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Shift-Orthogonal Wavelet Bases Using Splines

Michael Unser, Philippe Thévenaz, and Akram Aldroubi

Abstract— We present examples of a new type of wavelet
basis functions that are orthogonal across shifts but not across
scales. The analysis functions are piecewise linear while the
synthesis functions are polynomial splines of degree n (odd).
The approximation power of these representations is essentially
as good as that of the corresponding Battle-Lemarié¢ orthogonal
wavelet transform, with the difference that the present wavelet
synthesis filters have a much faster decay. This last property,
together with the fact that these transformations are almost
orthogonal, may be useful for image coding applications.

I. INTRODUCTION

HE theory of the wavelet transform has resulted in the

construction of many multiresolution bases of L, (the
space of square integrable functions) [1]-[4]. The earlier
examples of wavelet bases were orthogonal (e.g., Daubechies,
and Battle-Lemarié wavelets). It was soon realized that one
could gain in flexibility by relaxing the intrascale orthogonality
constraint; this led to the construction of semi-orthogonal
wavelets, which are still orthogonal across scale [S]-[7]. The
versatility of semi-orthogonal wavelet basis allows one to
introduce many interesting properties [7] and almost any
desirable shape [8]. A noteworthy example in this category
are the B-spline wavelets that exhibit near-optimal time-
frequency localization [9]. The next evolutionary step was
to drop the orthogonality requirement altogether, which led
to the construction of biorthogonal wavelets [10], [11]. The
advantage of this last category is that the wavelet filters can
be shorter; in particular, they can be both FIR and linear phase,
which is typically not possible otherwise.

In this letter, we consider another possibility that has been
neglected so far, namely, wavelets that are orthogonal to their
translates within the same scale but not across scales; this
property will be called shift-orthogonality. Subband coding is
an area where this feature could be appealing. Orthogonality
is required for the quantization error in the wavelet domain to
be a valid indicator of the final distortion [4]. In our case, we
insist on preserving orthogonality within the wavelet channels,
which is consistent with independent channel processing. In
particular, this justifies discarding small coefficients, which is
the typical procedure for achieving the greatest compression
savings.

Shift-orthogonality is less constraining than full orthogo-
nality. This gives us more freedom for designing wavelets.
For example, we can obtain shorter wavelet synthesis filters,
which is a useful feature for reducing reconstruction artifacts
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(e.g., spreading of coding errors and ringing around sharp
transitions).

The next consideration is the choice of an approximation
space, the order of which determines the rate of decay of
the error as a function of scale. The approximation power
of the representation depends primarily on the synthesis scal-
ing function [12], [13]. Recent error bound comparisons for
several types of wavelets suggest that splines have the best ap-
proximation properties [12], [13]; therefore, we will consider
these particular functions in our design. To get the best quality
approximation, we use higher order splines on the synthesis
side. Conversely, we use lower order splines on the analysis
side to reduce the size of wavelet synthesis filters.

II. SPLINE SCALING FUNCTIONS AND WAVELETS

A. Spline Spaces and Notations

We consider the two spline multiresolution analyses of
Ly {V!}iez and {V"};cz (n odd), where

s;(z) eV & 5;(2z) e V§ =

{so(z) = Z c(k)B™(z — k)|c e lz}. (D

kez

V§* is the basic space of splines of degree n, that is, the sub-
space of functions that are (n — 1) continuously differentiable
and are polynomial of degree n in each interval (k, k+1) k €
7. The generating function 3"(z) is Schoenberg’s central B-
spline of degree n, which is obtained from the (n + 1)-fold
convolution of a unit rectangular pulse. For n odd, the B-spline
of degree n satisfies the two-scale relation (cf. [5])

g5 =2 k@~ k)

k€Z

0))

where u} is the binomial filter of order n + 1, whose transfer
function is '

Sty (LH27H)™

up(k) < U (2) = -

©))
We also use the following notation to represent the discrete
B-spline of degree n :

b (k) = B(x)|omk < B2(2). o)

B. Construction of Dual Spline Scaling Functions

The basic approximation (or synthesis) space is V{*, where
n is odd. The parameter important for performance is the order
of the representation p = n + 1, which is one more than the
degree [13]. The corresponding orthogonal generating function
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is the Battle-Lemarié scaling function, which can be expressed
as (cf. [5D)

@)+ Y (") TR (@ — k),

kez

(5)

where (b2"t1)~1/2(k) s 1/4/Bi"*(z) denotes the
square-root convolution inverse -of the symmetric sequence
b%n+1( k)

Instead of performing a decomposition in V* by using an
orthogonal projection as in the Battle-Lemarié case [1], we
use an oblique projection perpendicular to Vg (the space of
piecewise-linear splines). We could also have used a higher

order analysis space, but our motivation here is to have

the simplest possible analysis functions. The corresponding
(unique) dual function ¢(z) € Vg must satisfy the biorthog-
onality constraint (¢(x), d(x — k)) = &[k], where 8[k] is
the discrete unit impulse [14]. This leads to the following
characterization:

$@) =D GV« 1) (k) B (= — k)

kez

©®)

where (b7+?)(k) <2 1/B7"?(z) is the convolution inverse
- of the cross-correlation sequence (b7 1?)(k) = (8™(z), B*(z—
k)). Thus, the projection P; of a function f € Lo into V*
perpendicular to V;! can be written as

P f(z)= Z (f, $i k)i k )

keZ

whgre' we use the standard short-form notation ¢; r =
2-i2¢(x/2¢ — k).

C. Construction of Shift-Orthogonal Spline Wavelets

We now consider the characterization of the corresponding
wavelets at resolution level ¢ = 1. The synthesis wavelet
(z/2) must satisfy the following conditions:

) ¥(x/2) € V§*; ie., ¥(z/2) is a spline of degree n.

i) (¥(z/2), B(x/2 — k)) = 0 because 9(z/2) is perpen-

dicular to V.
i) (27Y24(x/2), 27 2(x/2 — k)) =
orthogonality).
It turns out that there is a unique function % that verifies all
those conditions; it is given by

6[k] (intrascale

¥ 3= ol aW)8" (@~ ), ®)
kez ;
where the sequences ¢ and p are defined as follows:
g(k+1) = (1) - (ug * b7 ) (k) ©)
p(k) =V2(g*¢" ") T2 R). (10)

The operators [e]12 and [];o denote upsampling and down-
sampling by a factor of two, respectively, and ¢ (k) = ¢(—k).
The dual analysis wavelet ¢(x/2) must satisfy a similar set
of conditions:
iv) d;gx /2) € Vg ie., P(x/2) is a piecewise-linear spline.
v) {(¢Y(z/2), B™"(z/2 —k)) = 0 because 9(z/2) is perpen-
dicular to V*.
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vi) (27Y24(/2), 27/ 2(x/2 — k)) = 6[k] (biorthogo-

nality). )

After some algebraic manipulations, we obtain the  similar
expression

b3 =Y [fera®)f@-k,  an
kez ‘
where
Gk +1) = (=D)* - (a5 * b1 (k) (12)
BE) =2 (pxlg*d" + b7 2) () (13)

with p and ¢ defined in (10) and (9). Since the maximum
angle between the analysis and synthesis spaces Vg and V' is
less than 90° [14], the corresponding wavelet subspaces and
obligue projection operators are well defined [15]. Hence, the
convolution and square-root inverses in (10) and (13) are well
posed, and the resulting digital filters p and § are stable and
invertible. The corresponding dual pairs of scaling functions
and wavelets for n = 3 are shown in Fig. 1.

III. WAVELET TRANSFORM AND FILTERBANK ALGORITHM

Let W be the complementary wavelet space of V;" in.V}?
perpendicular to V!, ie., V2, = W@V with W L VI It
is not difficult to show that {1; » = 27/%¢(z /27 — k)}rez
is an orthogonal basis of W. Since it is well known that
Usez V™ is dense in Lo, it follows that the set {1; %} ¢, k)ez2
is a Riesz basis of Lo and that every function f € Ly can be
represented by its shift-orthogonal wavelet expansion

F@) =3 (f ir)tike

1€Z keZ

(14)

The special feature of this decomposition is that the basis
functions are orthogonal with respect to shifts (index k) but
pot across scales or dilations (index 7). We should note,
however, that the residual correlations across scales should
be not be too significant because the angles between the
various spline spaces are relatively small (cf. (55) and table
IO0 in [14)]). For these reasons, we can expect the shift-
orthogonal decomposition (14) to provide essentially the same
type of energy compaction as the corresponding orthogonal
Battle—Lemarié wavelet transform.

The wavelet transform (14) can be implemented iteratively
using a standard tree-structured perfect reconstruction filter-
bank [4]. The corresponding symmetric analysis and synthesis
filters (h, §) and (h, g), respectively, are defined as follows:

(k) = 5 (33, 4(e+ 1))
i) =5 (93, dla+ k)
wk) = (95, dla— k)
90 = (v3, b= —h))
We have derived explicit filter formulas in. both time and

frequency domains. All filters are infinite but decay exponen-
tially fast. The filter coefficients for n = 3 (cubic splines) -

. (15)
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Dual sets of cubic spline and piecewise-linear scaling functions and wavelets at the first resolution level: (a) Orthogonal cubic spline Battle-Lemarié

scaling function; (b) dual linear spline scaling function; (c) shift-orthogonal cubic spline wavelet; (d) dual linear spline wavelet. The basis functions in (c)
and (d) (resp., (a) and (b)) are polynomial splines with knots at the integers (resp., at the even integers).

TABLE 1
FILTER COEFFICIENTS FOR THE CUBIC SPLINE SHIFT-ORTHOGONAL WAVELET TRANSFORM. THE FILTERS ARE
ALL SYMMETRIC. THE LAST COLUMN DISPLAYS THE BATTLE-LEMARIE WAVELET FILTER FOR n = 1.

K (k) gk - 1) (k) gk1y  Petlelemane
0 . 0.582529 0.54633 1.08347 1.15485 1.15633

+1 0.282665 —0.308251 0.613659 -0.563151 —0.561863
+2 —0.0519285 —0.0384306 —0.070996 —0.0973574 —0.0977235
+3 —0.0395953 0.0804651 —0.155616 0.0753237 0.0734618
+4 0.0123611 0.0227514 0.0453692 0.024683 0.0240007
+5 0.00839683 —0.0313868 0.0594936 —0.0147667 —0.0141288
+6 —0.00132849 —0.0108077 —0.024291 —0.00582268 —0.00549176
+7 —0.00166831 0.013063 —0.0254308 0.00323499 0.00311403
+8 —0.000919721 0.00476525 0.0122829 0.00135813 0.00130584
+9 0.000117659 —0.00555301 0.0115986 —0.0007871 —0.000723563
+10 0.000956435 —0.00206644 —0.00615726 —0.00034943 —0.000317203
+11 0.000182244 0.00237672 —0.00549058 0.00018464 0.000173505
+12 —0.000648131 0.000891964 0.00309248 0.0000834622 0.0000782857
+13 —0.000167137 —0.00102066 0.00266174 —0.0000478199 —0.0000424422
+14 0.000377941 —0.000384402 —0.00156092 —0.0000222962 —0.0000195427
+15 0.000109648 0.00043885 —0.00131126 0.0000115052 0.0000105279
+16 —0.000206646 0.000165587 0.00079187 5.38729 10~ 492118 10—
+17 —0.0000631112 —0.000188834 0.00065353 —3.07609 10—° —2.63837 106
+18 0.000108551 —0.0000713083 ~0.000403594 ~1.47358 10—6 —1.2477 10—¢
+19 0.0000342583 0.0000812759 —0.000328589 7.48299 10~7 6.6641 10~7
+20 —0.0000557311 0.0000307068 0.000206534 3.57617 10~7 3.18076 10~ 7

are given in Table I. The lowpass filter h is the same as
the Battle-Lemarié filter described in [1]. Interestingly, the
wavelet synthesis filter g decays significantly faster and turns
out to be very similar to a Battle-Lemarié filter of degree 1
(n = 1), which is also given for comparison.

IV. CONCLUSION

We have presented a new class of hybrid spline wavelet
transforms. The motivation behind this proposal was to use

lower order analysis functions while essentially preserving the
approximation and orthogonality properties of higher order
Battle-Lemarié wavelets. In contrast with previous semi-
and biorthogonal constructions, we have only relaxed the
orthogonality constraint in between resolution levels. The basis
functions are still orthogonal within a given wavelet channel
(or scale), a property that is quite desirable for quantization
purposes. The advantage over the Battle—Lemarié family is that
the wavelet synthesis filter decays substantially faster, which



88

is a property that could be useful for reducing ringing artifacts
in coding applications. All the underlying basis functions
(including duals) have been characterized explicitly in the
time domain (polynomial spline representation). Such direct
formulas are, in general, not available for other wavelet bases,
except for the class of semi-orthogonal splines considered in
[5]. The wavelets presented here are examples of a new type of
shift-orthogonal wavelet that will be completely characterized
in a forthcoming paper. We will also describe shift-orthogonal
spline wavelets for n even.
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