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Approximation Power of
Biorthogonal Wavelet Expansions

Michael Unser, Senior Member, IEEE

Abstract— This paper looks at the effect of the number of
vanishing moments on the approximation power of wavelet ex-
pansions. The Strang-Fix conditions imply that the error for
an orthogonal wavelet approximation at scale ¢ = 27 globally
decays as o'’ where N is the order of the transform. This is why,
for a given number of scales, higher order wavelet transforms
usually result in better signal approximations. We prove that
this result carries over for the general biorthogonal case and
that the rate of decay of the error is determined by the order
properties of the synthesis scaling function alone. We also derive
asymptotic error formulas and show that biorthogonal wavelet
transforms are equivalent to their corresponding orthogonal
projector as the scale goes to zero. These results strengthen
Sweldens’ earlier analysis and confirm that the approximation
power of biorthogonal and (semi-)orthogonal wavelet expansions
is essentially the same. Finally, we compare the asymptotic
performance of various wavelet transforms and briefly discuss
the advantages of splines. We also indicate how the smoothness
of the basis functions is beneficial in reducing the approximation
error. .

I. INTRODUCTION

OR researchers working with multirate filterbanks, the

mathematical theory of the wavelet transform brought
about the new constraint of designing filterbanks with a
certain number of zeros (multiplicity N) at z = —1 [1], [2].
Indeed, most families of wavelet bases are indexed by this
important order parameter, which also represents the number
of vanishing moments for the analysis wavelet [3], [4]. One
of the initial justifications for selecting a zero of multiplicity
N -is that this condition is necessary for constructing regular
wavelets with N — 1 continuous derivatives (cf. [5, Corollary
5.5.4, p. 155]). Unfortunately, it is not sufficient, and the
regularity index of most wavelet bases is generally smaller
than N — 1 [5]-[7]. The number of vanishing moments of the
analysis wavelet also play a crucial role in the characterization
of the local Holder exponent of singularities [8], [9]. These
are all reasons why the vanishing moments of the wavelet
are generally believed to be useful in many applications. Two
examples where these properties are especially relevant are
image coding [10], [11] and the analysis of fractal random
processes [12], [13]. ’
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‘using the short-form notation ¢; s

Beside the regularity of the basis functions themselves,
there is also another .compelling reason for using higher
order wavelet decompositions, which takes its roots in ap-~
proximation theory [14], [15]. This particular aspect of the
wavelet theory is less well known in signal processing, but
it is probably more directly relevant to this particular area of
application. Specifically, if f is a smooth L, function (in the
sense that its Nth derivative (V) is square integrable) and if
¢ is an Nth-order orthogonal scaling function, then one has
the following error bound (cf. [6]):

If = Bo-ifllzs < Cp - 27 - |f N, M
where P,-: f denotes the approximation of f at scale @ = 27*
(orthogonal projection):

“+o00
Pysf =3 (figimdboin= 3. D (frtie)ix @

kez j=—it+lkeZ

2732p(27x — k).
In other words, the order N controls the rate of decay of
the approximation error, suggesting that higher order wavelet
approximations should generally require less terms (or scales)
to approximate a smooth function within a certain error
tolerance, This characteristic O(a”) decay of the error as
a function of the scale is also apparent in the pointwise
and asymptotic estimates that have been derived recently
[16]-[19]. Sweldens and Piessens (SP) obtained the same
estimates for biorthogonal wavelet expansions as well and
proved that the asymptotic error only depends on the order
properties of the primary representation space and not on how
the complementary wavelet subspaces are chosen [19]. These
results strongly suggest that the same kind of extension should
also be possible for Strang’s initial Ly-bound (1). _

In this paper, we start by briefly explaining how these results
relate to the Strang-Fix theory developed in the early 1970s,
long before the invention of the wavelet transform. In Section
III, we then show how to obtain the corresponding Ly-error
bound for the more general biorthogonal case. Biorthogonal
transforms may be preferable in some applications because of
the freedom that they leave in the specification of the analysis
filters. In Section IV, we extend the SP asymptotic analysis
and determine the limit of the error as a goes to zero. The
main improvements over SP’s earlier results are as follows.

1) The computation is more direct in the sense that it avoids

using wavelet expansions.
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2) The present error estimate is sharper (smaller constant)
and asymptotically exact.

3) The setting is more general.
In the process, we also provide practical formulas that permit
an easy calculation of the bound constants. We then com-
pare the performance of various wavelet transforms. Finally,
we conclude by proposing a new explanation of why the
smoothness of the basis functions has a reducing effect on
the approximation error. ‘

II. PRELIMINARY NOTIONS

We take a more general perspective than the usual mul-
tiresolution formulation and consider signal representations in
terms of rescaled translates of an (almost) arbitrary generating
function . At this stage, ¢ is not required to have the
multiresolution property, and the scale parameter (or sampling
step) a can be arbitrary (not necessarily a power of two).

Definition 2.1: An Nth-order generating function is a func-
tion ¢ € Lo such that
) 0<A< Y [plw+2mk)” <B < +oo

kez . . ",
(Riesz basis condition)

ii) p(0) =1and @™ (27k) =0, k€ Z,k#£0
for (m=0,---,N = 1) (Order property)
where ¢(w) is the Fourier transform of ¢, and $("™(w) denotes
its mth derivative with respect to w.

The corresponding signal representation space at scale a is

Valp) = {fa(w) =02 3 culkpla/a— k) ca € zz}.

keZ
3)
Condition i) ensures that V,(p) is a well-defined subspace
of Ly and that each function f, € V,(¢) has a unique
representation in terms of its coefficients ¢, (k) [20]. Condition
ii) is an indirect statement of the fact ¢ that reproduces all
polynomials of degree N — 1 [6], [14].

An other equivalent way of expressing the order property
i) is to consider the periodization of the function z™p(z)
whose Fourier transform is j™@3(™)(w). Using the property
that a periodization along the time dimension corresponds to
a sampling in the frequency domain, we obtain the following
Fourier series: representations

N (@ — k)mp(z — k) = 5™ @) (2mk)ei2mEe
kez K€z ’
=my, (m=0,---,N-1) &)

where the right—most‘ constant corresponds to the Fourier
component at the origin since all others are zero as a result
of Condition ii). This constant turns out to be the mth-
order moment of the generating function, which is defined
as follows:

“+oo
my, = / " p(z)dz = jmga(m) (0).

—o0

&)
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In particular, for m = 0, we have m?o = $(0) = 1, which gets
translated into the following “partition of unity” property

Zgo(a:——k):l.

kezZ

ON

Given an arbitrary function f € L, we compute its
minimum etror approximation in V,(¢) (orthogonal projection
at scale a) as

(Puf)@)=a1 > (£, ¢ (z/a— k) p(w/a—k). (D)

kezZ )

where ¢ € V() is the unique semi-orthogonal dual of ¢ [20),
and where a~?! is the appropriate inner-product normalization
factor. The order property ii) has some important implication
on the approximation power of the representation. '

Theorem 2.2 (Strang-Fix): ‘If o is an Nth-order generating
function with suitable decay, then the minimum approximation
error at step size a for an arbitrary function f (sufficiently
smooth) is bounded as follows:

inf ~ Ll < Cya | 8
LA = fall < Cpa P ®

where C,, is a constant that is independent of f.

This result is an abbreviated form of the Strang—Fix condi-
tions, which are even stronger in the sense that the implication
goes both ways [14]. Strang and Fix initially assumed that ¢
is compactly supported, but their result has also been extended
for noncompact ¢ with polynomial decay [21], [22].

What is somewhat counterintuitive with Theorem 2.2 is
that the rate of decay of the error does not depend on the
smoothness (or regularity) of ¢. The only determining factor is
the multiplicity of the zeros of ¢ at w = 2kx, 'k € Z\ {0} (cf.
Condition ii)). One point of this paper will be to demonstrate
that smoothness has some importance as well because of the
way in which it affects the magnitude of the constant involved.

In the particular case of the wavelet transform, the generator
 has the additional multiresolution property; the scale is also
restricted to powers of two.

Definition 2.3: An Nth-order scaling function is an Nth-
order generating function that satisfies the additional two-scale
relation ' '

o(z/2) =Y hk)p(e — k). . ©

keZ -

By applying this refinement equation ad infinitum, we get
the equivalent infinite product representation of the Fourier
transform of the scaling function ¢

+co .
p(w) = [[ H(e™*) (10)
=1

where H(z) denotes the z-transform of the refinement filter A.
It is then possible to establish the following proposition.
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Proposition 2.4 If H(e’*) has zeros of multiplicity N at
w=m (orif H(z) = 271 + 2)V - Q(z), where Q(2) is
a stable transfer function), then ¢ is an Nth-order scaling
function.

Since the infimum in (8) corresponds to the orthogonal
projection, we can therefore directly apply this result to get
Strang’s wavelet bound (1), which is obviously also valid for
semi-orthogonal representations.

II. ERROR BOUNDS FOR BIORTHOGONAL EXPANSIONS

Here, we are concerned with biorthogonal wavelet ex-
pansions that are obtained by oblique projection (instead of
orthogonal) [23], [24]. Using essentially the same formulation
as above, we define the general rescaled oblique projection
operator as in [25]

(Paf)(@) = a™" > (f,@(z/a— k) - plz/a—k) (1)

keZ

where ¢ and ¢ are two biorthogonal generating functions such
that '

(plz = k), p(x = 1)) = b1

Specifically, P, f is the projection of f onto V, () perpen-
dicular to V,(@). The essential difference with (7) is that ¢
(unlike @) is not necessarily in V;(p). We can now state our
first result.

(12)

- Theorem 3.1: If ¢ is an Nth-order generating function with
appropriate decay, then the oblique projection error at scale a
for an arbitrary function f (sufficiently smooth) is bounded
as follows:

inf < Uf = Bufll < Cos - a - If™M) (13
faelga(@)llf fll SN = Pafl £ Cpp-a™ - |IfV)] (13)

 where C,,5 is a constant that is independent of f.

Proof: We have chosen to derive this result as a corollary
of the Strang—Fix conditions (8). For this purpose, we make
use of a rescaled version of Theorem 3 in [25], which provides
a direct bound between the orthogonal and oblique projection
€1Tor1S

- 1
- <If = < ——||f - 4
I = Pufl S 1S = PuS S I = Rufll - (19)
where cosf is given by

cosf = - |
ess inf ez P@ + 27F) -$(w + 27k)

welo,m) \/ZkGZ [p(w + 20k)|2 - e 7 Wo(w + 2”’9)12‘
(15)

Since the generating functions are biorthogonal, we can easily
show that cosf > (BB)~! > 0, where B and B are the
upper frame bounds for ¢ and ¢ in Definition 2.1, respectively.
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Hence, combining (8) with (14), we get

If = Pafll S If = Pafll < (cos8)™" - || f = P
| < Cpg-a - If )

with a finite constant C, 5 = C,/ cos§. d

A direct implication of this result is that we can approximate
any L, function as closely as we wish, provided that we
use a sampling step that is sufficiently small. The theorem
also indicates that the rate of convergence depends on the
order properties of the synthesis function ¢ alone and that
the analysis function has essentially no influence (except on
the magnitude of the constant). We can also particularize this
result to the case where ¢ and ¢ are both scaling functions
and obtain the generalization of (1) for biorthogonal wavelet
expansions :

+00
“f— SO diwbin

j=—i+lkeZ

=|1f =D pik)oik
kez
< O 27N [l

(16)

‘In this sense, orthogonal, semi-orthogonal, and biorthogonal

wavelet expansions are all essentially equivalent. Note that
in the semi-orthognal case, cosf = 1 so that we end up
with Strang’s initial estimate. The advantage of biorthogonal
expansions is that they offer more freedom in the design of
the wavelet filters. For instance, these can all be symmetric
FIR, which is typically not possible in the (semi-)orthogonal
case [2], [5].

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

The general error bound shows that up to a constant factor
(1/cos§), oblique and orthogonal projection operators are
qualitatively equivalent. However, one should note that this
estimate corresponds to a worse-case scenario and that the loss
of performance in a practical situation may be much less than
what is suggested by this bound. In this section, we will be
more quantitative and provide a precise characterization of the
asymptotic error. We will also use these formulas to compare .
the performance of various wavelet transforms.

A. Asymptotic Error Characterization and Equivalence

For smaller values of the scale, we can use a Taylor series
analysis method to get the limiting form of the approximation
error, which also exhibits the characteristic O(a”) behavior.
The conclusion of this analysis is that in most practical cases,
biorthogonal projection operators are asymptotically optimal in
the sense that they have exactly the same limit behavior as their
corresponding orthogonal projector. This result is expressed
by the following theorem.

Theorem 4.1: The Nth-order oblique projection operator
(11) is asymptotically equivalent to the corresponding orthog-
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onal projector P, in the sense that both

If = Pafll = CF - a™ - [IfN] + O(a""T)
and

I1f = Pufll = C; - a™ - JIf] + 0@V asa—0
provided that either of the two following conditions are
satisfied: a) »,,., ¢(z — k) 1 (e, ¢ is a first-order
generating function), or b) N is odd plus ¢ and ¢ are both
symmetrical. The optimal constant C; ; which does not depend
on ¢, is given by

1/2

_ 1 R
O = > ™ @2nk)|?
k0.

an

Note that condition a) is the minimum requirement for
constructing meaningful scaling functions and (admissible)
wavelets. Our result is therefore consistent with SP’s earlier
report- that the asymptotic error for biorthogonal wavelet
expansions is entirely determined by the properties of the
approximation space (cf. [19, Theorem 2, p. 398]). We note,
however, that our specification of the optimal constant C
leads to a sharper Ls-estimate, which is asymptotically exact.
It is also not difficult to show that the value of this constant
remains the same if we use any another equivalent generating
function peq € Vi(y) such that Peq(0) = 1.

Condition b) also indicates that there are asymptotically
~ optimal solutions that do not require the partition of unity
condition on the analysis side. For instance, one may consider
a single resolution deconvolution system that uses a symmetric
Gaussian on the analysis side (acquisition device) and a
centered B-spline of even degree n on the synthesis side. The
corresponding oblique projector can be implemented exactly
by using an additional digital filtering module, as described
in [25].

The detailed proof of Theorem 4.1, which also provides
some insight into the approximation process, is presented in the
next section. Those not interested in derivations can directly
proceed to Section IV-C.

B. Proof of Theorem 4.1 and Related Results

~ This section presents an alternative to the asymptotic analy-
sis in [19]. The main improvement is the use of a more direct
formulation in which the approximation error is expressed
using the reproducing kernel rather than an infinite sequence
of wavelet terms. This results in a number of simplifications
and lends itself more easily to the derivation of exact bound
constants. ‘

We start with a result that is essentially equivalent to lemma
5 in {19].

Lemma 4.2: Let n(y) = {(p(z — y),$(z)) be the cross-
correlation function between the Nth-order generating func-
tion ¢ and its dual ¢. Then, we have the following moment
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properties:

o (8)

where N is the order of @.

Proof: To derive the central identity, we write the Fourier
transform of 7 and differentiate m times applying the product
A w) =3

tule:
(7)7™@
=0

=3 (1) 0™ ).
C1=0

m

(m~1) -

(w)

¢

Note that the right-hand side expression is obtained by using
the Hermitian symmetry of the Fourier transform of the real
valued function ¢. Rewriting this equation for w = 0 and using
the moment relation (5), we obtain the following identity:

(1) iutns-

which is true irrespective of the value of m. Next, we express
the biorthogonality condition in the Fourier domain -

kol ~ K), p(a ~ 1) =B

& Zé*(w + 2rk)p(w 4 27k) = L.
kez

n—i

k=0

19

(20)

and take the mth derivative at w = 0, which yields

| Z Z (T) (-1)'¢V (~2nk) é(m_n(%k) =0.
k€Z 1=0 ‘ ‘

If m < N + N, where N is the order of the dual function,
then, for k # 0, there will always be at least one term in the
product that is zero, i.e., (™) (2rk) =0form =0,..- ,N-1,
Hence, the only remaining terms in the sum are those at the
origin, which implies that B

(7)o" 0

>
=0
m =20

1, ‘
:{0, m=1,,N+N -1 @h

The last step is to rewrite this identity in terms of moments
which yields the desired result. |

For notation convenience, we rewrite the oblique projection
operator (11) as

- +oo
E@ =0 [ k(S e
where K (z,y) is the reproducing kernel
K(z,y)= oy~ kp(z—k). (23)

keZ
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Using the results in Lemma 4.2, we can now show that K (z, y)
has the following cancellation properties.

Proposition 4.3: If ¢ has an Nth order of approximation,
then ;

400
eo(z) = K(z,y)dy =1 24

“+o0
em(a:):/ (y—2)"K(z,y)dy=0 m=1,---,N—-1
(25)

and
en(z) =md — (=1)"md + () > " (z ~ k)N p(z - k)
‘kez

(26)
where m;’lv is the Vth moment of the cross-correlation function

7 defined in Lemma 4.2.

Proof: Using the Binomial theorem, we expand e,,(z)
as follows:

9= [T Y-8 -a-py
x p(z ~k)ply ~ k) - dy

=25 (V)0 - oo

k€Z 1=0
+oo
<[ w-Rmel - k) dy
=>. (T)(—l)’ Y@=kl ~k)
=0 keZ
+o0
X/_ Y™ G(y) - dy.

Note that we need some decay on ¢ (e.g., po(z) < C - |1+

x|~ (V+14€) with 0 < e to justify the various permutations of

the infinite sum. For m < N, we rewrite this equation in terms
of moments using (4) and apply Lemma 4.2 to show that

em(T) = i (77)(_1)1m50mgl_1

=0
_J1, m=0
“0, m=1,--,

For m = N, we can also identify moments and isolate the last
nonconstant term on the right

N-1

= (N _
en(z) = (—l)lmfpmg Ly

> (7)

—1)¥md 3 - K)o — k).

keZ

Finally, using (19) with m = N and the fact that m{, =
m%.= 1, we replace the first term by its equivalent expression

m? — (=1)mY, which yields the desired result. O
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Interestingly, the functions e,,(z) also provide a direct
measure of the approximation error for the monomial z™.
Specifically, it can be shown that

“+oo
(1) "em(z) = 2™ —/ y" K(z,y)dy
=z™ - Pz™, form=0,---,N.

Thus, the cancellation properties in Proposition 4.3 imply a
perfect reproduction of polynomials of degree n = N —
1. The error for the lowest degree monomial that cannot
be approximated exactly is (—1)™ey(z). This observation
provides the connection with the approach of SP, who express

_ this error in term of the “monowavelet” function 7o(z), which

comes from the periodization of a monomial multiplied with
a wavelet [18], [19].

We then use Proposition 4.3 to establish the following
standard pointwise estimate.

Proposition 4.4: If ¢ has an Nth-order of approximation
and f € CN+L, then

@) = (Puf)(@) = ~ 2 O @en (2) + 0™ @)

Proof: Using (22) and (24), We write the approximation
error as

s = )@ = [ (1) - f) K (5 L)y

a a
Next, we replace f(y) by its Nth-order Taylor series around

f(fc)—(f’ (=)

IR AR w) " " LK(Z,Y)dy

a a
- “k(Z,%)d
/oo RN-H(y)a ((L,a) Y

-- 3 LR ()
i wédiﬂ)w

f(m)

where the rest of the Taylor series is Ryy1(y) = (y —
)NHLFNHLE /(N + 1)! with z < € < y. As a consequence
of the order property (cf. Proposition 4.3), the first N — 1
error terms are zero (polynomial cancellation). This leads to
the following estimate:

fz) -

where

<C.aVtL

(Puf)@)+ I o (2)

N! o

I P
I P/_m

which proves the desired result. Note that the right-hand side

supremum is well defined if ¢ and ¢ both decay faster than
O(zWV+1+e)y - O

ly — |V K (2, y)|dy
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We are now in the position to prove our main result.
Proof of Theorem 4.1: For a sufficiently small, the
O(a™¥*1) error terms become negligible, and we can use the
pointwise estimate in Proposition 4.4 to obtain the asymptotic

form of the Ls-error
(Hf(x) - (Paf)(x)H) [#09)-ear(2)]|
(28)

ay
~ To evaluate this limit, we start by computing the Fourier series
expansion of ey(z) given by (26), noting that the second
nonconstant- term corresponds- to the periodized version of

hm
1 a0

- lim

a—0

g(z) = (—z)Np(z) whose continuous Fourier transform is
G(w) = (=5)N @M (w). This yields
en(z) =m) + (=)D ¢ (2rk)er> e (29)

kez
k#0

Next, we replace the function f(¥) € L in (28) by its best
(least square) piecewise constant approximation with step size
a, which we denote by féN). This is a valid substitution in

the sense that
() z ” %) z

lr ™ @en (%) i @en (2],

This equivalence directly follows from the inequality

ot 2) - 503,
< llealloo tim [1£" = £l = 0

= lim
a—0

lim

a—0

. (30)

Lo

lim

a—0

=0

where we use the fact that en(z) € Lo, and the property
that piecewise constant splines are dense in Ly (cf. Theorem
2.2 with N = 1 as a — 0). Let us now concentrate on the
computation of the quantity

s

a L2

= Z/ f(N) (ka)|? ’eN( )’Zdz.

keZ

Using the fact that the function ey(z/a) is periodic with
periodicity a, we find that
2)

[i@en (2]
3D

- (i I
= E% - 1fM)3,

where E% is the mean square value of ey given by (cf. (29))

) ' (Zalfém(ka)l

keZ

%/Oa len(z/a)?dx = /01 len (z)[2dz
(m)* + 3 g™ (2mk)P.

k0

(32
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Combining (30) and (31), we then rewrite (28) as
I:'a T \
- (Ilf(m) ~ (P >1|> - () i@,
= G |17

 where we use the fact that f(N) — () as g goes
Thus, the constant is given by

to- zero.

1

_ 2 (N
O = 1 (m¥ +Z|¢<N>(2¢k)|2 1/2,
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The only term in this formula that depends on ¢ is mf)v ,
and the constant is obviously minimum for m;Y = 0. This
moment vanishes when N > 1 (cf. Lemma 4.2) or when the
second condition b) in Theorem 4.1 is met. In particular, the
lower limit is achieved with the least square solution for which

¢=p € Vi(p)and N = N. O

¢

C. Computation of the Bound Constant

Theorem 4.1 provides us with an explicit characterization
for the minimum bound constant C’w , which can be the basis
for a quantitative evaluation. Although there are cases such as
splines where the scaling function ¢(w) is known explicitly
and (17) is applicable directly, we also need a mechanism
to compute the required derivatives when the multiresolution
representation is specified indirectly through the refinement
filter A.

To derive such a relation, we rewrite the two scale (9) in
the Fourier domain and differentiate IV times, applying the
chain rule

N ‘
. N my g 5
w(N’<w>:Z ( >2mH( >( J /2) 2N_m (N~rn)(w/2)

m=0
. 33).
Using the property H(™ (e/H D™ =0 form =0, -+, N —

1, we obtain a direct expression for the odd indexed derivatives
in (17)

M (2rk) = ¢ (2m(20 + 1))
HN

=N - @(n(20+1)), (for k=2l +1 odd)

(34)
where H{:’ is the value of the first nonzero derivative of H
. ONH(z
Y = HM (™) = —~——~az]5 ) (35)

z=-—1

To compute the right-most term in (34) for cases other than
splines, we can use an approximation of the product (10) with
a finite number of terms.

Likewise, by using the order property ii)-and the fact that
H(e/?™) = 1 in (33), we determine the remaining even
indexed coefficients in (17) using the recursive rule

¢ (2rk) = ¢ (4xl)

e (2xl),  (for k = 21 even). (36)
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TABLE I )
RESCALED BOUND CONSTANT FOR DIFFERENT WAVELET FAMILES
closest-to- Deslauriers-

N Daubechies  linear phase - coiflets spline Dubuc
1 0.2887 - 0.2887 0.2887
2 0.2236 0.2236 02124 . 0.07454 0.07454
3 0.2988 0.2988 3 0.03450
4 0.5557 0.5557 0.4953 0.02182 0.1871
5 1.316 1316 0.01734
6 3.779 3.779 3.231 0.01655 1212
7 12.74 12.74 0.01844
8 ) 49.35 4935 40.92 0.02347 15.06
9 2158 2158 0.03362

For B-splines of degree N — 1, |¢n(w)| = |sin(w/2)/
(w/2)|¥ and Hy(z) = z7% - 2°N(1 + 2)N, where k¢ is
a suitable integer shift. Thus, the value of II}Y is simply
(N1)/2V, and it is not difficult to use these relations to show
that

too , \1/2
C= = 2 (VD _ /1B | 37)
NN & (2nk)2N (2N)!

where |Ban| is Bernouilli’s number of order 2N. Note that
these constants are valid for any spline-based orthogonal [26],
[27], semi-orthogonal [28]-[30], or biorthogonal [23] wavelet
transforms.

D. Comparison of Multiresolution Representations

It is interesting to compute and compare the constants C
for various representation spaces, following the footsteps of
SP [19]. The comparison obviously only makes sense for rep-
resentation spaces that have the same order of approximation
N and, hence, the same rate of convergence. We considered
the same families of wavelet transforms as these authors, and
our results in Table I are given in term of the rescaled constant
Ay = Cg - N!to facilitate the comparison. Except for the fact
that our constant A} is slightly below the sup-estimate Ay
reported in [19], the conclusions are essentially the same.

The spline wavelets have by far the smallest constant. Both
types of Daubechies Wavglets (extremal phase and closest-
to-linear phase) have the same performance because the cor-
responding filters differ by a phase term only. If we use
splines as our reference, we see that the relative performance
of most families worsens for higher order N. Part of this
effect can be attributed to the increased magnitude of the
first nonvanishing moment H{l" (cf. Table II). For Daubechies
wavelets with N > 2, the performance degradation is at least
oN , which confirms an earlier finding of SP. In other words,
the approximation quality of Daubechies wavelets at a given
resolution will be no better than that of splines at-half the
resolution. Thus, for signals that are sufficiently smooth, one
should be able to get away with one less level of resolution
using spline wavelets. Considerations of this nature may turn
out to be quite relevant for data compression.
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TABLE 1I
RELATIVE MAGNITUDE OF FIRST NON-VANISHING MOMENT (i.e.,
Q(e™ =TI} - (2N /N)) For DIFFERENT WAVELET FAMILES

closest-to- Deslauriers-
N Daubechies  linear phase  coiflets spline Dubuc
1 1. L - 1.
2 1.732 1.732 1.646 - 1. 1.
3 3.162 3.162 1.
4 5.916 5.916 52712 L 3.
5 11.225 11.225 1.
6 21.49 21.49 1338 1. 10.
7 41.42 4142 1.
8 80.22 80.22 . 66.51 1. 35.
9 156. 156. 1.

E. Discussion

The results in Table I clearly indicate that some representa-
tions—splines, in particular—are more favorable than others
for approximating smooth functions. The ingredients that are
important for good asymptotic performance can be identified
by having a closer look at (34) and (35). Using the basic
factorization H (2) = 2~ (1+2)"-Q(z) (cf. Proposition 2.4),
we can compute the quantity II defined by (35) as follows:

(N
my =3 (3 ) e e L,
k=0
= I () Q)] ooy = g+ Q)

where Hy(z) = 27V(1 + 2)V is the refinement filter for
splines of order N. Substituting this expression in (34), we
find that for £ odd

!

$0 o) = (i ) - Q) - Gl

Thus, in order to have a small asymptotic constant, it is
preferable to have Q(e’™) small and ¢ decaying rapidly. This
last property is primarily dependent on the regularity of the
scaling function. Specifically, if ¢ € C™ (m times continu-
ously differentiable), then its Fourier transform decays at least
as O(w™™). This can be shown simply by considering the
Fourier transform of ¢(™)(z), which is given by (jw)™@(w).
If (™) ‘€ Ly, then X

+o0
o) = | [

+foo
< / o™ (@) |dz = C

oo

(38)

o™ (z)e~ % dz

which implies that |¢(w)| < C - jw|~™. Note that the decay
of ¢ is also dependent on the magnitude of Q(e’*), which is
typically greater than Q(e?)|,=¢ = 1.

Splines with Q(z) = 1 are extremely attractive from both of
these perspectives; but are they really optimal? We can show
that this is not the case in an absolute sense by proposing
a first-order counterexample H(z) = (1 + 3z + 222)/6 with
Q(z) = (1 + 22)/3. The corresponding |H (e/*)| is always
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positive except for a first-order zero at w = 7, which implies
that the lower frame bound A is positive (cf. Condition i) in
Definition 2.1). Moreover, because |Q(e?)| < 1, the Fourier
transform of this scaling function decays at least like O(w™1),
which implies that the upper frame bound B is finite. Hence,
 is a valid first-order scaling function; its C constant is
0.0596, which is four times better than a B-spline of degree
zero (Haar function). Higher order functions that are smoother
than splines can also be constructed by considering the N-fold
convolution of H(z) [31]. While this example demonstrates
our point, it is of limited practical value because, for the same
complexity, we can also implement a piecewise linear spline
with Ha(z) = 272(1+22+2%), which buys us one more order
of convergence. In fact, B-splines are optimal if we include
~ the filter length constraint in the design. They are the shortest
Nth-order scaling functions. Splines are also the most regular
functions among the examples in Table I, which explains why
they are so good at approximating functions.

Although most of this paper has emphasized the significance
of the order properties of the representation that determine
the approximation rate, it is satisfying to find that regularity
has some importance as well because of the way in which it
controls the magnitude of the constants involved.

V. CONCLUSION

The object of this paper has been discuss an important
consequence of the order properties of wavelets, which is
not often emphasized in signal processing. The main point
is that the approximation error at scale a = 2* decays like
O(a®), where N is the order of the representation space.
Thus, in principle, one should be able to use fewer levels
of resolution to approximate a signal using a higher order
wavelet transform. The performance index N also corresponds
to the number of vanishing moments of the analysis (or
dual) wavelet. This characteristic behavior of the error gets
translated into error bounds and asymptotic formulas that are
valid for all biorthogonal wavelet expansions and convolution-
based oblique projectors in general. One important feature is
that the analysis function has almost no influence on the con-
vergence properties, except perhaps on the magnitude of the
constant involved. In fact, Sweldens had already shown that
biorthogonal wavelet expansions are asymptotically optimal in
the sense that the error is the same as in the orthogonal case.
Here, we provided an extended error analysis and identified
more general oblique projection operators that share the same
optimality properties. While the convergence rate is entirely
determined by the zero properties of the synthesis function,
we have demonstrated that the regularity of the basis functions
also has some reducing effect on the error via the constants
involved. In this respect, it appears that splines are especially
favorable. Specifically, by using splines instead of Daubechies’
wavelets, one can potentially achieve the same quality of
approximation with a representation at half the resolution.

The general L, error bounds that have been described. are
valid for any signal thatis V times continuously differentiable.
However, for larger values of the scale, these results are at
best qualitative. One can get much more quantitative by using
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the constants of the present asymptotic analysis, but these
results are only rigorously applicable for functions that are
very smooth or once the scale gets sufficiently small.
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