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ABSTRACT 

We present a unifying framework for the design of discrete algorithms that implement continuous signal processing operators. 
The underlying continuous-time signals are represented as linear combinations of the integer-shifts of a generating function cpi 
with (i=1,2) (continuous/discrete representation). The corresponding input and output functions spaces are V(cp,) and V(cp,), 
respectively. The principle of the method is as follows: we start by interpolating the discrete input signal with a function 
s, E V(cp,). We then apply a linear operator T to this function and compute the minimum error approximation of the result in the 
output space V(cp,). The corresponding algorithm can be expressed in terms of digital filters and a matrix multiplication. In this 
context, we emphasize the advantages of B-splines, and show how a judicious use of these basis functions can result in fast 
implementations of various types of operators. We present design examples of differential operators involving very short FIR 
filters. We also describe an efficient procedure for the geometric affine transformation of signals. The present formulation is 
general enough to include most earlier continuous/discrete signal processing techniques (e.g., standard bandlimited approach, 
spline or wavelet-based) as special cases. 

Keywords: continuous signal processing, splines, bandlimited functions, wavelets, differentiation, operator design, fast 
algorithms, recursive filters, filter design. 

1. INTRODUCTION 

The standard method for designing continuous signal processing operators is to assume a bandlimited signal model and to 
derive the corresponding discrete operators accordingly. This approach is well suited for shift-invariant operators which 
transform bandlimited functions into other bandlimited functions; these signals can all be represented exactly by their sample 
values (Shannon’s sampling theorem). The natural approach in this case is to evaluate the frequency response of the continuous 
operator and to perform a Fourier domain computation using the FFT. l2 

In practice, however, there are many applications in which more localized signal domain techniques may be preferable. For 
instance, it is customary to estimate derivatives using finite differences rather then by multiplication with jo in the frequency 
domain.7 Likewise, practitioners commonly use simple interpolation techniques (nearest neighbor, linear) to shift signals or to 
perform sampling-rate conversion (e.g., image zooming). 8* lo, l1 The reason for this preference is that local approaches are 
usually simpler to implement and substantially faster. In addition, they do not give rise to Gibbs oscillations. 

The purpose of this paper is to introduce a Hilbert space framework that unifies these various approaches and provides some 
general design principles. The main reason for considering more general classes of functions than the traditional (bandlimited) 
ones is to open up new options for solving certain types of problems, and to derive algorithms that are computationally more 
efficient. For instance, polynomial splines are well suited for performing geometric transformations because the underlying 
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basis functions are compactly supported % 31. bandlimited representations, on the other hand, lack this essential property. Note , 
that the general methodology developed here is also directly applicable in the context of the multiresolution theory of the wavelet 
transform, which uses the same type of continuous Hilbert space signal representations.“, 9, 32 

1 .I Notations and operators 

L2 is the space of measurable, square-integrable, real-valued functions s(x), XE R. L2 is a Hilbert space whose metric Il.11 (the 
Lx-norm) is derived from the inner product 

(I-J) = (r(x),s(x)) = +j&s(x)dx. (1) 

We use the “hat” symbol to denote the Fourier transform of the continuous-time function s E L2 : 

qw> = j-S(X)e-jmdx. (2) 

12 is the vector space of square-summable sequences (or discrete signals) a(k), k E 2. The convolution between two 
sequences a and b is denoted by (b*a)(k). The sequence b(k) can be viewed as a discrete convolution operator (or digital filter) 
that is applied to the signal a E 12. This filter is characterized by its transfer function (z-transform): B(z) = xkEzb(k)?; the 
corresponding Fourier transform is obtained by replacing z by e@. An important result concerning the stability and the 
reversibility of such operators is given by the following proposition.2 

Proposition 1 : A sequence b(k) defines an invertible discrete convolution operatorfrom 12 into itselfifand only if there exists 
two positive constants m and M such that m I IB(e’“)l I M, almost everywhere. 

This condition insures the existence and stability of the inverse filter, which we denote by 

(b)-‘(k) < Z-t~tmsfu~~~ , & (3) 

2. CONTINUOUS/DISCRETE SIGNAL REPRESENTATIONS 

The general design approach that we propose is reminiscent of the finite element method developed for solving partial 
differential equations.21 Although the problem is initially formulated in the continuous domain, we want to develop signal 
processing algorithms that are discrete in nature and can be effectively implemented on a computer. We are also interested in 
investigating non-bandlimited solutions, which implies a need for continuous-to-discrete and discrete-to-continuous conversion 
mechanisms that are more general than the traditional approach dictated by Shannon’s sampling theory. l7 Our formulation, 
which is inspired from the theory of the wavelet transform, is to force the input and output of our system to lie in certain signal 
subspaces generated from the translates of a generating function cp. Thanks to this particular Hilbert space structure, signals that 
are functions of the continuous variable x can also be represented by sequences of numbers (discrete representation) that can be 
processed numerically. 

In this section, we start by reviewing the corresponding signal representation and approximation mechanisms. We then 
concentrate on the special case of polynomial spline representations, and recall a number of relevant properties of the underlying 
basis functions (B-splines). 
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2.1 Signal subspaces 

A general approach to specify continuous signal representations is to consider the class of functions generated from the 
integer translates of a single function q(x). 2* 2o The corresponding function space V(q) c L2 is defined as 

V(q) = { 4~) = xktZ c(k)cp, : c(k) E 4) (4) 

where (Pi := cp(x - k) . The only restriction on the choice of the generating function cp is that the set {cp(x - k)},,, is a Riesz basis 
of V(q); this is equivalent to the condition 

A < %(e’“) = xksZI$(~ f 27ck)l’ I B ae., (5) 

where G(o) is the Fourier transform of q(x), and where A and B are two strictly positive constants.2 Note that 4((z) is also the 
z-transform of the autocorrelation sequence a,(k) = (cp(x),cp(x + k)). The admissibility condition (5) insures that each function 
s(x) in V(q) is uniquely characterized by the sequence of its coefficients c(k). 

This formulation is quite general and covers many signal representation models that have been used in the literature. 
Examples of interest are the class of bandlimited functions (with cp(x) = sine(x)), and polynomial spline representations which 
are considered in more detail in Section 2.4. Other special cases are the various subspaces associated with the wavelet transform 
and multiresolution analysis; this connection is further discussed elsewhere.’ 

This type of continuous/discrete model can also be extended for representing multi-dimensional signals in q, for example, 
images (p=2) or volumes (p=3). The simplest approach is to consider tensor-product representations using a separable multi- 
dimensional generating function 

(p(xI,-.,x,) = f-I cp(x,>, k=l 
which can be constructed from any admissible 1D generating function cp E &. The corresponding tensor-product representation 
will usually inherit the properties of the underlying 1D representation. In addition, many of the corresponding digital algorithms 
will be separable, which essentially means that the transformation can be implemented by successive 1D processing along the 
various dimensions of the data. Thus, it makes sense to first develop the one-dimensional theory even if one is interested in 
image and multidimensional signal processing applications. 

2.2 Signal approximation in V(q) 

Given an arbitrary continuously varying function s(x) E L*,, we can write its least squares approximation in our signal space 
V(q) (orthogonal projection) as 

P~~,,&~ = &Wcp, (7) 
keZ 

where the coefficients are computed as the inner products 

c(k) = (s,$,) = ]s(x);bcx- k)dx. 

The corresponding analysis function 6 E V(q) is the semi-orthogonal dual of cp; it is given by2 

(8) 

&, = &,)-’ (Wx - k) < FOWiU @(a) 

keZ ~I+@ + ‘WI2 
ksZ 

(9) 
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analysis synthesis 

Fig. 1 : Equivalent signal processing system for the approximation of a function in V(q). The 
sampling operation is modeled by a multiplication with a sequence of Dirac impulses. The solid 
rectangular boxes represent convolution operators (analog filters). 

where (a,)-’ is the convolution inverse of the autocorrelation sequence a,(k). Equation (7) can also be implemented through 
the block diagram in Fig. 1. If the generating function is orthonormal (i.e., a,(k) = 6[k]), then it is its own dual, and the prefilter 
is just the time-reversed version of the post-filter. In particular, for cp(x) = sine(x), we get the standard discretization procedure 
dictated by Shannon’s sampling theory, which uses an ideal lowpass filter prior to sampling in order to suppress aliasing. 

2.3 Approximation power 

The quality of the approximation given by (7) will depend on the order of the representation which is an intrinsic property of 
the underlying function space. The order, which is an approximation theoretic concept, provides the rate of decay of the error 
when the sampling step h goes to zero. More precisely, we will say that the function space V(q) has an order of approximation N 
if there exists a constant C,+, such that for any function s that is N times differentiable: 6 

II s - Pv,cv,s~~ I C, hN ./scN)II, (10) 

where pv,(,, {s} denotes the orthogonal projection of s into the resealed approximation space yL(cp) = span{cp(xl h - k)},,, at 
sampling step h. The bound (10) relates the approximation error to the norm of the Nth derivative of s. The implication is that 
higher order representations usually result in a smaller approximation error (even if the sampling step is one as in our case). 
Smooth (or regular) basis functions are also very desirable because they typically correspond to a smaller constant CV .23 

Interestingly, the order of approximation N only depends on the ability of the generating function to reproduce polynomials 
of degree n=N-1. 18, 2o This requirement can also be expressed in the frequency domain: 

Strang-Fix conditions18T 2o : A generating function cp has an Nth order of approximation if and only if e(“)(w) = 0 for 
o=2nk, kEZ,k#O,andn=O ,..., N-l. 

In other words, the condition for an Nth order of approximation is that the Fourier transform of cp has zeros of multiplicity Nat 
all non-zero frequencies that are integer multiples of 2% In the theory of the wavelet transform, the order of approximation 
corresponds to the number of vanishing moments of the bi-orthogonal (or orthogonal) analysis wavelet. 4, 19, 22 

2.4 Polynomial splines 

The simplest generating function is the unit rectangular pulse which generates the family of piecewise constant functions. 
Corresponding algorithms turn out to be computationally very efficient, but the approximation power of the representation is 
poor (N=l). At the other extreme, we have the bandlimited model which has good approximation properties but which suffers 
from the serious drawback that its basis functions are not compactly supported. As a result, it is difficult to design sine-based 
algorithms that are computationally realistic (unless the computations can be performed in the Fourier domain). In addition, the 
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bandlimited model often gives rise to truncation artifacts that manifest themselves as Gibbs oscillations. Splines are of interest 
because they offer a good compromise solution between those two extremes. 

Polynomial splines of degree n can be generated by taking cp to be Schoenberg’s central B-spline of degree .,t3 which we 
denote by p”(x). These generating functions are constructed from the (n+l)-fold convolution of a rectangular pulse: 

.+; 
p”(x) = p” *p”-‘(x) = p-‘(x)&, (11) 

x-i 
where 

P”(x)= :, ;;z;i;j. 0 
B-splines generating functions, and spline representations in general, turn out to be especially attractive for our purpose. Their 
main advantages are as follows: 

(i) B-splines are compactly supported. Moreover, they are the shortest known functions with an order of approximation 
N=n+l. As we shall see, this short support property is a key consideration for computational efficiency. 

(ii) B-splines are smooth and well behaved functions. Splines of degree n are (n-l) continuously differentiable (cf. right hand 
side of (11)). As a result, splines have excellent approximation properties. Precise convergence rates and error bounds are also 
available.t6, 29 

(iii) Splines have a simple analytical form (piecewise polynomial) which greatly facilitates their manipulation. 5 25 
(iv) Splines have multiresolution properties that make them very suitable for constructing wavelet functions and for 

performing multi-scale processing. 9, 24 
(v) The family of polynomial splines also provides design flexibility. By increasing the degree rt, we can progressively 

switch from the simplest piecewise constant (n=O) and piecewise linear (n=l) representations to the other extreme, which 
corresponds to a bandlimited signal model ( IZ + +oo ). 3, I43 l5 

(4 lb) 

0 

(cl 

IL 1 * 

Fig. 2 : Example of a B-spline function and its derivatives. (a) Quadratic B-spline (12=2), (b) first derivative (piecewise linear), 
(c) second derivative (piecewise constant). 

We briefly illustrate property (iii) by giving the formula for the exact differentiation of a B-spline of degree IZ : 

dp”(x)= 
dx 

pn-‘(x + 3) - pa-‘(x - 3). 

This equation can be applied recursively to obtain higher order derivatives. This process is illustrated with the quadratic 
B-spline in Fig. 2. The main point is that the pth derivative of a spline yields another spline with a corresponding reduction of 
the degree n2 = n - p. One slight complication is that the position of the basis functions is shifted by half a sampling step for odd 
order derivatives. As we shall see in Section 4.1, we can avoid this nuisance by approximating the result of the differentiation in 
the function space of our choice. 
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__) (b,)-’ s C, = &C, 2 b, ~1 PI @I = W,)[kl 
b 

prefilter linear transformation postfilter 

Fig. 3 : Discrete implementation of a continuous signal processing operator. 

3. GENERAL DESIGN PROCEDURE 

We are interested in the problem of the discretization of continuous signal processing operators. We will therefore consider 
an operator T from & (or an appropriate subspace of ZJ into &,, that acts on a signal S(X) of the continuous variable x E R, and 
that transforms it into another signal T{s}(x) that is continuously defined as well. A typical example is the differentiation 
operator: T(s) = &(x) / dx. Our only requirement is that the operator T is linear; i.e., 

V’s,,s, E &,WP E R T{as, + ps,} = aT{s,} + pT{s,}. (14) 

Our approach uses a representation of the input signal in the continuous/discrete Hilbert space V(q), and provides a 
representation of the output in V(cp,). The principle of the method is as follows. We start by selecting a model of our input 
signal si E V(cp,) to which we apply the continuous transformation operator T. We then project the transformed signal T{s,} onto 
the output space V(cp,). The resulting output s2 f T{s,} will be the least squares approximation of T{s,} in V(cp,). This 
procedure leads to a discrete algorithm that is summarized by the block diagram in Fig. 1. The various components of this 
system are described below. 

3.1 Signal interpolation 

In practice, the input signal is specified by its discrete sample values at the integers: s(k) E 1,. The first step is therefore to fit 

this data sequence with a continuous function s1 E V(cp,) , which has the following parametric representation 

s,(X)=CktZc,tk)~,t~-k). (15) 

If we require the model to provide an exact interpolation, we obtain the following condition: 

s(k) = ~1 t41x,k = (4 * c,)(k) 3 (16) 

where b, is the discretized version of the generating function 

4 tk) := (~ltx)l,=~. (17) 

Hence, if the discrete convolution operator bl is invertible (cf. Proposition l), then we can solve (16) by simple inverse digital 
filtering 

c,(k) = (@J’ *s)(k), (18) 

which is the interpolation part of the algorithm. If the generating function cpl is interpolating (i.e., if it is one at the origin and 
vanishes at all other integers), then (b,)-’ is the identity operator and the expansion coefficients in (15) are the sample values of 
the signal. A typical example where no prefiltering is necessary is C&(X) = sine(x). We should note, however, that the cost of 
prefiltering in the block diagram in Fig. 3 is usually negligible, and that we are much more interested in selecting the shortest 
possible generating function within the given subspace V(cp,). 
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3.2 Transformation and approximation 

The next step is to apply the transformation T to s,(x), which, by linearity, yields T(s,}(x) = ~k,,cl(k)T(cpl,,}. The 
transformed model T(s,} is then approximated in the least square sense by another continuous function s2 E V(q,) of the form 

szt-4 = ~&wP2,r (19) 
where 

c,tO = (Tb,l~!z,,>. (20) 

Substituting the expression of T(s,} in (20) and using the linearity of the inner product, we show that the output signal 
coefficients can be obtained from the following (infinite-dimensional) matrix equation 

Cl = Tl#l (21) 

where c, and c1 are the coefficients vectors. !& = [T,,(k,l)] is the projection matrix of the operator T from V(q) into V(cp,), 
with entry 

tkl) E Z’, GtkO = (TI~,,,lii,,). (22) 

3.3 Model resampling 

At this point, the transformation of our input signal is entirely specified through (18) and (21). In many applications, it is 
appropriate to provide a more direct representation of the result in terms of the sample values of the signal s2 z T(s,}. These 
digital signal values are obtained from the c, ‘s by discrete convolution (post-filter) 

SJkl := ~1 (~>l~,~ = (bz * c&V (23) 

where the convolution kernel b, is simply the re-sampled version of the generating function (p2 : 

b,(k) := (P&)]~,~. (24) 

3.4 Implementation considerations 

The efficiency of the algorithm will primarily depend on the sparseness of the transformation matrix q2. For these reasons, 
we would like the functions that appear in the inner product (22) to be as short as possible. Since in most cases of interest, the 
essential support of T(q,,,} will be proportional to the support of the argument (P,,~, it is therefore desirable to select q,(x) and 
e,(x) as short as possible. However, computational efficiency has also to be counterbalanced by approximation theoretic 
considerations; in other words, we should select the order of the model so as to maintain the approximation error within an 
acceptable error bound (cf. Section 2.3). 

Since the shortest known function that has an order of approximation N is the B-spline of degree n=N-1, an attractive design 
choice is 

1 
0, tx> = 0”’ tx> 
;b,<x> = P” tx> 

(25) 

where the input and output degree parameters nI and n2 can be adjusted according to the requirements of the application. Note 
that with this particular choice for e2, we are implicitly expressing the result of the transformation in the dual basis of the B- 
splines .27 
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For this particular choice of basis functions, the prefilter is an all-pole system that can be implemented efficiently using a fast 
recursive algorithm. 26 The corresponding post-filter is 

B;’ tz) B,(z) = BznZ+~ , tz> (26) 

where B:(z) denotes the z-transform of a discrete B-spline of degree n. 25 The numerator of (26) is a simple FIR filter; the 
denominator is a symmetric all-pole system that can be implemented using the recursive technique mentioned previously. 26 

4. SPECIALIZED VERSIONS OF THE ALGORITHM 

The expensive step in this sequence of operations is the evaluation of (21), which also requires the precomputation of the 
transformation matrix q2. We will now look at special classes of operators T (e.g., shift-invariant, or affine) that result in very 
simple implementations. 

4.1 Shift-invariant operators 

Let S, be the shift operator by A; i.e., S,(s) = s(x -A). An operator T is said to be shift-invariant if it commutes with the 
shift operator : T{S,s} = S,T(s}. In this case, (21) reduces to a discrete convolution equation (digital filter solution) 

c,(k) = (t,, * c,)(k) (27) 
where 

b(k)= T{ib;*cp,l(~)lx,~. (28) 

l Example 1 (bandlimited model) : Let cp, = (p2 = 4, = sine(x) and T be the convolution operator with frequency response f(o). 
Then t,, is the digital filter with the frequency response f(o) for o E [--7c, 7~1. The pre- and post-filters are the identity and we 
get the conventional bandlimited solution. This approach is the most appropriate for an implementation in the Fourier domain. 
Its main drawback is that the processing is non-local; i.e., the digital filter tlz is typically not compactly supported. 

l Example 2 (polynomial spline model) : Let us now consider the B-spline solution proposed in (25). The corresponding cross- 
correlation function is (li)r* cp,)(x) = (p” *p”)(x) = p’q+‘*+l (x). Thus, the filter t12 can be obtained by applying the operator T to 
a B-spline of degree n1 + n2 + 1. This approach is well suited for designing differential operators. As an illustrative example, we 
consider the simple case ni=l and n2 = 0, which has the advantage that no pre- nor post-filtering is required (i.e., P’(X) is an 
interpolation kernel, and p”(x) is an orthogonal generating function). Using the formulas for the differentiation of a quadratic 
B-spline (cf. graph in Fig. 2), it is not difficult to derive the corresponding FIR differentiation filters: 

T,:‘(z) = &(z -z-‘) (first derivative) 

T,yyzJ = z - 2 -t z-’ (second derivative). 

These are the 1st and 2nd order central difference operators that are commonly used in practice. Better quality approximations 
can also be obtained by using higher order basis functions. Note that we can even obtain an “exact” formula if T{cp,} E V(cp,), 
which is obviously not the case for the example above. For instance, the 2nd derivative of a spline of degree n, is a spline of 
degree n2 = n, - 2. Such “exact” digital filtering solutions have been considered previously.25 
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4.2 Pseudo-shift invariant operators (or affine-type transformations) 

A pseudo-shift invariant operator is an operator that pseudo-commutes with the shift operator; i.e., T(,S,s} = Sfc,,T(s} where 
f(A) an invertible function of A. An interesting member of this family is the affine operator: T(s} := s(ux + b). Since T(S,s} = 
s((x - A) / a + b), the corresponding pseudo-commuting function is f(A) = A/a. For this general class of operators, we rewrite 

(22) as 

T,,tk,I)=(TI~,tx-k)},ib,tx-1>)=(S,,,,TI~,(x)),~,tx-I)) 

= (T{cp,WL~,tx- l+ f(k))) = q,U - f(k)) 

where the auxiliary function T,,(X) is defined as 

h(x) = ;b;* T(%)(x). (29) 

Hence, the matrix equation (21) reduces to the much simpler linear expansion formula 

c, (0 = &,tW,, tx - ftW)lx=l . (30) 

Therefore, we can obtain a relatively efficient implementation by pre-computing the kernel z,,(x) and eventually storing it in a 
lookup table. 

In particular, this approach provides a simple general mechanism for scaling signals by factors that are not restricted to 
powers of two, as is usually the case in the context of the wavelet transform. As an illustrative example, we consider the simplest 
piecewise constant model cpr = (p2 = 4, = P”(x) and consider the dilation/contraction operator T,{s} := s(xla) where a is any 
non-zero scaling factor. The corresponding expansion kernel is 

q,(x;a) = +j$‘(x - y@“(yla)dy = 

1 

h 0 I 1x1 < x0 
h - h$$$ x0 5 Ix]< x1 (31) 
0, Xl 5 1x1 

where the height h and knot constants x0 and x1 are defined as follows 

1 

h = min{l,lal} 

x0 =~l-~cX~~/2 . 

x, =(l+la/)/2 

(32) 

This function is piecewise linear. An example for a = 3/ 2 is shown in Fig. 4. Note that the corresponding affine transformation 
formula (30) is similar to a linear interpolation except that it uses the modified sampling kernel ~,,(x;a) that depends explicitly 
on the scaling factor a. The advantage of the least squares scheme is that it provides an implicit protection against aliasing 
errors (i.e., it includes the additional prefiltering step in Fig. 1). 
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Fig. 4 : Example of trapezoidal sampling function for the implementation of an affine transformation with 01=3/2 for the piecewise constant 
model. 

Similar least squares signal resealing algorithms can also be derived using higher order spline models.28 What makes this 
type of approach feasible is the fact that cpl and 4, can be selected so that the function 7,2 is compactly supported (cf. (29)). 
For a given polynomial spline model, the present formulation with n, = n2 yields an algorithm that is consistently superior to the 
conventional interpolation approach that uses a direct signal re-sampling. 28 The method can also be extended for geometrical 
affine transformations in higher dimensions.30 

Finally, we note that the compact support condition for ‘t,,(x) cannot be achieved in the traditional bandlimited framework; 
for this reason, there is no practical sine-based algorithm for this particular problem unless a is an integer factor. 

5. CONCLUSION 

We have presented a general approach for the design of continuous signal processing operators. Although the problem is 
entirely formulated in the continuous domain, the solution is provided by a digital algorithm that can implemented numerically. 
In this sense, we have a formulation that is analogous to the finite element approach for the discretization of partial differential 
equations. The approach has a sound mathematical foundation that takes its roots in the theory of the wavelet transform. The 
input and output representation subspaces are well-defined Hilbert spaces with a convenient integer-shift-invariant structure. 
The design methodology uses a rather standard least squares criterion. As a result, the solution (orthogonal projection) is optimal 
in a well defined sense. 

The present formulation is general enough to provide a unifying framework for most of the work that has been done so far in 
the area of continuous/discrete signal processing. Special cases include the traditional bandlimited approach, most instances of 
spline processing, and operator design in the wavelet domain. Presently, we have only looked at a very small subset of operators 
and identified some special cases that resulted in efficient implementations. The full potential of the method still remains to be 
explored. 

We have shown, at least qualitatively, that we can improve the quality of the approximation by increasing the order of the 
input and output representation spaces. However, there are still a number of related performance issues that need to be addressed 
more quantitatively. In particular, it is not yet entirely clear how the order of the input space influences the quality of the 
approximation of the operator, although we would tend to select ~zr 2 n2 . It would therefore be of great interest to derive error 
bounds that show the explicit dependency on both of these variables. 
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