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SUMMARY
This paper emphasizes the statistical properties of the wavelet
transform (WT) and discusses some recent examples of
applications in medicine and biology.

The redundant forms of the transform (continuous wavelet
transform (CWT) and wavelet frames) are well suited for
detection tasks (e.g., spikes in EEG, or microcalcifications in
mammograms). The CWT, in particular, can be interpreted as a
prewhitening multi-scale matched filter. Redundant wavelet
decompositions are also very useful for the characterization of
singularities, as well as for the time-frequency analysis of non-
stationary signals. We briefly discuss some examples of
applications in phonocardiography, electrocardiography (ECG),
and electroencephalography (EEG).

Wavelet bases (WB) provide a similar, non-redundant
decomposition of a signal in terms of the shifts and dilations of a
wavelet (hierarchical or pyramidal transform). There are also
non-hierarchical versions that constitute a direct extension of the
traditional block transforms (Fourier, DCT, etc..). This makes
WB well suited for any of the tasks for which block transforms
have been used traditionally: data compression, data analysis
(decorrelation), and data processing (generalized filtering).
Wavelets, however, may present certain advantages because
they can improve the signal-to-noise ratio, while retaining a
certain degree of localization in the time (or space) domain. We
present three illustrative examples. The first is a straightforward
denoising technique that applies a soft threshold in the wavelet
domain. The second is a more refined version that uses
generalized Wiener filtering; it was initially proposed for
reducing noise in evoked response potentials. The third is a
statistical method for detecting and locating patterns of brain
activity in functional images acquired using magnetic resonance
imaging (fMRI).

Finally, we conclude by describing a wavelet
generalization of the classical Karhunen-Loeve transform. In
particular, we provide the solution for the optimal
decomposition of a wide sense stationary process

(unconstrained case).
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1. THREE TYPES OF WAVELET TRANSFORMS

The wavelet transform is a linear signal transformation that uses
templates Y, ,, =a™*y((x—b)/a), which are shifted (index
b) and dilated versions (index a) of a given wavelet function
y(x) [11, 53]. The wavelet transform of the signal fe H is
parameterized by the scale and shift parameters a and b; it is
typically written as

wa(avb) = (f’ql(a,h)% (l)

where (--) is the inner product associated with the Hilbert space
H (I or L, depending on whether the signal f is discrete or
continuous). A basic requirement is that the transform is
reversible, that is, that the signal f can be reconstructed from its
wavelet coefficients T,f(a,b). The distinction between the
various types of wavelet transforms depends on the way in
which the scale and shift parameters are discretized.

At the most redundant end, one has the continuous wavelet
transform (CWT) for which these parameters vary in a
continuous fashion [20]. This representation offers the
maximum freedom in the choice of the analysis wavelet. The
only requirement is that the wavelet satisfies an admissibility
condition; in particular, it must have zero mean.

In practice, it is often more convenient to consider the WT
for some discretized values of a and b (e.g., the dyadic scales
a=2' and integer shifts b =k with (i,k) € Z*). The transform
will be reversible if and only if the corresponding (countable) set
of templates defines a wavelet frame (WF) [10, 19, 1]. In other
words, the wavelet must be designed such that
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where A and B are two positive constants (framebounds).

A WF is just a redundant version of a wavelet basis (WB)
which can be obtained for the critical sampling rate: a =2/,
b=2"-k with (i,k) € Z*. In this case, the templates must also
be linearly independent, which imposes even stronger
constraints on the choice of y. If the framebounds in (2) are
such that A= B =1, then the transformation is orthogonal.

Such wavelets can be constructed by starting from a



multiresolution analysis of Ly [26, 27]). The better kriown
examples are the Daubechies wavelets [9], which are orthogonal
and compactly supported; and the Battle-Lemarié wavelets
which are splines with exponential decay [24, 27]. In the case
of semi- and bi-orthogonal wavelet bases {8, 49, 2], one has the
following signal representation

f= ZZ(f"V:k) Yie »

i keZ

(3)

with the short form convention ,, =2y (x/2' - k). The
analysis wavelet  is the dual of y (the synthesis wavelet); in
the orthogonal case, both wavelets are identical.

Basic texbook references on the wavelet transform are: [11,
29, 53]. For computational issues, we refer the reader to [46].
An extensive review of its various uses in medicine and biology
is given in [47]; specific biomedical applications are also
described in [3].

2. WAVELET ANALYSIS AND FEATURE
DETECTION

The redundant forms of the transform (CWT and WF) are
usually preferable for signal analyses, feature extraction, and
detection tasks for they provides a description that is truly shift-
invariant, Next, we discuss some wavelet properties that are of

special interest for this class of applications.

A. Wavelets and time-frequency analysis

An analysis wavelet y is typically a well localized
bandpass function with a central frequency at ®,; a standard
requirement is that its time-frequency bandwitdth product is
close to the limit specified by the uncertainty principle:
A, Ay 21/2. Thus, each analysis template ,,, tends to be
predominantly located in a certain elliptical region of the time-
frequency plane centered at £ =b and @ =w,/a. The area of
these localization regions is the same for all templates
((a~Aw)x(A‘;,/a)) and is constrained by the uncertainty
principle. Thus, by measuring the correlation between the
signal and each wavelet template, we obtain a characterization of
its time-frequency content (scalogram). The main difference
with the short-time Fourier transform is that the size of the
analysis window is not constant for it varies in inverse
proportion to the frequency. This property enables the wavelet
transform to zoom in on details, but at the expense of a
corresponding loss in spectral resolution. In this respect, we
should note that most biomedical signals of interest include a
combination of impulse-like events (spikes and transients) and
more diffuse oscillations (murmurs, EEG waveforms) which
may all convey important information for the clinician. The
short-time Fourier transform or other conventional time-
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frequency methods are well adapted for the latter type of events
but are much less suited for the analysis of short duration
pulsations. When both types of events are present in the data,
the wavelet transform can offer a better compromise in terms of
localization. This may explain its recent success in biomedical
signal processing. Recent examples of applications where time-
frequency wavelet analysis appears to be particularly appropriate
are the characterization of heart beat sounds [22, 21, 31], the
analysis of ECG signals including the detection of late
ventricular potentials [21, 16, 28, 39] , the analysis of EEGs
[38, 37, 501, as well as a variety of other physiological signals
[36].

B. Wavelets as a multi-scale matched filter

In essence, the continuous wavelet transform performs a
correlation analysis, so that we can expect its output to be
maximum when the input signal most resembles the analysis
template v, ,. Consider the measurement model
f(x)=¢,(x—Ax)+n(x) where ¢, (x)=¢(x/a) is a known
deterministic signal at scale a, Ax an unknown location
parameter, and n(x) an additive white Gaussian noise
component. Classical detection theory tells us that the optimal
procedure for estimating Ax is to perform the correlation with all
possible shifts of our reference template and to select the
position that corresponds to the maximum output (matched
filter). Therefore, it makes sense to use a wavelet transform-like
detector whenever the pattern ¢ that we are looking for can
appear at various scales.

If the noise is correlated instead of white, then we can get
back to the previous case by applying a whitening filter.
Interestingly, the wavelet-like structure of the detector is
preserved exactly if the noise has a fractional brownian motion
structure. Specifically, when the noise average spectrum has the
form ¢,(w)=0c>/|jof* with a=2H+1 where H is the Hurst
exponent, we can show that the optimum detector y(x) is
proportional to the ath fractional derivative of the pattern ¢ that
we want to detect. Consequently, for H>0, the optimal detector
is an admissible wavelet even if the initial template @(x) is not
(e.g. it is a lowpass function). For example, the optimal
detector for finding a Gaussian in O(w™) noise is the Mexican
hat wavelet (2nd derivative of a Gaussian). As suggested by
Strickland, this is perhaps one of the main reasons why the
wavelet transform works well for detecting microcalcifications
in mammograms [7, 32, 41].

3. WAVELET BASES

Wavelet bases provide a non-redundant decomposition of a
signal in terms of the shifts and dilations of y (hierarchical or



pyramidal transform). Hence, it is possible to represent a signal
through its wavelet expansion

f= Z 2 CiaVWik
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where the ¢, =(f,y,,) are the wavelet coefficients (scale
index i, and position index k). There are also non-hierarchical
versions (wavelet packets, M-band perfect reconstruction
filterbanks) that constitute a direct extension of the traditional
block transforms (Fourier, DCT, etc..). The important point for
our purpose is that, in the discrete case, the decomposition
formula (4) provides a one-to-one representation of the signal in
of (reversible linear
transformation). This makes WB well suited for any of the

terms its wavelet coefficients
tasks for which block transforms have been used traditionally:
data compression, data analysis (decorrelation), and data
processing (generalized filtering). Wavelets, however, may
present certain advantages because they can improve the signal-
to-noise ratio, while retaining a certain degree of localization in

the time (or space) domain.

A. Data Compression

Data compression can be achieved by quantization in the
wavelet domain, or by simply
discarding certain coefficients that are insignificant. This form of
orthogonal (or close-to-orthogonal) decomposition has been
used effectively for image compression [25, 4, 14, 40].
Traditionally, this has been one of the primary applications of

wavelets.

B. Data Processing: wavelet denoising

One of the first application of the wavelet transform in
medical imaging was for noise reduction in MR images {54].
The approach proposed by Weaver et al. was to compute an
orthogonal wavelet decomposition of the image and apply the
following soft thresholding rule on the coefficients
o = LWt

Cx Ll G2t
&, =40 bl <, 5)
Catl S

where ¢, is a threshold that depends on the noise level at the ith
scale; the image is then reconstructed by the inverse wavelet
transform of the ¢; ,'s. This is essentially the wavelet shrinkage
denoising method later systematized by Donoho and Johnston
[18, 17}, as well as DeVore and Lucier [15]. This algorithm is
extremely simple to implement and works well for moderate
levels of noise. Asymptotically (as the scale goes to zero and as

the noise energy gets distributed over more and more sample
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values), it has some interesting min-max optimality properties
for a relatively large class of signals [17].

The approach can easily be taken one step further by
considering more general pointwise non-linear transformations
€ = F(c;;). Consider the measurement model ¢, =cf, +n;,
where ¢, denotes the wavelet coefficient of the noise-free
signal and 7, is an independent noise component. In principle
at least, one could apply the optimal Bayesian estimation rule :
¢« = Elc; ¢, ], which minimijzes the mean square error. This
of course requires the knowledge of the a posteriori probability
density function p(c’lc), which depends on our a priori
knowledge on ¢, (p(c*)), and on the noise distribution
(p(n)=p(clc’)). We can also constrain ourselves to the class
of linear estimators, and derive the optimal linear estimate

5 = E[(C;k)2] c
ik E[(C:k +ni‘k)2] k?

which has the form of a generalized Wiener filter. This particular

)

algorithm was first proposed by Bertrand et al. for the
processing of evoked response potentials (ERPs) [5]. These are
very noisy signals with a strong deterministic component.
Because ERPs are usually acquired using multiple trials (typ.
100-600 repetitions), the optimal weighting factors in (6) can be
estimated on a coefficient-by-coefficient basis in an initial
training phase, or even updated recursively. In this particular
application, the wavelet transform appears to be superior to the
Fourier transform, the latter being optimal only when both the
signal and noise are stationary (conventional Wiener filter).

C. Data Analysis: detecting changes in fMRI

Functional neuroimaging is a fast developing area aimed at
investigating the neuronal activity of the brain in vivo. The data
for those studies is provided by positron emission tomography
(PET), and functional magnetic resonance imaging (fMRI).
PET measures the spatial distribution of certain function-specific
radiotracers injected into the bloodstream prior to imaging. A
typical example is the measurement of cerebral glucose
utilization with the tracer [!8F]2-fluoro-2-deoxy-D-glucose
(FDG). fMRI, which is a more recent technique, allows for a
visualization of local changes in blood oxygenation believed to
be induced by neuronal activation. It is substantially faster than
PET and also offers better spatial resolution. Yet, there is still
disagreement among specialists concerning the exact nature of
the biological processes that produce the observed changes in
the MR signal.

The functional images obtained with those two modalities
are extremely noisy and variable, and their interpretation

requires the use of statistical analysis methods [51]. What is



typically of interest is the detection of the differences of activity
between different groups of subjects (e.g. normal versus
diseased) or between different experimental conditions witk the
same subject (e.g. rest versus word generation). In either case,
the variability of the signal is such that multiple subjects or
repeated trials are required in each subgroup.

The first step in this analysis is to register the various
images so that they can be compared on a pixel-by-pixel tasis
{42]. The second step is to compute the difference between the
aligned group averages and perform the statistical analysis.
Testing in the image domain directly is difficult because of the
amount of residual noise and the necessity to use a very
conservative significance level to compensate for multiple testing
(one test per pixel!). A better solution is to perform the testing
in the wavelet domain [35, 33, 51]. The main advantage is that
the discriminative information, which is smooth and well
localized spatially, becomes concentrated into a relatively small
number of coefficients, while the noise remains evenly divided
among all coefficients. In addition, the number of statistical
tests can be reduced considerably by first identifying the few
wavelet channels that contain significant differences. A recent
application of this technique to fMRI is presented in [34].

4. EXTENSION OF THE KARHUNEN-LOEVE
TRANSFORM

One stage of the fast wavelet transform algorithm can be
conveniently described as a multivariate filtering operation using
the so-called polyphase representation [53]. The corresponding
filterbank system is shown in Fig. 1.

x(k)

'

'

H() y(®)

Fig. 1: Polyphase representation of a P-band wavelet analysis filterbanz.

In this diagram, x(k) represents the input signal and the y's are
the various wavelet channels after one level of decomposition.
In the standard dyadic case, there are only two channels (F'=2),
but the concept is also valid for larger values of P (P-band
perfect reconstruction filterbank) [52, 53]. 1t turns out that the
transformation is orthogonal if and only if the PxP transfer
function matrix H(z) satisfies the paraunitary condition:

H(z)-H(/2)=1,, 0)
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where I, is the PxP identity matrix. Note that for traditional
block transforms, the matrix H(z) does not depend on z (i.e.,
the various blocks are processed independently of each other).
In order to design the optimal wavelet transform for a given
class of input signals, it is therefore natural to seek the
paraunitary matrix H(z) that provides the maximum energy
compaction in the wavelet domain [44]. If the matrix H is
constrained to be real (no delays), the solution corresponds to
the classical Karhunen-Logve transform (KLT). If we allow for
more general structures (for example, H(z) is an N-point FIR
transfer function), we can get better results but the filter
optimization subject to constraint (7) is a rather difficult task
[44, 30, 6, 13]. One interesting property of the optimal solution
is that the transformed components are uncorrelated; however,
this is not & sufficient condition for optimality, in contrast with
the standard KLT [44].

If we do not impose any order constraint on H(2), it is
possible to derive the optimal solution analytically for any given
wide sense stationary process with spectral power density
S.(w). The two channel case is considered in [45]; the more
general P-band case is treated in [43] using an elegant principal
component formulation in the frequency domain. In each case,
the solution depends on the spectral characteristics of the input
signal and has the form of an ideal filter with pure "on" and
"off" frequency bands. If the power spectral density is non-
increasing, then the optimal solution is the ideal filterbank with
P uniformly-spaced subbands. Interestingly, there are a number
of wavelet transform constructions that converge asymptotically
to this limit. The better known example is the family of Battle-
Lemarié spline wavelets which converge to an ideal bandpass
filter as the order of the spline goes to infinity [24, 48, 2].
Daubechies wavelets also exhibit similar convergence properties
[23]. This partially explains why higher order wavelets usually
result in smaller approximation errors.

These unconstrained solutions are primarily of interest
from a theoretical point of view. For example, they can be very
useful for deriving asymptotic bounds on the best performance
achievable (e.g. coding gain over PCM) [12]. They are less
relevant for implementation purposes because of the
disadvantages of ideal filterbanks (slowly decaying impulse
responses, Gibbs oscillations). This provides a good motivation
for investigating more constrained solutions. As far as we
know, there is not yet any general procedure for designing
optimal FIR wavelets that is entirely satisfactory; this is

currently an active area of research.
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