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Enlargement or Reduction of Digital Images
with Minimum Loss of Information
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Abstract—The purpose of this paper is to derive optimal spline
algorithms for the enlargement or reduction of digital images
by arbitrary (noninteger) scaling factors. In our-formulation,
the original and rescaled signals are each represented by an
interpolating polynomial spline of degree 1 with step size one and
A, respectively. The change of scale is achieved by determining
the spline with step size \ that provides the closest approximation
of the original signal in the L,-norm. We show that this approx-
imation can be computed in three steps: i) a digital prefilter
that provides the B-spline coefficients of the input signal, ii) a
resampling using an expansion formula with a modified sampling
kernel that depends explicitly on A, and iii) a digital postfilter
that maps the result back into the signal domain. We provide
explicit formulas for n = 0, 1, and 3 and propose solutions for the
efficient implementation of these algorithms. We consider image
processing examples and show that the present method compares
favorably with standard interpolation techniques. Finally, we
discuss some properties of this approach and its connection with
the classical technique of bandlimiting a signal, which provides
the asymptotic limit of our algorithm as the order of the spline
tends to infinity.

I. INTRODUCTION

ESAMPLING is used extensively in picture processing

to magnify or reduce images and to correct for spatial
distortions. Standard approaches fit the original data with a
continuous model (image interpolation) and then resample this
two-dimensional function on a new sampling grid [1], [2].
In the case of nearest neighbor interpolation, the underlying
image model is a polynomial spline of order zero (piecewise
constant). This is extremely simple to implement but tends to
produce images with a blocky appearance. More satisfactory
results can be obtained with bilinear interpolation, which
uses an implicit first order spline model, or by using small-
kernel cubic convolution techniques (piecewise cubic model)
[2]-[5]. Bicubic spline interpolation [6], and higher order
splines in general [7], yield even smoother recontructions; fast
algorithms using digital filters are also available [8].

These approaches are reasonably simple to implement, but
they tend to produce sub-optimal results because they are not
designed to minimize information loss. This is especially true
for image reduction. Such problems can be avoided if one uses
some form of lowpass filtering prior to resampling, a principle
commonly used for sampling rate conversion in multirate
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Fig. 1. Resampling versus least squares approximation for image reduction
by a factor of two using a zero order interpolation mode! (piecewise constant):
(a) Original MRI image: (b) reduction by simple resampling (interpolation);
(c) reduction by averaging over a 2 x 2 neighborhood (least squares approxi-
mation); (d) approximation error for (b) (SNR=24.74 dB); (e) approximation
error for (¢) (SNR=29.50 dB).

signal processing [9]-{11]. Such a prefiltering step is also
required for decimation based on the principle of least squares
spline approximation [12]-[14]. Fig. 1 provides a comparison
between the simplest form of this procedure (zero order
spline approximation) and straightforward resampling. Unfor-
tunately, such filtering-decimation techniques are restricted to
situations in which the reduction factor m is an integer.! These
limitations notwithstanding, we believe that comparisons such
as the one afforded by Fig. 1 provide a convincing illustration
of the fact that interpolation is sub-optimal when used for
image reduction. Interpolation may also introduce distortion
in the case of nonintegral signal magnification. This effect is
especially noticeable for zero order interpolation (c.f. Fig. 2).
Fortunately, it tends to disappear when higher order splines
are applied.

!'The use of these techniques can eventually be extended for rational factor
my/my by first interpolating the input signal. In that case, however, they
lose most of their computational appeal.
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Fig. 2. Examples of artifacts induced by zero-order (or nearest neighbor)
interpolation in the case of a nonintegral scaling factor: (a) Original text
image; (b) magnification by a factor of V'2; (c) reduction by a factor of V2.
Note that the distortion of the letters in (b) is nonuniform. The text in (¢) is
degraded to a point that it is unreadable.

In this paper, we address these problems directly and
develop least squares polynomial spline resampling algorithms
for an arbitrary step size A. The basis for this new formulation
is our recent extension of Hummel’s sampling theory for
polynomial splines [12], [15]. The main point of this work
will be to establish that optimal signal resampling by splines
can be obtained by the combination of digital filters and
an interpolation in the conventional sense with a modified
sampling function £} (z) that depends on the sampling step
A. This procedure is easy to implement because the sampling
kernel €3 (z) is compactly supported. We will also show that
the present method provides a generalization of a number of
earlier approaches. Moreover, it converges to the optimal pro-
cedure for bandlimited signals dictated by Shannon’s sampling
theorem as the order of the spline goes to infinity.

The presentation is organized as follows. In Section II, we
review some fundamental properties of polynomial splines
and give the main results of their sampling theory based on
the principle of minimum error approximation. In Section
1II, we derive an optimal scale conversion algorithm for
splines of any order n and discuss its implementation with
an emphasis on its digital filtering components. In Section
IV, we obtain explicit formulas for the sampling function
&4 (z) for piecewise constant (n = 0), linear (n = 1), and
cubic splines (n = 3). Finally, in Section V, we present
some experimental results, both qualitative and quantitative,
and provide a comparison with conventional techniques.

A. Notation and Operators

L, is the vector space of measurable, square-integrable
functions ¢(z), + € R. Ly is a Hilbert space whose metric
|l - |l (the Lz-norm) is derived from the inner product

+o0
(0. 1) = (g(z). h(z)) = / ¢(a)h(z)dz

—oo
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lgll = V{,9) = ( / :° |g(a:)|2da:)

The central B-spline of order n is denoted by /"(z); this
function, a piecewise polynomial of degree n, is generated by
repeated convolution of a B-spline of order 0

B (z) = B 8"} (x) (1)
with
_ L ze-3.3)
Az) = {0, otherwi:e.2 @

The space of square summable sequences (or discrete sig-
nals) a(k), & € Z is l;. The convolution of two sequences
a € Iz and b € Iy is denoted by b*a(k). The sequence b may
be viewed as a discrete convolution operator (or digital filter)
applied to g; it is entirely characterized by its z-transform (or
transfer function) B(z). If B(z) has no zeros on the unit circle,
then the inverse operator (b)~! exists and is uniquely defined

()" (k) = 1/B(z). ?3)

A special notation is used for the discrete B-spline of order

n, which is obtained by sampling 5" (z) at integral values

b* (k) = B"(€)|e=k < BF(2). @

The sequence (b™)~1(k) represents the impulse response of

the direct B-spline filter of order n [8]. This filter has been
shown to be stable for all values of n [7].

II. POLYNOMIAL SPLINES

In this section, we review some properties of polynomial
splines crucial for the derivation of the scale conversion
algorithm in Section III. A more detailed treatment of various
aspects of spline interpolation, spline representation, and spline
approximations can be found in [7], [8], [14], and [15],
respectively.

A. Polynomial Spline Function Spaces

In our formulation, signals are represented by polynomial
splines. These functions are piecewise polynomials of degree n
with the additional smoothness constraint that the polynomial
segments are connected in a way that insures the continuity of
the function and its derivatives up to order n— 1. At the initial
scale (A = 1), there is exactly one knot per sample value (or
pixel) and the signal is represented by a spline that provides
an exact interpolation. The corresponding spline function space
ST can be defined as follows {16], [17]:

+o00

T = {sn(z) = Z (k)8 (z —k): c€ lz} )
k=—cc

where 3" () is the central B-spline function of order n defined
by (1). The fundamental characteristic of the B-spline basis
functions is their compact support, the property that makes
them useful in a variety of applications [18], [19].
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It is also possible to construct alternative sets of shift
invariant basis functions by taking linear combinations of B-
splines. This result can be stated as follows (cf. [14], Appendix
A):

Proposition 1 (Equivalent Basis Functions): The set of
functions {o™(x — k), k € Z} with

+

S plk) (- k) ©)

k=—oc

©"(x) =

is a basis of ST provided that p is an invertible convolution
operator from [y into itself.
Hence, we have the generalized spline representation

+
s"(z) = Z d(k)p™(z — k) Q)

k=-—oc

which is entirely specified by the sequence of coefficients
d(k) € 5. Two special cases that are especially relevant (the
cardinal and dual representations) are discussed below.

B. Cardinal Spline Interpolation

In order to fit the model to the data points, one first needs to
determine the B-spline coefficients of a s™(x) that interpolates
the digital signal {s(k)}rez. The simplest approach is to use
a digital filter [8]

e(k) = (071« s(k) (8)

where (b™)~! denotes the convolution inverse of the discrete
B-spline kernel defined by (4).

By further substituting (8) in (5), we obtain the equivalent
cardinal representation of the interpolating spline s™(x), in
which the expansion coefficients are precisely the sample
values s(k):

DT s s(k)p (e — k)
k=—~oc :
“+oo
> stk) p (e = k). ©)

k=—->

sMx) =

I

7" (x) is the cardinal (or fundamental) spline of order n, which
is given by (6) with p. = (b")~1. It is the spline equivalent
of the classical sinc interpolation kernel [7].

Having made these definitions, we can interpret the process
of B-spline interpolation (cf. (8)) as a coordinate change from
cardinal to B-spline representation.

C. Polynomial Spline Sampling Theory

We now consider the problem of the approximation of
a function s(z) € Ly by splines with a step size A. The
corresponding space S} is defined by simple rescaling; i.e.,
h(z) € S} < h(Az) € S7. The optimal approximation in the
L>-norm is obtained by projecting s on S%. This procedure is
accomplished as follows (c.f [14], [15]):
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Theorem 2 (General Sampling Theorem): The orthogonal
projection of a function s € Ly on S} can be evaluted as

+oc °
sxx) = Z %{s(T) O (x/A = k)" (x/A - k) (10)
k=—oc

where " is defined by (6) (with p symmetrical and invertible),
and where

—+oc
o
Gy = Y ) THR)B (2 - k)
k=—oc
is the corresponding biorthogonal sampling function.
Similar to Hummel [12], we can interpret the sampling

(In

)
function ¢" as an optimal prefilter that is applied to s prior
to sampling, and ¢™ as a reconstruction filter. Theorem 2 may
therefore be viewed as an extension of the standard signal
processing approach to discretization dictated by Shannon’s
sampling theorem [20]. In fact, we have shown that the
o]

functions 1™ and ™ (cardinal representation) both converge
to sinc(x) as the order of the spline tends to infinity [7], [15].
Note that the simplest expression for the sampling function

n

" in (11) occurs for pg = (b®"+1)~1 in which case
it is precisely a B-spline of order n. The corresponding
(o]

generating function in (6) is the dual spline: 3"(x). In this
representation, the calculation of the inner products in (10) is
especially simple since the corresponding sampling function
is compactly supported. This property turns out to be crucial
for the implementation of the scale conversion algorithms
considered in Sections III and IV.

D. Extension in Higher Dimensions

Although all our results will be presented for the one-
dimensional case, they are directly applicable to higher di-
mensions through the use of tensor product splines [19].
The corresponding basis functions are simply obtained from
the product of one-dimensional functions of the individual
index variables. Practically, this means that the corresponding
interpolation and approximation algorithms are separable and
can be implemented by successive one-dimensional processing
along the rows and columns of an image. This observation
applies for the implementation of digital filters as well as for
the resampling of two-dimensional expansion formulas.

We now provide a short proof of this latter result that is not
as well known in signal processing. Consider the problem of
resampling the general separable 2D expansion

00 +oc
gxy)= 3 Y dkDele = kyely - 1)
k=—ocl=—oc
on a uniform sampling grid with horizontal and vertical
sampling step A, and A, respectively. The key observation
is that the sampled version of this expansion can be rewritten
as

(12)

+oc +o0
9(i8e, jA) = > ST dkD(ids — k)i, — 1)
k=—ocl=—oc
+oc
= > g(iD)eiA, — 1) (13)
l=—=c
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where

+oc
ge(is)) = > d(k,D)p(id, — k). (14)

k=—o0

Hence, the calculation can be performed in two successive

« . passes using one-dimensional summations only. The first is a

resampling along the z-direction according to (14), while the
second is a resampling in the y-direction using the modified
coefficients g.(¢,{). Such a separable implementation can
result in a substantial saving in computations, especially when
the support of the sampling function ¢ is large.

III. OPTIMAL SCALE CONVERSION

The most direct approach to signal magnification (or re-
duction) by a factor A is to use the B-spline representation
(5) and to resample this function at multiples of A. This
approach is perfectly practical because the B-splines have
compact support; consequently, there is only a finite number
of coefficients that contribute to the value of the function for
a given ordinate z. The expansion formula is easy to evaluate
numerically. This approach is the one most frequently used in
image processing applications; in particular, for n = 0 (nearest
neighbor interpolation) and n = 1 (bilinear interpolation).

As far as the approximation error is concemed, this proce-
dure is suboptimal. In the case of a reduction, the situation is
analogous to sampling a signal that has not been previously
bandlimited, a process that may induce aliasing errors. Next,
we derive a general least squares approximation technique to
avoid these types of artifacts.

A. Scale Conversion

By convention, we assume that the initial sampling step is
one. Our input signal is described by its B-spline representa-
tion st(z) € ST

+o0

Y ak)st@ k)

k==—00

Me) = (15)
The relation between the signal values and the B-spline
coefficients is one-to-one; in other words, there is exactly one
B-spline coefficient per initial grid point.

The step size on the resampled version of our signal is A.
The corresponding new signal approximation is represented by
a polynomial spline s (z) € Sk:

+oo

A= 3 ealk)f(z/a - k)

k=—c0

(16)

with a knot spacing A. Note that a step size A < 1 corresponds
to a signal magnification (i.e., there are more samples within
a given signal segment) whereas a step size A > 1 results in
a size reduction (data compression).

The scale conversion problem can now be formulated as
follows: Given a function st(x) € ST, find its minimum error
approximation s} (x) in the space S%.

The solution then follows from the application of Theorem
2. To simplify this computation, we use the equivalent dual

[EEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 3, MARCH 1995

representation of s’} (z)

+o00 . °
sale)= Y da(k)f"(z/A - k)

k=—oc

a7

<}
where the dual spline 3(z) is a polynomial spline with B-
spline coefficients pg = (b2"+1)~!. From Theorem 2, we get
the expression for the optimum expansion coefficients in (17)

da(k) = K ($3(), B"(x/A = b))

Replacing g7 (z) by its B-spline expansion (15), we find that
1
da(k) =5 D elll{f"(z = 1), Ba(z — kA))
l=—o00
where 8% (z) = B"(x/A). Using the symmetry of the B-
splines, we then rewrite this expression in the more convenient
form

+oo
da(k) = Y ex(DEA(kA~1) ()
l=—occ
where the sampling function £} is defined as
1
€3(2) = £ (" * BR)(). (19

Since both functions are compactly supported, the kernel £X
in (19) is as well. Hence, there is only a finite number of
coefficients in (18) that contribute to the value of da(k) for
a fixed index k. This sum can therefore be evaluated exactly
provided that one has an explicit formula for the sampling
function &% (z). Such formulas are given in Section IV.

We also note that the integral of the function £7% is normal-
ized to one. This result can be established simply by evaluating
the value of the Fourier transform of (19) at the origin.

B. Implementation

In practice, the signals on both sampling grids are repre-
sented by their respective sample values s;(k) and sa (k).
Hence, we have the equivalent cardinal spline representations

“+oo

sik)= Y si(k)n™(z —k) (20)
k=—oc
400

A@) = Y salk)n"(z/A - k). @n
k=—occ

The scale conversion algorithm should take the values 51 (k) as
input and return the samples ga (k) of the least squares spline
approximation in S%. This can be achieved by combining
the procedure described above (cf. (18)) with the appropriate
changes of coordinate system. The full algorithm represented
in Fig. 3 can be summarized as follows:
i) Determine the B-spline coefficients in (16). This opera-
tion is equivalent to processing the data with the prefilter
p = (b")7! (c.f. Section 1I-B).
ii) Expand linearly and sample according to (18).
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TABLE 1
TRANSFER FUNCTIONS OF THE FILTERS FOR THE LEAST SQUARES
SPLINE SCALE CONVERSION ALGORITHM FOR » = 0, 1, AND 3

n P(z) QA2)

0 1 1

1 1 s

z+4+27"
3 6 840(z+4+2")
ARSLE 2416+ 1191z + 27|+ 12022 + 2 [+ [ + 7]
s(k) prefiter | € (kl linear expansion dA(li postfilter 55 (D)
p o & sampling o q .

Fig. 3. General block diagram of the optimal scale convertion algorithm.

iii) Convert from dual to cardinal spline representation.
This is implemented by post-filtering

sa(k)=qx da(k): g= (") b @)
The z-transforms of the corresponding pre- and post-filters for
n = 0, 1 and 3 are given in Table 1. No filters are required
for piecewise constant approximation (n = 0). In the case of
a piecewise linear model (n = 1), there is only the postfilter.
Interestingly, it is identical to the prefilter for the cubic spline
approximation (n = 3).

IV. EVALUATION OF THE SAMPLING KERNELS

The last practical aspect that needs to be dealt with is the
explicit evaluation of the modified sampling kernel in (18) de-
fined by (19). Here, we present the results of these calculations
for n = 0 and 1 and provide a Gaussian approximation formula
for higher order splines. Finally, we consider the limiting case
of bandlimited functions and describe an FFT-based algorithm
for that particular case.

A. Piecewise Constant

The expression of a B-spline of order zero is given by (2).
The explicit evaluation of (19) for n = 0 yields

b, 0<|z| < a1
() = { b= M=) gy < g < gy (23)
ag S 1.Z|

where the constants b, a1, and ao are defined as follows:

b= min{l.A}/A
a1 = min{1, A}/2
a9 = (1 + A)/Q

(24)

The corresponding sampling function is piecewise linear. An
example for A = 3/2 is represented in Fig. 4. Note that for
A = 1,6%(z) is the B-spline of order 1.
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-1 0 1 2

Fig. 4. Example of trapezoidal sampling function for a zero order spline
model (A = 3/2).

B. Piecewise Linear

The B-spline of order 1 is the tent function described by
the formula
lz] <1

ol > 1 @

1o - Sl
BHx) = { 0.

In order to compute £(z), we chose to take the first
derivatives of 3'(x) and Ji(z), to evaluate their cross-
correlation function, which is piecewise linear, and finally
to integrate this function twice to get the desired result.
The result of this rather lengthy computation is a sym-
metrical cubic spline function with unequally spaced knots
{—a4, —a3, —a2, —ai.ap.a1.a2. a3, aq}. The values of these
points are given by

apg = 0
a; = min{a.b — a}
ay = max{a.b — a} (26)
a3 = b
ay =a+ b
where the constants a and b are defined as follows:
a =min{l, A}
{b = max{l, A}. @7

For each segment 7, £} () is a cubic polynomial. This function
can therefore be represented by the formula

el (z) = {bm + bir|z| + biow?® + bis|zl, |z € [ai_1, ;)
A 0, otherwise
(28)
where the polynomial coefficients for i = 1,...,4 are given

in Table II. For A = 1, some of the knot points merge and one
can verify that £{ (x) is precisely a cubic B-spline. An example
of the sampling function with A = 3/4 is shown in Fig. 5.
To emphasize the Gaussian-like shape of this kernel, we have
superimposed with a dashed line the Gaussian approximation
given by (30) below.

C. Cubic and Higher Order Splines
The cubic B-spline (n = 3) is given by

2/8 -2’ +]x/2, 0< 2] <1
ABx) =< (2 - |z])? /6, 1< |z <2 (29)
0. 2 < ||
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TABLE 11
POLYNOMIAL COEFFICIENTS FOR THE SAMPLING FUNCTIONS
Interval bo by by b
—a(a—-3b) 0 = 1
Osi=a 364 bA 3abA
. ashl<q
N -a
i) as(b-a) X ™ 0 0
(i) a>(b—a) —(a+bia’-4ab+b’)  (a-b) ~(a+b) 1
6abA 2abA 2abA 2abA
<ld<a @’ +3a’b+3ab* ~b® ~-a’ —2ab+b* {a—b) 1
B =G 6abA 2abA 2abA 6abA
(a+by —~(a+b)? (a+b) -1
z<hi<a, 6abA 2abA 2abA 6abA
a, Slx| 0 [ Q 0
0.6
0 R 5 ’l’ ‘\\
0.4
0.3
0.2
0.1
=2 -1 0 1 2 3

Fig. 5. Example of a modified sampling function (solid line) for a first order
spline model (A = 3/2). This function is a cubic spline with knot points at
the positions marked by the small circles. The Gaussian approximation given
by (34) is superimposed with a dashed line (relative mean square error =
0.145%).

Evaluating £%(x) for this particular case as well as for
higher order splines becomes more and more cumbersome.
Instead, we have chosen to derive a Gaussian approximation.
This approach is justified by the fact that £X(z) can be
expressed as a convolution product of multiple rectangular
pulses. As n increases, this function converges to a Gaussian,
as a consequence of the central limit Theorem (c.f. [21]). To
determine the parameters of this limiting form, we use the
property that the global variance of a convolution product is
equal to the sum of the variances of its individual components.
Hence, we obtain the following approximation

—z2 n+1
fg(z)g{ sooo{arh el <P g
, otherwise
with standard deviation
n+1
n = 1+ A2). 31
o 13 (1+ A?2) 31)

Note that this formula is truncated to accommodate for the
fact that the function £X(x) is compactly supported. The
Gaussian in (30) is such that it has the same integrated area
(f €% (x)dz = 1) and variance (02 = [ 2%¢% (z)dx) as the true
sampling kernel £X (z). The approximate sampling function
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for the cubic spline is obtained by setting » = 3 in (31) and
(30). The quality of this approximation should be sufficient
for most practical purposes. For example, we found that the
relative mean square error for n = 3 and A = 3/4 was less
than 0.04% (this computation was performed in the Fourier
domain). Note that for A = 1,¢&3(z) is precisely the B-spline
of order 7.

D. The Bandlimited Case

The cardinal generating function for the bandlimited repre-
sentation of a signal is

7> (z) = sinc(z) 32)
By using the fact that the Fourier transform of sinc(z) is
rect(f), it is not difficult to show that the corresponding
modified sampling kernel is

1 oy oo, [sinc(z), ALl
Ealz) = xn& "n> () = {%sinc(x/A), A>1.

Note that no pre- and postfilters are necessary since the
expansion coefficients are precisely the samples of the underly-
ing continuous function (cardinal representation). In principle,
the samples of the rescaled signal can be evaluated directly
through the expansion formula (18), although the slow decay
of the sinc function requires the evaluation of a relatively large
number of terms.

This procedure can be implemented much more efficiently
in the Fourier domain provided that the scaling factor is a
rational number A = m;/mgy, where m; and mq are the
sizes of the input and output signal arrays, respectively [22],
[23]. For this purpose, we use the property that a bandlimited
signal is entirely represented by the discrete Fourier transform
of its sampled values. The first step of the algorithm is to
perform an m;-point FFT. These values are then copied into
an mo-point complex array using zero padding in the case
of a signal expansion, or by disregarding the values with an
index larger than my otherwise. Note that this latter operation
corresponds to the antialiasing low-pass filtering step. An
additional multiplication by (1/A) is also required for signal
reduction (c.f. (33)). The rescaled output signal is then simply
obtained by performing an mg-points inverse FFT.

(33)

V. EXPERIMENTAL RESULTS

A. Implementation

The spline scaling algorithms were implemented on a per-
sonal computer. We used a separable algorithm in which the
rows and columns of an image are processed in succession. All
1-D computations were performed in floating point and the
digital filters were implemented recursively, as described in
[24]. The organization of the program more or less replicated
the block diagram in Fig. 3. To save memory space, all digital
images, as well as the intermediate results of computations,
were truncated and stored in integer format with two bytes
per pixel; appropriate scaling factors were used to minimize
truncation errors.



UNSER ¢z al.: ENLARGEMENT OR REDUCTION OF DIGITAL IMAGES

253

Fig. 6. Examples of image magnification and reduction using a zeroth-order model: (a) ISCO with A = 1/v/2; (b) enlarged detail of (a); (c) LSSCO with
A = 1/v2; (d) enlarged detail of (c): (e) ISCO with A = v/Z; (f) LSSCO with A = V2.

The conventional interpolation approach was implemented

by using the same technique and simply replacing the function

" (x) by #™(x). The use of a postfilter was not necessary in
this case.

For the implementation of the cubic spline approximation
algorithm, we used the approximate Gaussian form (30) of
the sampling kernel. We also modified the postfilter slightly to
insure that the algorithm provides a perfect signal restitution
for A = 1. Specifically, we substituted the kernel (v?"+1) in
(22) by the sampled version of the Gaussian approximation of

(x) obtained from (30). The resulting transfer function of
the cubic spline postfilter that was used for our experiments
is shown in (34), which appears at the bottom of this page.
All algorithms were applied to some test images with A =
1. In all cases, the reconstructed images were identical to the
input, a reasonable indication that the effect of truncation and
roundoff errors was not significant.

In the sequel, the different techniques are referred to by the
following acronyms: interpolative scale conversion (ISCn) and
least squares scale conversion (LSSCn), where the variable
n = 0, 1, and 3 denotes the order of the spline.

B. Results

Our first example is qualitative and uses the test image
(printed text) in Fig. 2. The results of zero-order interpolation
(ISCO) and least squares approximations (LSSCO) for A =
1/ V2 (magnification) and A = V2 (reduction) are compared
in Fig. 6. Clearly, the results of LSSCO are by far superior
to those obtained by nearest neighbor interpolation (ISCO).
The reduced image in the latter case is unreadable. Similar

comparisons for linear (= = 1) and cubic (n = 3) splines are
given in Figs. 7 and 8, respectively. In all cases, LSSC results
in a significant improvement for image reduction. The quality
of the magnified image obtained with LSSC1 also appears to
be increased; this distinction is less apparent for n = 3. Note
that the resized images obtained using cubic splines exhibit
some "ringing" near the border of the letters. This effect is best
observed on the enlarged subimages (x8) shown to the right
of Figs. 6-8. The ringing, which becomes more apparent with
higher order splines, is similar to the Gibbs phenomenon that
is usually associated with bandlimited representations (sinc
interpolator). For this type of two level images, LSSC1 appears
to yield images with better visual quality, probably because the
oscillations near the borders of the objects are less pronounced
than they are for cubic splines.

In the next series of experiments, we performed a succession
of complementary image reductions and magnifications, and
vice versa, using the different scale conversion techniques.
The global loss of information was measured by the signal-
to-noise ratio with reference to the initial image. Our test
images (a) and (b) are the MRI scan shown in Fig. 1(a)
and the standard "Lena" picture, respectively. The results of
these experiments for image reduction are given in Table
III. The LSSC outperforms ISC in all cases, although there
is only marginal difference for cubic order. There is also
improvement of performance of both with increasing order
n. This observation has been confirmed by experiments with
other images. In the case of an image reduction by a factor of
two, we found that the results obtained with LSSC were not
appreciably different from those obtained with the filtering-
decimation algorithm described in [14].

Q(z)

(z+4+271)/6

= 0.4886 + 0.2308[z + 2—1] + 0.02432[z2 + z-2] + 0.00057[2% + -]

(34)
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Fig. 7. Examples of image magnification and reduction using a first-order model: (a) ISC1 with A = 1/\/§; (b) enlarged detail of (a); (c) LSSC1 with
A = 1//2; (d) enlarged detail of (c); (e) ISCl with A = /2; () LSSCI with A = /2.

Fig. 8.
ISC3 with A = /2; (d) LSSC3 with A = V2.

Results for image magnification are given in Table IV.
In the case of integer magnification, all methods perform
ideally in the sense that the original image can be recovered
exactly (within the limits of roundoff errors). In the case of a
nonintegral magnification (\/5), there is a loss of information
that disappears gradually with higher order splines. Here again,
LSSC is consistently superior (with the notable exception of
n = 0). The high SNR value reported for ISCO in Table IV
merely expresses the fact that the initial pixel values are not
lost in this approach and that perfect recovery of the original is
always possible. The quantity calculated is misleading in that
it fails to indicate that the visual quality of a nearest neighbor
image magnification is by far the worst (c.f. Fig. 6).

C. Discussion

i) Advantage of least squares approximation over interpo-
lation: Our experimental results demonstrate the supe-

Examples of image magnification and reduction using a cubic spline model: (a) ISC3 with A = 1/\/5; (b) LSSC3 with A = ]/\/5; {c)

riority of LSSC over ISC in a consistent fashion. This
observation is especially true for image reduction. For
some images, the differences can be quite dramatic.
An example is provided by Fig. 9, which displays the
approximation errors for ISC1 and LSSC1 in the case of
an image reduction by /2. We have also observed exper-
imentally that the loss of performance of ISC becomes
more striking with increasing reduction factors.

ii) Computational efficiency of the approach: The LSSC
algorithm is relatively simple to implement in practice.
The resampling part of the algorithm (18) is very similar
to the standard interpolation procedure. The essential
difference is that the LSSC sampling function depends
explicitly on the scaling parameter A. These functions
tend to have a larger support resulting in an increased
number of nonzero terms in the expansion formula. The
simplest approach is LSSCO, which is comparable in
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Fig.

9. Comparison of the interpolative and least squares scale conversion algorithms for the MRI image in Fig. 1(a): (a) ISC1 with A = v/Z; (b) LSSCI
with A = V2 (¢) approximation error for (a) (SNR = 33.65 dB); (d) approximation error for (b) (SNR = 39.25 dB).

TABLE II1
COMPARISON OF IMAGE REDUCTION TECHNIQUES

TABLE IV

QUALITATIVE ASSESSMENT OF IMAGE MAGNIFICATION TECHNIQUES

Experimental procedure Signal-to-Noise Ratio

Experimental procedure Signal-to-Noise Ratio

(a) MRI (b) Lena (2) MRI (b) Lena
n=0 (ISC+v2,ISC x+2) 27.03 dB 24.12 dB n= (ISC x V2, ISC +v2) >60 dB >60 dB
(LSSC + V2, LSSC x+2) 3271 dB 28.37 dB (LSSC x 2, LSSC +v2) 38.20 dB 33.68 dB
n=1 (ISC+V2,ISC x+2) 33.65 dB 28.74 dB n=1 (ISC x V2, ISC ++2) 39.45 dB 34.08 dB
(LSSC = V2, LSSC xv2) 39.25 dB 31.77 dB (LSSC x V2, LSSC +v2) 57.35 dB 50.98 dB
n=3 ASC+v2,1SC x2) 42.02 dB 32.30 dB n=3 (ISC x 2, ISC ++2) 59.09 dB 50.67 dB
(LSSC + 2, LSSC xV2) 42.61 dB 32.53 dB (LSSC x V2, LS5C + V2) >60 dB >60 dB
n= (ISC +2,18C x2) 24.74 dB 21.74 dB n=0 (ISC % 2,1SC + 2) >60 dB >60 dB
(LSSC +2,LSSC x2) 29.50 dB 25.66 dB (LSSC x 2, LSSC+ 2) >60 dB >60 dB
=1 (ISC+2,18C x2) 31.56 dB 26.45 dB n=1 (ISC x 2, ISC + 2) >60 dB >60 dB
(LSSC + 2, LSSC x2) 32.62 dB 27.19 dB (LSSC x 2, LSSC+ 2) >60 dB >60 dB
n=3 (ISC +2,1SC x2) 35.35 dB 26.80 dB n=3 (ISC x 2, ISC + 2) >60 dB >60 dB
(LSSC + 2, LSSC x2) 36.13 dB 27.88 dB (LSSC x 2, LSSC+ 2) >60 dB >60 dB

complexity to a standard bilinear interpolation (ISC1).
For higher order splines, LSSC also requires the use of
a postfilter absent in ISC.

We used two basic strategies to improve the computa-
tional efficiency of these algorithms. The first was to take
advantage of the separability property and to process the

rows and columns of an image successively using one-
dimensional operators. The second was to implement
all digital filters recursively by decomposing them into
a cascade of simple exponential causal and anti-causal
operators. On our low-end workstation (standard Mac-
intosh II fx), the CPU time for reducing the 238x 253
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iii)

MRI scan by a factor of /2 was of the order of 1 s for
ISCO, 10 s for LSSCO, 8 s for ISC1 (c.f. Fig. 9(a)), 27
s for LSSC1 (c.f. Fig. 9(b)), 19 s for ISC3, and 39 s
for LSSC3.

Link with the digital-filter based decimation-expansion
techniques: As shown in the Appendix, the present
approach for A = m is equivalent to the filtering-
decimation procedure described in [14]. Specifically,
we have that

(k)

im

sm(k) = [h',; * 31} (35)
where [-]| denotes the down-sampling by a factor of

o
m, and where the prefilter h;, is characterized by its
transfer function

By (™) B (2)Up (2)

B (k) < 2 (2) =
m B ) = T e By )

1
m

(36)

B7(2) is the z-transform of a discrete B-spline of order
n (c.f. (4)) and U} (2) is defined by

m—1 n+l
( Z z*k> 37
k=0

with kg {n + 1)(m — 1)/2. Note that a similar
filtering-decimation procedure can also be derived by
minimizing the discrete ls-norm [12], [13], but the
prefilters are no longer the same.

Another case of interest is a signal magnification
by an integer factor m (A = 1/m). For this special
situation, it can be shown that ST, O ST, provided
that n and m are not both even. It follows that the initial
polynomial spline representation of our signal s;(z)
is already included in the finer resolution space S{‘/m.
Hence, it should be possible to obtain the sample values
8m(k) of the expanded signal by simple interpolation,
which suggests that the ISC and LSSC algorithms are
equivalent for A = 1/m. In the appendix, we prove
that this is indeed the case. Specifically, we show that
the algorithm described in Section III-B is equivalent
to the following procedure

z zko
() S U () = 2

Sl/m(k) = h;* [31]1"1(]6) (38)
where A7 is the impulse response of a polynomial
spline interpolator with a zooming factor m, and where
[]im denotes the up-sampling by a factor of m. Equa-
tion (38) is precisely the digital filtering formulation of
the ISC algorithm for A = 1/m initially proposed in
[8]. The transfer function of the corresponding spline
interpolator is

_ Br(2)Un(»)

) =5 HE () = S (39)
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iv)

v)

o
Note that the digital filters A}, and h]} satisfy the
discrete biorthogonality condition

[h,"n . h?:.] (k) = 6 (40)
m

These results imply that an image magnification fol-
lowed by a reduction by the same integer factor m
should leave the original signal unchanged. This fact has
been observed experimentally for both algorithms (c.f.
lower half of Table 1V). This property obviously does
not apply for noninteger magnification factors, unless
the order of the spline is sufficiently large.

Link with Shannon sampling theory: There is a close
relationship between the present approach and the opti-
mal procedure dictated by Shannon’s sampling theory.
In fact, this latter approach corresponds to the limiting
case n -+ +oc [7], [15]. The classical formulation is
attractive conceptually because it uses a simple ban-
dlimited representation of signals. However, the direct
resampling algorithm is difficult to implement in prac-
tice because of the slow decay of sinc(zx) (the impulse
response of the ideal lowpass filter). Fortunately, we
have seen that there is an alternative FFT-based al-
gorithm that is applicable for certain rational scaling
factors A [22].

We note that Shannon’s sampling theory treats signal
magnification and reduction differently. First, there is
no loss of information associated with signal magnifi-
cation, which implies that the process is fully reversible.
Moreover, the use of a prefilter is not necessary because
the coarser level signal is already bandlimited. These
observations are in agreement with our experimental
findings: i) the performance of our algorithm for signal
magnification improves with higher order splines, and
ii) the distinction between the ISC and LSSC is less
and less significant for higher order splines (c.f. Table
V).

The classical approach for signal reduction is to
bandlimit the signal with an ideal lowpass filter prior
resampling. This prefiltering step is important because
it suppresses aliasing errors. The LSSC algorithm uses
a similar procedure—a prefilter designed to minimize
the approximation error. The ISC algorithm with no
such built-in mechanism exhibits poorer performance
for signal reduction.

Other potential approaches: This work has focused al-
most exclusively on spline representations of signals,
mainly because of their simplicity of implementation. In
principle, similar least squares methods could be derived
for more general functional representations, for example,
the class of Hilbert spaces considered in [25] and [26].
Kida and Mochizuki also present a very general form
of interpolation that depends on the sampling model and
is optimal in a well-defined sense [27]. Finally, Peleg
et al. have proposed an original approach for trading
spatial for gray-level resolution and vice versa [28].
Unfortunately, it requires a lengthy linear programming
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optimization on a pixel-by-pixel basis and is therefore
difficult to apply in practice.

VI. CONCLLUSION

In this paper, we have described a new family of techniques
for resizing digital images. Our design principle is to fit
images by continuous spline models and to implement the
transformation that minimizes the error between the original
image and its rescaled version. This approach (LSSC) appears
to be better than standard interpolation methods in the sense
that the rescaled image is a more faithful copy of the original,
including lesser visual distortions and improved suppression
of aliasing artifacts. The same algorithm works for any (non-
integer) scaling factor A > 0; it is equally valid for signal
magnification and reduction.

We have emphasized both the practical and theoretical
aspects of these techniques. In particular, we have studied
the various steps of the implementation of LSSC and have
proposed fast computational solutions. We have also brought
out links with a number of earlier techniques. For instance,
we have shown the equivalence between the present approach
and earlier digital filter based expansion-decimation techniques
in the particular case of a signal expansion or reduction by
an integer factor. We have also discussed the asymptotic
convergence of LSSC to the classical procedure dictated by
Shannon’s sampling theorem. Based on our previous error es-
timates, the cubic spline algorithm (LSSC3) can be considered
as a good approximation of this limiting case (bandlimited
signal approximation) [7], [15]. For the examples tested, this
technique led to the smaller approximation error, but had the
tendency to introduce oscillations (Gibbs phenomenon). The
first order spline algorithm (LSSC1) was found to provide a
good compromise between performance and an attenuation of
these oscillations; it may therefore be preferred for certain
applications.

APPENDIX
INTEGER SCALE CONVERSION

In this appendix, we consider the special cases of signal
reduction and magnification by an integer factor m. In partic-
ular, we establish the connection between the LSSC algorithm
and a number of earlier techniques [8], [14]. These results are
valid provided that 'n and n are not both even.

A. Reduction by a Factor of

We first recall that the expanded 3-spline can be represented
by the following expansion [14]

J= Y

k= -x

A (a thy,, (K)i3" (2 = k) (A.D)

where the sequence wuj, is defined by (37). By using the
property that 3" x 3" (x) = #F1(r) (c.f. (1)), it is not
difficult to show that the sampling function defined by (19)
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is simply

“+C

1
m Z

k=—~

£ (r) = ul (BB — k). (A.2)

By resampling this function at multiples of m and using (18).
we get the expression for the dual spline coefficients

1

-~ [b?”’l * Uy * (:1} 1:11(k)

dm ( k)=

where [}, denotes the down-sampling by a factor of m. To
get a direct relation between the sample values s; and s,,
(cardinal representation), we perform the appropriate changes

of coordinate system
L(})Qn-%—l)-l
m

x (")

Note that this expression is fully compatible with the results
trom Theorem 2 in [14]. It can be further manipulated to yield

sm(k) =
[[ l)“"+1

* D"

sm(k) =

2
1 % b-n+l

1] lm(lc). (A.3)

% bn} « ”)n)_

L bl sl « .5'1] (k)
lm

(A4)

Tm

where the operator []1m denoles the up-sampling by a factor

of m. The optimal prefilter hm in (36) is finally obtained by
regrouping all convolution operators that act on the signal s;.

B. Magnification by a Factor of m

We now consider the case A = 1/m. By performing the

change of variable y = «x/m in (19) and (A.2), it is not
difficult to show that
+
Gmly) = > an (KT (y = kfm). (A.5)
h=—x

We then substitute this expression in (18), which yields
*[e]im (k).

Finally, we express the coefficients in this equation in terms
of the sample values s, and s1,,, (c.f. (8) and (22)) and make
the following manipulation:

81/777(]\)-")”*( )11+1)_1*“’::, * ”2n+1* [(})”)_1*51]
= Ve, [0 [ (R).

This result, which is equivalent to (38) and (39), is precisely
the polynomial spline interpolation algorithm described in [8].

Ay (k) = uy, * f2ntl

Tm(k)
(A.6)
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