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ABSTRACT

The order of a wavelet transform is typically given by the

number of vanishing moments of the analysis wavelet. The

Strang-Fix conditions imply that the error for an orthogonal

wavelet approximation at scale a i= −2  globally decays as aL ,

where L is the order of the transform.  This is why, for a given

number of scales, higher order wavelet transforms usually result

in better signal approximations.  We show that this result carries

over for the general biorthogonal case and that the rate of decay

of the error is determined by the order properties of the

synthesis scaling function alone.  We also derive asymptotic

error formulas and show that biorthogonal wavelet transforms

are equivalent to their corresponding orthogonal projector as the

scale goes to zero.  These results strengthen Sweldens' earlier

analysis and confirm that the approximation power of

biorthogonal and (semi-)orthogonal wavelet expansions is

essentially the same.  Finally, we compare the asymptotic

performance of various wavelet transforms and briefly discuss

the advantages of splines.  We also indicate how the smoothness

of the basis functions is beneficial in reducing the approximation

error.

1. INTRODUCTION

For researchers working with multirate filterbanks, the

mathematical theory of the wavelet transform brought about the

new constraint of designing filterbanks with a certain number of

zeros (multiplicity L) at z = −1 [1].  One of the initial

justifications for selecting a zero of multiplicity L is that this

condition is necessary for constructing regular wavelets with

L −1 continuous derivatives [2].  Unfortunately, it is not

sufficient and the regularity index of most wavelet bases is

usually much smaller than L-1.  Another motivation is that the

order properties of the refinement filter get translated into a

corresponding number of vanishing moments for the analysis

wavelet.  These vanishing moments can play a crucial role in the

characterization of the local Hölder exponent of singularities [3].

These are all reasons why the order properties of the wavelet

transform are generally believed to be useful in applications.

Beside the regularity of the basis functions themselves,

there is also another compelling reason for using higher order

wavelet decompositions, which takes its roots in approximation

theory [4].  Specifically, if P fa  denotes the least squares

approximation (orthogonal projection) of a function in a

multiresolution space at scale a i= 2 , then the theory indicates

that the error must decay like O aL( ) where L is the order of the

representation.  This fundamental result may explain why higher

order wavelets are usually preferable for data compression.

This particular aspect of the wavelet theory is not well known in

signal/image processing, but it is probably very relevant to this

particular area of application.

In this communication, we emphasize the relevance to

wavelets of the Strang-Fix theory of approximation which was

developed in the early 70s. We then present some new

extensions for oblique projections that are directly applicable to

biorthogonal wavelet expansions.  We also provide asymptotic

error formulas and give explicit bound constants which allow

the comparison of various wavelet transforms.  Finally, we

consider the use of the two-scale relation for the calculation of

the asymptotic bound constants and propose a new explanation

of why the smoothness of the basis functions has a reducing

effect on the approximation error.  Some of these results are

given without proof; for a complete mathematical treatment we

refer to [5].

2. BASIC RESULTS

In the Strang-Fix theory of approximation, functions are

represented in terms of the re-scaled translates of a generating

function ϕ [4].  However, since there is no requirement for the

two-scale relation, the setting is more general than that of the

wavelet transform.



Definition 2.1 : An Lth order generating function is a function

ϕ ∈L2 with the following properties.

(i) Riesz Basis Condition
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where ˆ ( )ϕ ω  is the Fourier transform of ϕ, and ˆ ( )( )ϕ ωm  denotes

its mth derivative with respect to ω.

Instead of powers of two, there is a continuous scale

parameter a; the corresponding approximation space is
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Since the spaces Va ( )ϕ  are rescaled versions of each other, we

can discuss these conditions in terms of the basic space

V x k k Z1( ) span{ ( )}ϕ ϕ= − ∈ .  Condition (i) implies that V1( )ϕ  is a

closed subspace of L2 with { ( )}ϕ x k k Z− ∈  as its Riesz basis [6].

In other words, the basis functions are linearly independent and

each function f V1 1∈ ( )ϕ  has a stable and unique representation

in terms of its coefficients c k1( ) .  Condition (ii) implies that the

generating function ϕ  reproduces all polynomials de degree

n=L-1 [4].  This is also equivalent to say that there exists a

function ϕ ϕQI ( ) ( )x V∈ 1  that interpolates all polynomials of

degree n, including the monomials
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k Z
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Such a function, which is typically not unique, is called a quasi-

interpolant of degree L-1 [7, 8]. The basic theoretical tool for

establishing these polynomial reproducing properties is

Poisson's summation formula.  As an example, we derive the

equivalence between Property (ii) with L=1 and the well known

"partition of unity" condition (reproduction of a constant)

ϕ ϕ( ) ˆ ( )x k k
k Z k Z

− = π =
∈ ∈
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The order condition (ii) has some important theoretical

consequences on the rate of approximation of functions in L2.

Theorem 2.2 (Strang-Fix) :  If ϕ  is an Lth order generating

function with appropriate decay then the minimum

approximation error at step size a for an arbitrary function f

(sufficiently smooth in L2) is bounded as follows

 inf
( )

( )
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L L
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where Cϕ  is a constant that is independent of f and where f L( )

denotes the norm of the Lth derivative of f.

In the particular case of the wavelet transform, the generator ϕ
has the additional multiresolution property; the scale is also

restricted to powers of two.

Definition 2.3 :  An Lth order scaling function is an Lth order

generating function if it satisfies the additional two-scale

relation:
ϕ ϕ( / ) ( ) ( )x h k x k

k Z

2 = −
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Since Theorem 2.2 applies to the minimum error approximation

(orthogonal projection), it is obviously also applicable for

orthogonal and semi-orthogonal wavelet transforms [9].  In

particular, this result implies that the error decays as O aL( ) as

the scale a i= 2  becomes sufficiently small.

By applying the refinement equation (5) ad infinitum, we get

the equivalent infinite product representation of the Fourier

transform of the scaling function ϕ
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This relation is crucial for establishing the connection between

the order condition (ii) and the better known wavelet properties

mentioned in the introduction.

Proposition 2.4: If H e j( )ω  has zeros of multiplicity L at

ω = π  (or if H z z Q zL L( ) ( ) ( )= + ⋅−2 1  where Q z( )  is a stable

transfer function) then ϕ is an Lth order scaling function.

Proof: Let us write k qn= 2  with q odd, a representation that

always exists for any non-zero integer k. Using (6), we

factorize and differentiate ˆ ( )ϕ ω  as follows
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For ω = π = π ⋅2 2 2k qn( )  with q odd, the leading factors in the

sum all vanish because H e H ek j q k j( ) ( )( ) ( )π π= = 0  (recall that

H ek j( ) ( )ξ  is 2π-periodic). Thus, ˆ ( )( )ϕ m k2 0π =  for

k Z k∈ ≠,  0 . ❏

Proposition 2.5: For an Lth order wavelet transform (i.e.,

the synthesis scaling function has an L th order of

approximation), the biorthogonal analysis wavelet ψ̃  has L

vanishing moments.

Proof: Let V( )ϕ2  denote the corresponding synthesis space.

Since ϕ2  is an Lth order function, there also exists a quasi-

interpolant ϕ ϕQI ∈V( )2  such that (2) is verified. For m=0,…,

L −1, we then write
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where the inner products on the right are zero because ψ̃  is

perpendicular V( )ϕ2  by construction.  For the proof to be

complete, we also require ϕ2  and ϕQI  to have sufficient decay

(e.g. ϕ ε
2 1( )x C x L≤ ⋅ + − −  with ε>0) so that we can safely

permute the infinite sum and the integral. ❏

3. NEW THEORETICAL RESULTS FOR

BIORTHOGONAL EXPANSIONS

The Strang-Fix results only applies to the (semi-) orthogonal

case (orthogonal projection).  To obtain more general bounds

and formulas, we consider the oblique projection operator

˜ ( ) , ˜ ( / ) ( / )P f x a f x a k x a ka
k Z

( ) = 〈 − 〉 ⋅ −−

∈
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that computes the projection of f L∈ 2  into the synthesis space

Va( )ϕ  perpendicular to the analysis space Va( ˜ )ϕ , where ϕ  and

ϕ̃  are two biorthogonal (or dual) generating functions [10].

We can then prove the following, which is the generalization of

Theorem 2.2 for the biorthogonal case.

Theorem 3.1 : If ϕ  is an Lth order generating function then

the oblique projection error at scale a for an arbitrary function f

(sufficiently smooth in L2) is bounded as follows

 inf   ˜   
( )
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where C Cϕ ϕ θ, ˜ / cos=  is a constant that is independent of f; θ is

also the angle between the spaces Va( )ϕ  and Va( ˜ )ϕ .

Proof: This result can be derived as a corollary Strang's L2-

bound (4). For this purpose, we make use of a rescaled version

of Theorem 3 in [10] which provides a direct bound between the

orthogonal and oblique projection errors

f P f f P f f P fa a a− ≤ − ≤ −  ˜  
cos
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where cosθ  is given by
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Since the generating functions are biorthogonal, we can easily

show that cos ( ˜ )θ ≥ >−BB 1 0 , where B  and B̃   are the upper

frame bounds for ϕ  and ϕ̃  in Definition 2.1, respectively.

Hence, combining (4) with (9), we get

f P f f P f f P f C a fa a a
N N− ≤ − ≤ − ≤ ⋅ ⋅  ˜   

cos , ˜
( )1

θ ϕ ϕ ,

with a finite constant C Cϕ ϕ ϕ θ, ˜  / cos=  . ❏

This error bound shows that oblique and orthogonal projection

operators are qualitatively equivalent.

3.1 Asymptotic error analysis

In practice, the agreement between orthogonal and biorthogonal

projections is usually much better than what is suggested by the

bound (8) which reflects the worst case scenario (e.g., the

safety factor 1/cosθ).  In fact, we can use a Taylor series

argument to derive the following asymptotic equivalence result,

which also provides an explicit formula for the smallest possible

bound constant C.

Theorem 3.2 : If the analysis function ϕ̃  satisfies the partition

of unity condition (i.e., if it is a first order function), then the

Lth order oblique projection operator (1) is asymptotically

optimal (i.e., equivalent to the orthogonal projection or

minimum error solution).  The asymptotic error is given by

f P f C a f O aa
L L L− = ⋅ ⋅ +− +˜ ( )( )

ϕ
1      as a → 0, (11)
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This result is consistent with an earlier asymptotic error analysis

by Sweldens [11].  However, it provides some improvement in

two important respects. First, the computation is more direct in

the sense that it avoids using wavelet expansions. The main

benefit is a much simpler formula for the bound constant.

Second, the present error estimate is sharper (smaller constant)

and asymptotically exact.  The complete proof can be found in

[5].

Theorem 3.2 is a quantitative result that is applicable to all

wavelet transforms.  It essentially shows that their performance

primarily depends on the synthesis space — in other words,

orthogonal and biorthogonal wavelet transforms are

asymptotically equivalent.

3.2 Bound constant computation

The computation of the bound constant  Cϕ
−  can serve as a basis

for the comparison of different wavelet transforms.  While the

explicit relation (12) is directly applicable in certain special cases

such as splines, we also need a mechanism to compute the

required derivatives when the scaling function is specified

indirectly through the refinement filter h.  To derive such a



relation, we rewrite the two-scale relation (5) in the Fourier

domain and differentiate L times, applying the chain rule:
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Using the property H em j l( ) ( )( )2 1 0+ π = , m=0,…,L-1, we obtain a

direct expression for the odd indexed derivatives in (12):
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π( ) = ⋅ π( )π        (for k odd).

Next, we apply the basic factorization H z z Q zL L( ) ( ) ( )= + ⋅−2 1

(cf. Proposition 2.4), and evaluate H eL j( ) ( )ω  explicitly
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which finally yields for k=2l+1:
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Likewise, using the order property (ii) and the fact that

H e j l( )2 1π =  in (13), we determine the remaining even indexed

coefficients using the recursive rule

ˆ ˆ ˆ( ) ( ) ( )ϕ ϕ ϕL L
L

Lk l l2 4
1
2

2π( ) = π( ) = ⋅ π( ),    (k even). (15)

These last two equations are then used to compute the bound

constant in (12) numerically, summing up over a sufficient

number of terms.

Table I provides a comparison for various wavelet

transforms.  Note that the results for splines are applicable for

any type of spline wavelet transform (orthogonal Battle-

Lemarié, semi-orthogonal Chui-Wang / Unser-Aldroubi, and

biorthogonal Cohen-Daubechies-Feauveau).  For a given order

L , we see that the Daubechies wavelets have the worst

performance; splines are by far the best.  These results suggest

that splines at half the resolution can provide as good an

approximation as Daubechies wavelets at twice the rate.  In

general, the performance is better for the scaling functions that

are the most regular.

3.3 Discussion

The results in Table 1 indicate that some representations —

splines, in particular— are more favorable than others for

approximating smooth functions.  If we look at (14), we can

easily identify the ingredients that are important for good

asymptotic performance. Clearly, it is preferable to have Q e j( )π

small and ϕ̂  decaying fast. This last property is primarily

dependent on the regularity of the scaling function. Specifically,

if ϕ ∈Cm  (m times continuously differentiable) then its Fourier

transform decays at least as O m( )ω− .  Thus, we can conclude

that the smoothest scaling functions should have the better

performance.  Once again, this strongly points toward splines

which are among the better behaved functions of a given order

L .  While it is possible to construct examples of scaling

functions with even more smoothness, B-splines turn out to be

the shortest ones for a given order L.  They therefore appear to

be optimal if we include the filter length constraint in the design.

This is perhaps one of the primary reasons why biorthogonal

spline wavelets perform so well in coding applications.

TABLE 1 : RESCALED BOUND CONSTANT A C LL
− −= ⋅ϕ !  FOR

DIFFERENT WAVELET FAMILIES.

L Daubechies
closest-to-
linear phase coiflets spline

Deslauriers-
Dubuc

1 0.2887 0.2887 0.2887

2 0.2236 0.2236 0.2124 0.07454 0.07454

3 0.2988 0.2988 0.03450

4 0.5557 0.5557 0.4953 0.02182 0.1871

5 1.316 1.316 0.01734

6 3.779 3.779 3.231 0.01655 1.212

7 12.74 12.74 0.01844

8 49.35 49.35 40.92 0.02347 15.06

9 215.8 215.8 0.03362
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