represented in the block diagram in Fig. 5. Note that the
segmentation is performed at the coarser scale (2m) after
feature reduction; the information at the finer scale m is
used merely to improve the estimation of the feature reducing
transformation. We will now briefly consider the various
components of the system and justify the approach.

A. Feature Extraction

The texture features that are used for segmentation are local
energy measures computed over a window centered on the
current spatial location. The amount of averaging (size of the
estimation window) is specified by the scale parameter m.
We have chosen here to use a cubic B-spline window filter
that provides a very close approximation of a Gaussian and
yet offers the advantage of a fast algorithm whose complexity
is independent of the parameter m [30]. Specifically, the ith
texture feature at resolution m is computed by convolving

the corresponding squared (or rectified) output of the wavelet
filter bank

Vim (k1) = b2, = |y;(k,1)|? 27
where b2, denotes the separable cubic B-spline kernel enlarged
by an integer factor of m. Note that we also need to subtract
the mean value in the lowpass channel (i = 1) to obtain a
true variance estimate; this correction is not necessary in the
wavelet channels (¢ > 1) because their means are zero by
construction. A complete description of the cubic B-spline
filter is given in the Appendix. The use of this particular
operator can be justified based on the following properties:

i) It is extremely well localized in the sense specified by

the uncertainty principle.

ii) It is very close to being isotropic.

iii) It can be implemented efficiently through a cascade
of simple 1-D moving average filters that are applied
successively along the rows and the columns of the
image; the same algorithm is applicable for any value
of m.

In our method, we specify the scale parameter m and com-
pute the intermediate (fine resolution) N-component image
of local texture features v, (k,!) according to (27). Since the
cubic B-spline kernel also satisfies the two-scale relation (AS5),
we then use this property to double the scale of our previous
variance estimates through the following update procedure:

v2m(k,l) = [h]Tnz * Vm(kvl) (28)

where the convolution is applied to each vector component
separately and where the filter [h]1,, is the 2-D separable
version of the binomial filter defined by (A6) expanded by
a factor of m. The end result of this operation is a set of
local variance estimates over a window of size 2m (0., =
2m/ \/5) specified by the separable 2-D smoothing kernel
b3, (k1) = b3,,(k) x b3,.(I); these are the texture features
that are used implicitly for segmentation. The additional
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information available at the finer scale m is used indirectly to
improve the estimation of the feature reducing transformation.

B. Linear Feature Reduction

Assuming that the multicomponent image v,(k,l) has a
global zero mean, we first evaluate the scatter matrix at

resolution m as

$1=80vm) = 3 VilkiD) - Ve (kD)7

#Ro
(k,)ERg

where R, denotes the set of spatial indices within the bound-
aries of the image to be segmented. The eigenvectors of this
matrix are used to specify the Karhunen—Logve transform
(KLT), which is then applied to the data and is followed by
a standardization. The net effect of this sequence of trans-
formations is to produce an auxiliary feature vector Vo (k,!)
with a whitened scatter matrix, i.e., S(9,,) = Iny. The next
filtlering step in Fig. 5 doubles the scale of the averaging
window according to (28). Finally, a second KLT is used
to rediagonalize the scatter matrix of the transformed feature
vector W, (k,1) at resolution 2m.

Since the spatial smoothing is the same in each channel, the
resulting vector wa,,,(k,!) can also be rewritten as

Wzm(k, l) =U- ng(k',l) (30)

where U is an N x N transformation matrix and where v,
is given by (28). It is not difficult to show that the whole
procedure described in Fig. 5 provides an indirect solution to
the generalized eigenvector problem

ASt = St (31)

where S; = S(v,,,) and S; = S(vap,). The transformation
matrix in (30) can therefore also be expressed as U =
[ty - tN]T', where the t;’s are the eigenvectors of (31)
ranked by order of decreasing eigenvalues. This ordering
is also representative of their discriminatory power. Since
smoothing decreases variability, the eigenvalues will be
smaller than one. The number of significant features (M)
can be determined by retaining only those components with
an eigenvalue greater than some threshold o (which depends
on the amount of smoothing). In any case, this number should
be no greater than K — 1, where K is the number of distinct
texture regions. We have found this feature reduction method
to be more efficient for segmentation than the standard KLT.
Its superiority in this particular application can be attributed
to the following properties [29]:

(29)

1) Unlike the KLT, it is invariant to any linear transfor-
mation of the input vector (such as a change in gain for
some of the analysis filters).

2) The transformation will extract the features for which
additional spatial smoothing produces the least relative
energy reduction. These features should also be those
that contain the largest inter-region differences in their
mean values.

3) The transformation is equivalent to Fisher’s multiple
linear discriminants [31] (which is optimal for classi-
fication), provided that the two following assumptions
are met:
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i) The feature means over the different texture regions
are preserved from one resolution to the next;
ii) the multiple linear discriminant transformation is
the same at both resolutions. These conditions are
usually well satisfied in practice, at least as long as the
smoothing window is smaller than the texture regions.
For this reason, it is not advisable to use too large a value of
m (oversmoothing) to estimate the feature reducing transfor-
mation. Note that it is always possible a posteriori to coarsen
the representation by applying additional levels of smoothing
to the reduced feature vector wWa,, (cf. (28)). Alternatively, one
could also apply a multivariate region growing procedure that
would merge neighboring feature vectors according to their
similarity while attempting to preserve region boundaries.

C. Segmentation by Clustering in Feature Space

The final step of segmentation involves clustering, which
can be achieved through the standard K-means algorithm
[32]. The main advantage of the present approach is that
these computations can be performed in a lower dimensional
space that essentially preserves the discriminative information
and provides features that are approximately decorrelated (cf.
Property (3)). In the simplest case of a two-region segmen-
tation problem, there will be only one significant feature
component, and clustering is achieved by simple minimum-
error thresholding, as described in [29].

D. Experimental Results

The whole segmentation procedure is illustrated in Fig.
6 using a test image generated by combining two Brodatz
textures. As in the previous experiment, the two textures had
their histograms equalized and are therefore indistinguishable
on the basis of first-order statistics only. The coefficient images
of the Haar wavelet frame with a depth of two are shown
in Fig. 6(c1—7). The first four images (cl—c4) represent the
coarser components at scale ¢ = 2. The first one contains
the lowpass information, whereas the channels ¢2, ¢3, and
c4 represent the midband horizontal, vertical, and diagonal
components, respectively. The finer scale information is con-
tained in the channels c5—7, which corresponds to simple
horizontal, vertical, and diagonal edge detectors, respectively.
These filtered images were then rectified (or squared) and
smoothed individually using the procedure described by (27).
The resulting local texture features at resolution 2m = 8
are shown in Fig. 6(d1-d7). A measure of the discrimination
power for each individual feature is provided by the F-
statistic (normalized ratio of the inter-region and intra-region
variances) computed using the reference map in Fig. 6(b). In
this particular example, the features that provide the strongest
discrimination are the lowpass (d1) and the horizontal/vertical
components (d2) and (d6). The features are then all combined
into a single one (Fig. 6(e)) by using the unsupervised two-
scale linear feature reduction technique described in Section
IV-B with m = 4. Clearly, the discrimination power of this
new quantity (as measured by the F'-statistic) is better than
that of any of the initial features on their own. The two
texture regions can now be separated by simple thresholding.



UNSER: TEXTURE CLASSIFICATION AND SEGMENTATION USING WAVELET FRAMES

(d1) F=2.92 (&2) F=156 (@) F=0.01

(46} F=3.92 (47) F=1.01

Fig. 6. Hlustration of the feature extraction/reduction algorithm: (a) Test ima;
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(i4) F=0.78 () F=0.44

{¢) F=6.23

(6} F=6.80

ge; (b) region labels (gold standard); (c1—c7) filtered channels obtained by

applying the Haar wavelet frame decomposition to (a); (d1-d7) smoothed feature planes at scale m = 8; (¢) most significant rotated feature plane using the
two-scale covariance diagonalization algorithm; (f) optimal feature reduction of (d) using Fisher’s linear discriminants.

The performance of this feature reduction technique may
be compared with the optimal supervised approach (Fisher’s
linear discriminants), which is given for reference in Fig. 6(f).
The present approach is also superior to a standard KLT feature
extraction, which in this particular case yields a F-ratio of
5.14. We have also identified other examples of texture pairs
for which the improvement of our approach over the KLT is
much more significant; this usually happens when the most

discriminating wavelet channels have relatively low energy.
In addition, there is no guarantee that the components of the
KLT will be ordered according to their discriminating power,
in constrast to the proposed feature reduction method.

This approach is also applicable for images composed of
more than two texture regions. In such a case, the number
of significant features (M) is usually greater than one and
will require the use of a multidimensional decision procedure
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Fine scale : m=2

Coarse scale : m=4
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Fig. 7. Examples of textures segementation (fine resolution versus coarse resolution): (a0) 128x 128 test image with four texture regions; (b0) region
labels (gold standard); (al-a2) results of full K-means segmentation (Euclidean distance without feature reduction); (b1-b2) full K-means segmentation
(weighted distance without feature reduction); (c1—2) first reduced component; (d1-d2) threshold-based segmentation; (el-e2) second reduced component;
(f1-f2) reduced K -means segmentation (weighted distance using features ¢ and e).

(clustering) more sophisticated than simple thresholding. Fig. 7
presents an example that involves four distinct texture regions
with identical (equalized) histograms. In this case, we used
a first order Battle-Lemarié DWF feature extraction with a
depth of two (N = 7). The first set of images shows the
results of a fine scale segmentation (2m = 4). The results
of a full K-means segmentation that is applied to the seven
channel variances directly (feature vector va,,) are shown
in Fig. 7(al). A better segmentation is achieved if instead
of the Euclidean metric one uses a weighted distance in
which each component is standardized with respect to the

current intraregion variance estimate (Fig. 7(b1)). The first
component (wy 2,) of our reduced feature set is shown in
Fig. 7(cl), next to the corresponding segmentation obtained
by simple thresholding (Fig. 7(d1)). By adding the second
component w2 2, (Fig. 7(el)) and applying the weighted
K-means algorithm to this reduced feature set (M = 2),
we obtain the segmentation map displayed in Fig. 7(f1).
The corresponding results at a coarser scale (2m = 8) are
shown in Fig. 7(a2-f2). Interestingly, the simple threshold
segmentations (M = 1) are not much worse than the standard
K -means results. A more accurate segmentation is achieved



UNSER: TEXTURE CLASSIFICATION AND SEGMENTATION USING WAVELET FRAMES

if one uses a weighted distance criterion (Fig. 7(bl, b2)).
However, the results obtained with the reduced feature sets
(Fig. 7(f1, 12)) are essentially equivalent. The main advantage
of our feature reduction method is a very substantial reduction
in the amount of computation and a simplification of the
segmentation process (especially for the case K = 2). Overall,
the approach appears to be quite robust. The same type
of behavior was observed over a variety of other testing
conditions; these included different types of DWF’s, different
number features N, and a variety of texture classes.

The present approach to texture segmentation is one of
the simplest conceivable for this particular class of texture
features. In the current formulation, the multiscale structure of
the feature extraction process is only exploited for feature re-
duction. Clustering is performed at a single scale of averaging,
and the spatial resolution of the segmentation map therefore
depends on the size of the smoothing window (2m). This
approach could be potentially improved by developing a true
multiscale strategy to refine the location of the texture edges
or by linking the decision process with some statistical model
of the spatial region interactions (e.g., Gibbs distribution).
There are already several extensions of the K -means algorithm
that incorporate spatial interactions and that could be directly
applied to our reduced feature set [33]-[35]; unfortunately,
these tend to be extremely time-consuming. Another recent
approach that appears to be very relevant uses a simple contour
length constraint and a region-merging strategy [36].

V. CONCLUSION

One of the main points of this work has been to demonstrate
that the wavelet transform provides an attractive tool for the
characterization of texture properties. The wavelet transform
has many properties (multiresolution representation, orthogo-
nality, fast algorithms, etc.) that are relevant to this type of
application. The main conclusions that can be drawn from the
present analysis and from our classification experiments are
as follows:

1) For feature extraction, an overcomplete wavelet analysis
(DWEF) is preferable to the standard subsampled wavelet
decomposition. The DWF approach tends to decrease
the variability of the estimated texture features (which
improves classification performance). It also results in a
texture characterization invariant under translation.

2) The multiresolution properties of the wavelet transform
are beneficial for texture discrimination. In all cases, a
multiscale feature extraction with two or three levels
led to better results than a single resolution analysis.
Moreover, the equivalence between the DWF for a single
scale analysis and the method of local linear transforms
(the performance of which is well documented in the
literature) suggests that the present approach should
outperform most traditional approaches to texture.

3) Increasing the number of vanishing moments (or regu-
larity) of the underlying basis functions does not seem
to have any real advantage for texture analysis and
discrimination. In fact, the lower order transformations
tend to perform surprisingly well, which is good news
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for practical applications. Another related observation is
that the localization properties of the analysis filter bank
seem to be more important than the properties of the
basis functions themselves.

4) Finally, the DWF approach lends itself quite well to
texture segmentation. This has been illustrated with a
simpie multicomponent algorithm that uses clustering
in a reduced local feature space. The advantage of this
procedure is to provide adequate segmentation at a much
lower cost than an approach that operates on the full
feature set.

APPENDIX
CUBIC B-SPLINE FILTERING

The discrete cubic B-spline kernel b3,(k) is obtained by
sampling a normalized version of the continuous cubic B-
spline enlarged by a factor of m

b2, (k) = — 3 (k/m)

m

(A1)

where 33(x) is the symmetrical piecewise cubic function
2/3—a*+z]3/2, 0< |z <1
2-l=)?/6,  1<|z| <2

0, 2 < ).

B3(x) := (A2)

The z-transform of this kernel can be factorized as (cf. [30])
1 m—1 4
B3 — 21nBS - -~k
ne) =Bl 23

1-2zm *
2m 3 -

- B s

? 1(z)(m—m-z‘l)

where 2>™ is a shift factor, B3(z) denotes the B-spline
sampled at the integers

(A3)

B}(2) = (z + 4+ 271)/8, (A4)
and where the term in parenthesis represents a moving average
filter of length m. This factorization suggests a recursive
implementation of b2, based on the cascade of four moving
average filters and the three-point FIR filter b3.

The cubic spline kernel has some interesting scaling prop-
erties. In particular, its size can be doubled via the following
convolution product:

Bam(2) = H(z™)B},(2) (AS)
where H(z) is the fourth-order binomial filter
2 -1, -2
H(z):z +4z4+6+4271 + 2 . (A6)

16

This result can be established easily by using (A3) and the
fact that 337" 2% = (1 4 z=) 1=k Unlike (3),
the two-scale relation (A5) is valid when starting with any
integer m (not just a power of two). It is a property that is
specific to splines.
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