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On the Approximation Power of Convolution-Based
Least Squares Versus Interpolation
Michael Unser,Senior Member, IEEE, and Ingrid Daubechies,Member, IEEE

Abstract—There are many signal processing tasks for which
convolution-based continuous signal representations such as
splines and wavelets provide an interesting and practical
alternative to the more traditional sinc-based methods. The
coefficients of the corresponding signal approximations are
typically obtained by direct sampling (interpolation or quasi-
interpolation) or by using least squares techniques that apply a
prefilter prior to sampling. Here, we compare the performance
of these approaches and provide quantitative error estimates
that can be used for the appropriate selection of the sampling
step h: Specifically, we review several results in approximation
theory with a special emphasis on the Strang–Fix conditions,
which relate the general O(hL) behavior of the error to the
ability of the representation to reproduce polynomials of degree
n = L�1: We use this theory to derive pointwise error estimates
for the various algorithms and to obtain the asymptotic limit of
the L2-error as h tends to zero. We also propose a new improved
L2-error bound for the least squares case. In the process, we
provide all the relevant bound constants for polynomial splines.
Some of our results suggest the existence of an intermediate range
of sampling steps where the least squares method is roughly
equivalent to an interpolator with twice the order. We present
experimental examples that illustrate the theory and confirm the
adequacy of our various bound and limit determinations.

I. INTRODUCTION

I NTERPOLATION is one of the basic operations in signal
processing. It is used extensively in picture processing to

rotate and rescale images or to correct for spatial distortions.
While the signal processing theory traditionally emphasizes the
sinc-interpolation for bandlimited functions [1], this method is
rarely used in practice because of the slow decay of sinc
Instead, practitioners usually rely on short kernel methods
such as bilinear interpolation [2], cubic convolution [3]–[5],
or polynomial spline interpolation [6], [7], which are much
more efficient to implement, especially in higher dimensions.
These methods are all convolution-based in the sense that they
use an interpolation model of the form

(1)

where is the sampling step and the basic interpolation
kernel. The expansion coefficients in (1) typically correspond
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Fig. 1. Block diagram representation of a convolution-based interpolator.
Sampling is achieved by multiplication with the sequence of Dirac im-
pulses�k2Z�(x � hk). The impulse response of the reconstruction filter
is 'h(x) = '(x=h).

to the samples of the input function taken on a uniform
grid: (cf. Fig. 1). More recently, researchers
have proposed a systematic formulation of this class of repre-
sentations using essentially the same Hilbert space framework
as developed in the context of the wavelet transform [8]–[10].
This led to the design of “second generation” methods for the
continuous representation of signals based on the principle of
a minimum error approximation [11]–[13]. The corresponding
least squares solution can be obtained through a simple modi-
fication of the basic interpolation procedure, which consists of
applying an appropriate prefilter to prior to sampling (cf.
Fig. 2). This form of preprocessing is akin to the use of an
anti-aliasing lowpass filter in conventional sampling theory,
except that the optimal prefilter is not necessarily ideal. In
fact, one may even take a reverse perspective and choose
the representation such that the prefilter is particularly well
behaved. A good example of this is the use of B-spline filters
for computing polynomial spline approximations [12]. This
approach has been used advantageously to design practical
least squares methods for image resizing [14], and, more
recently, affine transformations [15]. For a given signal model,
these methods generally outperform the standard interpolation
procedures.

From all the examples above, it appears that such nonban-
dlimited signal representations have a lot to offer for signal
processing—both in terms of computational efficiency and
simplicity of implementation. However, two basic questions
remain. First, how should one select the sampling step? Is
there any analog of Shannon’s sampling theorem that tells
us that for bandlimited signals, we must choose a sampling
frequency that is above the Nyquist rate? Second, what is the
quality of the approximation? Are least squares approaches
really superior to the simpler interpolation schemes that are
commonly used in practice?
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Fig. 2. Convolution-based least squares signal approximation. The impulse

response of the optimal prefilter ish �

�

'(�x=h), where
�

' is the dual of'.
The signal approximationPhs corresponds to the orthogonal projection ofs
onto the signal subspaceVh = spanf'(x=h � k)gk2Z .

What is effectively required to answer these questions is a
detailed characterization of the error as a function ofThis
turns out to be a key issue in approximation theory, and there
are many fundamental results available in this area of mathe-
matical research. However, most of this theory has not yet been
brought to the attention of the signal processing community.
Of special relevance is the general error bound provided by
Strang and Fix in the early 1970’s [16]. Specifically, let the
function in (1) represent an th-order1 approximation of
the (finite energy) function at the sampling step
Then, we have the error bound

(2)

where is a constant that does not depend on, and where
denotes the Fourier transform of The right-most

term in (2) represents the energy of theth derivative of
Since we are interested in making the connection with

Shannon’s sampling theory, we can also interpret it as a
measure of the bandwidth of the input signal However,
there are two fundamental differences with the classical result
for bandlimited signals. First, there is no special assumption
(such as bandlimitedness) on the class of admissible input
signals. The only requirement is that the functionand its

th derivative are square integrable, which is a very weak
smoothness constraint, at least when compared with bandlim-
itedness. Second, the form of the bound suggests that
the representation will never be exact. However, the error can
be made arbitrarily small if the signal is sampled at a sufficient
rate.

Although the bound (2) is of considerable theoretical in-
terest, it needs to be made more specific and quantitative
to be of direct use for signal processing. In particular, we
need a better handle on the value of the constant, which
depends on the choice of the representation model (e.g.,
splines or wavelets) and on the algorithm used. In addition,
the error bound (2) does not really distinguish between the
traditional interpolation or quasiinterpolation schemes and the
least squares approximation methods (orthogonal projection),
which have been emphasized more recently. In fact, it is
well known to approximation theorists that these methods

1An approximation procedure has anLth order of approximation if it can
reproduce all polynomials of degreen = l � 1; a precise definition will be
given in Section II-D.

are qualitatively equivalent, i.e., they all achieve the optimal
rate predicted by the theory [17], [18]. From a practical

point of view, however, there are many reasons to expect that
the least squares approaches should be superior—the question
is: by how much?

Our aim with this paper is to address these important points
and present the theoretical results that are relevant to the
issue. The presentation will be partly tutorial with pointers to
the relevant literature but will also include some new results
that are specific to least squares approximation. In order to
make it as self-contained and understandable as possible for a
signal processing audience, we will present the derivation of
all key results. As a byproduct, we will also characterize all
the relevant constants explicitly. This will allow us to provide
general guidelines and formulas that can be of direct use to
the practitioner.

The paper is organized as follows. In Section II, we start
with a characterization of the relevant function spaces and
briefly review the three main methods for obtaining signal
approximations:

1) interpolation;
2) quasi-interpolation;
3) least squares approximation.

We then discuss the Strang–Fix conditions, which provide a
remarkable connection between the ability of the representa-
tion to reproduce polynomials of degree and its
approximation power as expressed by (2). In Section III, we
investigate the pointwise behavior of the error for the various
approximation methods using the Taylor series as our main
tool. In Section IV, we essentially rederive the basic-bound
(2) for (quasi-)interpolators and provide a refined estimate
for the least squares case, which strongly suggests that this
latter method is indeed superior. We also present experimental
error curves that support our speculation that there is an
intermediate region where a least squares approximation of
order is roughly equivalent to a (quasi-)interpolation of
order Finally, in Section V, we consider the asymptotic
case and compute the limiting form of the various errors for

sufficiently small.

A. Notations

is the space of measurable, square-integrable, real-valued
functions or signals It is a Hilbert space whose
metric (the -norm) is derived from the inner product

(3)
where the right-hand side equality is Parseval’s relation, and
where and denote the Fourier transforms ofand
, respectively. The or sup-norm is defined as

(4)

The class of smoothness of a signal will be specified by its
appartenance to the Sobolev space (resp., , which is
the space of functions whosefirst derivatives are defined in
the (resp. ) sense.
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II. PRELIMINARY NOTIONS

A. Convolution-Based Signal Representations

A general approach to specify continuous signal represen-
tations is to consider the class of functions generated from the
integer translates of a single function [13], [16].
We can adjust the resolution by varying the sampling step (or
step size) and rescaling accordingly. The corresponding
function space is defined as

(5)

where is the vector space of square-summable sequences.
The only restriction on the choice of thegeneratingfunction

is that the set is a Riesz basis of ;
this is equivalent to the condition

a.e. (6)

where is the Fourier transform of , and where
the constants and are the so-called Riesz bounds [13].
This constraint ensures that each function in
is uniquely characterized by the sequence of its coefficients

This formulation is quite general and includes all the signal
interpolation models that were mentioned in the introduction,
as well as many others. A special case that is also covered
is Deslauriers and Dubuc’s dyadic interpolation scheme in
which the generating function is defined indirectly through a
refinement equation [19]. Other examples of this nature are the
various subspaces associated with the wavelet transform and
multiresolution analysis; this connection is further discussed
in [20].

B. Interpolation and Quasi-Interpolation

The simplest way to represent a continuous signal
in is to use its samples as the coefficients of

the representation in (5). The corresponding “interpolation”
operator, which is schematically represented by the block
diagram in Fig. 1, is defined as

(7)

The operator is bounded, provided that the input signal is
sufficiently smooth; for example, Note that with
this definition, the samples of the signal and of its
“interpolation” are not necessarily identical. To get a
true interpolation (i.e., ),
we need to select a generating function that
satisfies the interpolation property

(8)

where denotes the discrete unit impulse at the origin.
For a given subspace , the interpolation function

is generally unique [13]. A typical exam-
ple is the sinc function, which is the interpolation kernel for

bandlimited functions. An interpolator that is commonly used
in image processing is Keys’s short cubic convolution kernel
(cf. [5])

.
(9)

which is parameterized by Interpolation kernels may also
be constructed by taking the autocorrelation of an orthogonal
scaling function [21], [22].

Interestingly, it is possible to relax the interpolation con-
dition without any noticeable loss in performance. This leads
to the concept of a quasi-interpolation, which is a standard
notion in approximation theory [23]–[26] but has not yet
been exploited in signal processing. By definition, a quasi-
interpolant of order is a function that
interpolates all polynomial of degree

(10)

where denotes the space of polynomials of degree
By rewriting this condition for the monomials

, it is not difficult to show that an equivalent
formulation of this condition in the frequency domain is

(11)

(12)

where denotes the th derivative of the Fourier trans-
form of In other words, the transfer function of a
quasi-interpolant of order has zeros of multiplicity at
all nonzero frequencies that are integer multiples ofand
is flat at the origin, i.e., as
Whether or not it is possible to construct quasi-interpolants
within a certain subspace depends on its order of
approximation; this is a notion that will be clarified in Section
II-D (Strang–Fix conditions). Note that there are many possible
quasi-interpolants within a particular subspace, a special case
being the interpolator in (8). It is often desirable to select the
one with the shortest possible support.

Example: Take to be the centered B-spline of degree
with and

0 otherwise. Then, is piecewise polynomial of degree
and is times continuously differentiable. This function
generates the standard space of polynomial splines of degree

[27], [28]. The Fourier transform of is

(13)

which is a function that has zeros of multiplicity
for If , then is not interpolating and
is quasi-interpolating only up to order 2 (because

as ). Higher order quasi-
interpolants can be constructed by suitable linear combination
of B-splines. For instance, one can easily check that the cubic
spline kernel

(14)
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is a quasi-interpolant of order 4; in fact, it is the shortest one
within the family of cubic splines. For comparison, the cubic
interpolating function in (9) is a quasi-interpolant of
order 3 only for the optimal choice and even less
otherwise. One can also construct an interpolating (or cardinal)
spline by defining

sinc

sinc

(15)

This function is also a quasi-interpolant of order , but it is
not compactly supported for However, decays
exponentially fast and can be implemented recursively [29].

C. Convolution-Based Least Squares

A more sophisticated approach for obtaining a represen-
tation of the signal in is to determine
its minimum -norm approximation (orthogonal projection).
This least squares approximation is given by (cf. [13])

(16)

where is the dual of and where the factor
is an inner product normalization. The dual (or biorthogonal)

function is defined by

(17)

where represents the convolution inverse of the sam-
pled autocorrelation sequence The
approximation procedure described by (16) can be interpreted
in terms of the block diagram in Fig. 2. The signal is pre-

filtered with , sampled, and then reconstructed
by convolution with the rescaled generating function
The only difference with the (quasi-)interpolation procedure
in Fig. 1 is the presence of the prefiltering module, which has
a role similar to the antialiasing filter required in conventional
sampling theory. In fact, if sinc , then the optimal
prefilter is precisely Shannon’s ideal lowpass filter with the
appropriate cutoff at the Nyquist frequency.

The orthogonal projection operator on can also be
expressed in the more compact form

(18)

where is the reproducing kernel associated with the
basic approximation space :

(19)

D. Strang-Fix Conditions

As gets smaller, the approximation error gen-
erally decreases and eventually becomes negligible asgoes
to zero. The general behavior of this error as a function of
depends on the ability of the representation to reproduce poly-
nomials up to a certain degree This result is expressed by
the Strang–Fix conditions [16], which relate the approximation
power of the representation to the spectral characteristics of
the generating function. Strang and Fix initially assumed that

is compactly supported, but their result has also be extended
for noncompact with sufficient polynomial decay at infinity
[30], [31].

1) Strang–Fix Conditions:Let be a valid generating
function with appropriate decay. The following statements are
equivalent:

i) The function spaces reproduce polynomials of
degree , which is equivalent to say that there
exists a function (not necessarily unique)
that is a quasi-interpolant of order

ii) There exists a function (the same as in
condition ) such that

(20)

(21)

iii) , which is the Fourier transform of, is nonvan-
ishing at the origin and has zeros of at least multiplicity

at all nonzero frequencies that are integer multiples
of

iv) There exists a constant such that approximation error
at step size is bounded as

(22)

2) Remarks and Comments:

1) The maximum value of for which any of these
conditions is satisfied defines the order of approximation
of the representation. With this definition, the order is
one larger than the degree For example, polynomial
splines of degree have an order of approximation

2) The more standard way of expressing Conditionii ) is
through (11) and (12). In fact, these two sets of equations
form a discrete Fourier transform pair since we are
dealing with periodized signals.

3) Condition iii ) provides the simplest practical test for
determining the order of approximation of a certain
representation space.

4) The whole strength of this result is the equivalence
between a simple quasi-interpolation property and Con-
dition iv). Note that with our definition of , the
approximation is controlled in the sense specified by
Strang and Fix in [16] because

, where is the lower Riesz bound
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in (6). This last condition is required for the proof of the
implication from iv) to iii ).

There is a rich approximation theory literature on the
Strang–Fix conditions and their various multivariate exten-
sions, including results for noncompactly supported[30],
[32], [33]; see also the surveys [17], [31], [34] and the
references therein. Some of the most general results to date
are provided by de Booret al. [35].

In the remainder of the paper, we will have a closer look
at the way in which the quasi-interpolation properties affect
the approximation error. In particular, we will compare the
performance of the (quasi-)interpolation and least squares
signal approximation methods described previously.

III. POINTWISE ERROR ANALYSIS

The simplest way to investigate the behavior of the error as
a function of is to look at what happens to the signal locally.
The basic tool for this analysis is the Taylor series expansion.
Specifically, if our signal is times continuously
differentiable (i.e., ), we can write

(23)

where the remainder is

(24)

A. Interpolation Error

Let us first consider the (quasi-)interpolation error

(25)

Replacing by its Taylor series development (23) with
and using the quasi-interpolation properties of, we

get

(26)

The only remaining terms are those associated with the remain-
ders of the Taylor series becauseis designed to perfectly
interpolate all expansion terms up to degree An
immediate consequence is the following uniform estimate of
the error (cf. [33]):

Proposition 3.1: If is a quasi-interpolant of order with
sufficient decay, then

(27)

where

Proof: Starting from (26), we get the following esti-
mates:

In order to be applicable, this estimate requires thatdecays
sufficiently quickly. Specifically, for to be finite, we need
some polynomial decay at infinity

(28)

This is a relatively mild condition that is satisfied for any
positive if decays exponentially fast or if it has com-
pact support. Interestingly enough, the converse statement of
Proposition 3.1 is also true, but the proof requires considerably
more work (cf. [33, Theorem 3.1]).

If decays like , we can improve our
estimate by considering one more term in the Taylor series
expansion. Using the same technique as before, we show that

where

(29)

This leads to the pointwise estimate for

(30)

B. Least Squares Error

To simplify the analysis of the error in the least squares case,
we will use the reproducing kernel formalism [cf. (18)]. For
this purpose, we first need to introduce what is yet another way
of expressing the conditions for ath-order approximation. We
shall assume that satisfies the decay condition (28).

Proposition 3.2: An equivalent form of conditions (20) and
(21) is

(31)

(32)

where is defined by (19).
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Proof: Let be the dual function for ; then, is given
by (19), which converges sincesatisfies (28). Moreover, (28)

implies that It then follows that
since otherwise, , in contradition with
(31). We can therefore always select a (possibly different)

admissible such that the moments of its dual

are vanishing for and (
linear constraints). Since the reproducing kernel is independent
of the choice of a particular basis, we can then expand
as

In order to justify the permutation of various sums and
integrals, we use the decay conditions on; the argument uses
Lebesgue’s dominated convergence theorem. Because of our

assumption on the moments of , all terms are zero except
the last one:

for

(33)
Thus, (31) and (32) imply that is a quasi-interpolant.
Conversely, if is a quasi-interpolant of order, then the
same is true for its dual (cf. [36, Proposition 1]), and the mo-
ment conditions necessary for obtaining (33) are automatically
satisfied.

Using (18) and (31), we now write the approximation error
as

(34)

where we use the rescaled version of the reproducing kernel.
Substituting the Taylor series (23) in (34) and using the fact
that “kills” all difference monomials up to
degree , we end up with the contribution associated
with the remainder only

(35)

This leads to the following standard error bound (cf. [18],
[37]–[39]).

Proposition 3.3: If is such that the conditions in Propo-
sition 3.2 are satistified, then

(36)

where

Proof: The remainder in (35) can also be written in the
standard form

where is some value between and This leads to the
estimate

We then make the change of variable in the integral
and take the supremum.

Here, we also have to exert some caution and make sure
that the bound in Proposition 3.3 is well defined. In practice,

and its dual have at least exponential decay. In such a
case, it can be shown that so that
the constant is definitely finite. In fact, Proposition 3.3
is also valid if has sufficient polynomial decay at infinity;
this result can be obtained as a particular case of the general

bound in [18, Theorem 2.2].
Considering one more term in the Taylor series expansion,

we can use the same argument as before to show that for

(37)

where the auxiliary function is defined as

(38)

Note that this last function can be shown to be equivalent
to the monowavelets introduced in [38]. The estimate for the
remainder term in (37) is essentially the same as in Proposition
3.3, except that it uses instead of

Similarly, we can obtain higher order asymptotic error
expansions. Such estimates were recently described in the
context of the wavelet transform; for more details, refer to
[37]–[39].

C. Comments

The present analysis indicates that the local behavior of the
error is qualitatively the same in the (quasi-)interpolation and
least squares cases. All estimates emphasize the characteristic

decay. The only difference is in the magnitude of
the constants involved, which tend to be smaller in the least
squares case.
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The functions and that appear in the pointwise
estimates (30) and (37) are both periodic with periodicity one.
This suggests that the error (for sufficiently small) has an
oscillatory behavior with an amplitude that is proportional to
the th derivative of the signal.

IV. ERROR BOUNDS

For quantification purposes, it is usually more informative to
investigate the behavior of the error. The most appropriate
tool for this type of analysis is the Fourier transform. In order
to get ready for this task, we first prove a useful lemma.

Lemma 4.1: If is times continuously differentiable
and for all and

, and where decays fast enough so that

then

for all

Proof: We replace by its Taylor series
expansion of order around and perform the
summation over all nonzero integersBecause all derivatives
up to order are zero, we end up with the summation
of the remainders only [cf. (24)]

Taking the absolute value and permuting the sum and the
integral, we obtain

which yields the desired result since the value of the integral
is precisely

A. Quasi-interpolants

Let us consider the block diagram in Fig. 1, and write down
the sampling equation in the Fourier domain

(39)

where denotes the Fourier transform of the input signal
This leads to the following Fourier domain representation

of the error:

(40)

where the error is decomposed in its in-band and out-of-band
components.

Proposition 4.2: If is a quasi-interpolant of order with
sufficient decay, then

(41)

A stronger version of this result can be found in [30, Th.
4.1]. Here, we present our own proof for the case, mainly
because some of the intermediate inequalities will be required
to discuss the similarities and differences with the least squares
case.

Proof: All computations are performed in the Fourier
domain using Parseval’s relation. We start with the first error
term

(42)

and consider the th-order Taylor series expansion of
around the origin. Since and

for , we have the following estimate:

which, together with (42), implies that

(43)

The second error term is

We multiply by and use the
Schwarz inequality on the sum to get
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Next, we make the change of variable , which
yields

(44)

We now need to show that is finite and to estimate it. To
do this, we use

because

This implies that

For each of these terms, we can use Lemma 4.1, assuming
that has sufficient decay for to be differentiable times;
one easily checks that both and

satisfy the necessary condition. Consequently

Finally, putting things together

B. Improved Least Squares Estimate

By considering the block diagram in Fig. 2, we obtain the
Fourier representation of the least squares approximation of

Using the explicit transfer function of the prefilter[cf. (17)],
we get

(45)

where , which is periodic, is defined by (6). The
approximation error in the Fourier domain can therefore be
written as

(46)

where

(47)

(48)

Using this decomposition, we can establish the following new
error bound.

Theorem 4.3:If and
, then

(49)

where

(50)

and where is the lower Riesz bound in (6).
Note that a sufficient condition for to be finite is that
has exponential decay.

Proof: Using Parseval’s relation (3), we evaluate the first
error term

(51)

To estimate the second term, we use a different technique:

Rearranging the factors and using the Cauchy–Schwarz in-
equality over the sum and over the integral, we get
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The first factor is bounded by

because of (6). Consequently

Next, we make the change of variable , which
yields

(52)
We now need to estimate the quantity

which plays a special role in both cases. It is easy to check
that the function (or
since is nonvanishing) has zeros of multiplicity at all
nonzero frequencies that are integer multiples of Hence,
we can use Lemma 4.1 to get the estimate

(53)

where we have used the lower Riesz bound to get
rid of the denominator. Using this relation in (51), we find that

(54)

where is given by (50). Similarly, we estimate the right
side of (52)

(55)

Putting things together, we end up with

C. Results and Discussion

The bounds in Proposition 4.2 and Theorem 4.3 are
both consistent with the Strang–Fix condition (22). However,
the new bound for the least squares case provides a finer
characterization of the error. It is made up of two distinct
terms that represent the so-called in-band and out-of-band

contributions of the error, respectively [cf. (46)–(48)].
For smaller values of , the first part of the error becomes
negligible, and the bound is dominated by the second
term. The corresponding constant turns out to be
smaller than the constant in the Strang–Fix inequality (22),
or in Proposition 4.2, probably reflecting the fact that
this term represents a portion of the error only [cf. (55)]. In
other words, we have an improved bound for smaller values
of This is a first indication that there is a true advantage in
using least squares over interpolation.

In addition, we note that the first part of the least squares
bound has the characteristic form of the error for an inter-
polator of order This is the predominant term for larger
values of Although we should not overinterpret this result,
we can at least identify empirical conditions under which the
performance of the least squares estimation is comparable to
that of an interpolator with twice the order. For this purpose,
we observe that the function in
(51) represents the frequency response of an interpolator of
order The in-band error , which is given by (51),
therefore turns out to be exactly the same as the corresponding
error [cf. (42)] for this “augmented” interpolator. Thus,
under the condition that , the least squares
solution of order should perform as well (or even better
if ) as the corresponding interpolator with twice
the order. This condition typically arises for largerwhen the
signal is somewhat undersampled (not bandlimited). In this
case, the out-of-band error primarily depends on the decay of

—aliasing tends to be reduced because of the prefiltering

with
This general behavior of the error as a function ofwas

verified experimentally using several test functions. Some of
these results are shown Fig. 3. These graphs were obtained by
applying various polynomial spline approximation procedures
to a test function and evaluating the correspondingerror
by numerical integration. The upper and lower error curves
correspond to a linear interpolation and a cubic spline quasi-
interpolation [cf. (14)], respectively. They all exhibit the
characteristic behavior predicted by the theory. The
thicker curve corresponds to the least squares linear spline
approximation. Interestingly, it first matches the cubic quasi-
interpolant curve very closely and then progressively switches
to its asymptotic regime. Asymptotically, the least
squares approach achieves a near constant 7.7 dB improvement
over the interpolation method.

Note that the pseudo-equivalence between the least squares
approximation and an interpolation with twice the order is
consistent with the experimental results reported in [14] for
image reduction and enlargement. An exact equivalence has
also been demonstrated recently for the simpler task of signal
translation [40].
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Fig. 3. Comparison of experimental error curves for the quasi-interpolation (solid fine lines—diamonds: INT-1, and circles: QUASI-INT-3) and least
squares spline approximation (solid bold) of the function	1(x) = �x � e�x =2 (first derivative of a Gaussian). The theoreticalO(h2) (linear splines)
asymptotic trend is represented in mixed lines.

For the special case of least squares polynomial splines
approximation, we can be more qualitative and provide simple
bounds for the constants in Theorem 4.3. For this purpose, we
use the following lemma.

Lemma 4.4:Let be the Fourier transform of a real-
valued positive function Then

(56)

holds.
Proof: We start by writing the two inequalities

which together imply that

(57)

We also note that is the discrete Fourier
transform of the sequence Using the fact that is

positive for all , we then bound the Fourier transforms on
either side of (57) by their values at the origin, which yields
the required suprema

For the B-splines of degree , we consider
, which is the Fourier transform

of , where is the
B-spline of degree This function satisfies the required
positivity constraint, and we can use Lemma 4.4 to get an
upper and lower bound for the spline constant in (49)

(58)

The various quantities involved in this inequality are the Riesz
bound for the centered B-spline of order (or degree

)

sinc

(59)
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TABLE I
VARIOUS BOUND AND LIMIT CONSTANTS FORPOLYNOMIAL SPLINES OF DEGREE n = 0; � � � ; 5

and the spline constants and , which can be evaluated
as

(60)

(61)

is Bernoulli’s number of order and
is the th moment of a B-spline of degree

which also corresponds to the th derivative of
its Fourier transform at the origin. Specific numerical values
for these various splines constants are given in Table I for

Rigorously, we should only consider the larger constant
which is the only one that guarantees that the bound

in Theorem 4.3 is preserved. In practice, however, the cor-
responding estimate turns out to be rather conservative. The
smaller constant , on the other hand, leads to an estimate
that is closer to the mark, even though it is not a true bound.
This choice is not unreasonable because the same constant also
appears in the asymptotic trend:
as , which is derived in Section V-B. Hence, the
estimate even provides an asymptotic margin of security
that is precisely It is also interesting to note that

, which is an approximate
relation that improves with increasingsince the various sums
involved have essentially one dominant term at This
observation suggests that ; in other words,
the proportionality factor in the first error term in (49) has
approximately the same order of magnitude as the constant
that would appear in the second (asymptotic) term for an
approximation with twice the order.

For all cases that we tested, we found the less conservative

estimate (i.e., (49) with ) to be a good
predictor of the true error curve. The results for the least
squares approximation of a Mexican hat function are shown
in Fig. 4. Except for an uncharacteristic dip that occurs at a
lower sampling rate, the experimental error points are tightly
sandwiched between the upper bound and the asymptotic trend
predicted by the theory. This example also illustrates the fact

that at a given , it is possible to reduce the error quite
substantially by switching to a higher order representation.

V. ASYMPTOTIC ERROR ANALYSIS

For smaller sampling steps, we can be more precise and
obtain a near-exact characterization of the-error using the
pointwise estimates in Section III.

A. Quasi-Interpolant Asymptotics

For sufficiently small, the terms in (30) become
negligible, and

(62)

The function , which is defined by (29), is simply
the periodized version of Its Fourier
series representation can therefore be determined by sampling
the continuous Fourier transform at
multiples of :

(63)

The function oscillates with a periodicity As
goes to zero, the signal term in (62) can be locally
represented by a constant within the duration of each of these
oscillations. Assuming that is continuous, we write

where the right-most factor is the mean square modulus of
This quantity, which is independent of, is determined

as

(64)

Hence, we get the following result.
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Fig. 4. Error bounds and asymptotic trends for the piecewise linear (fine) and cubic spline (bold) least squares approximations of the function
	2(x) = (1� x

2) � e�x =2 (second derivative of a Gaussian). The corresponding experimental error curves are represented in solid lines.

Proposition 5.1: If is a quasiinterpolant of order with
sufficient decay, then

(65)

where

B. Least Squares Asymptotics

We can apply the same procedure to determine the asymp-
totic behavior for the least square case, except that we need
to consider the function instead of For this
derivation, we need an explicit representation of this function,
which is obtained through a manipulation similar to the one
in Proposition 3.2:

(66)

Interestingly, this formula turns out to be the nonbiased (or
zero mean) version of (63). Based on (66) and (37), we get
the least squares counterpart of Proposition 5.1.

Proposition 5.2: If has and th-order of approxima-
tion and is such that , then

(67)

where

This proposition can also be obtained as a corollary of [41, Th.
4.1], which covers the more general case of oblique projection
operators. This recent paper also provides practical formulas
for the determination of the asymptotic bound constant when
is specified indirectly in terms of a refinement filter (wavelet
transform).

C. Results and Discussion

The constants that appear in the asymptotic limit for
the interpolation and least squares approximation are very
similar, except that the latter one is usually smaller since the
origin is excluded from the summation. These constants can
be determined explicitly for polynomial splines. Specifically,
for a spline quasi-interpolator of order, we have

(68)
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Fig. 5. Piecewise linear least squares approximation (bold) versus interpolation for the function	1(x) = �x � e
�x =2. Comparison of experimental error

curves (solid line) with the asymptotic trend (mixed line) predicted by the theory.

where is Bernouilli’s number of order , and where
is the th moment of the interpolation kernel For a

least squares spline approximation of order, there is no con-
tribution at the origin, and is identical the constant
introduced earlier [cf. (50)]. These various spline constants are
given in Table I for The superscript “int” refers
to the cardinal spline interpolator. The last column presents the
values for the shortest quasiinterpolants of order; the cubic
spline solution is the function defined by (14). For a given
order, the general tendency is , which is
consistent with our expectation.

These asymptotic error predictions are in excellent agree-
ment with all our experiments. In particular, we have rep-
resented these asymptotes on all the graphs presented so
far using mixed dashed lines. Some additional comparisons
between quasi-interpolation and least squares spline approx-
imations are shown in Figs. 5 and 6. While the asymptotic
rates are qualitatively equivalent, i.e., , the gap between
the two solutions can be substantial. The general shape of
the quasi-interpolation and least squares curves is also quite
different. The former approaches its asymptote from below,
whereas the latter reaches it from above. The least squares
error curves typically exhibit a faster decay for intermediate
values of , which is a property that is consistent with the
general form of the bound in Theorem 4.3.

Interestingly, for splines of even degree, the least squares
and cardinal interpolation constants are identical, suggesting
that these algorithms are asymptotically equivalent. The reason
for this is simply that the odd moments of a symmetric function
are zero by construction. We also note that it is possible to

construct quasi-interpolants with optimal asymptotic perfor-
mance by adding the constraint that theth moment be zero
as well. One function that satisfies this requirement is the
orthogonal Battle-Lemari´e spline of order (cf. [36, Prop.
6]), but there are many other possibilities since the quasi-
interpolation constraints are linear. While there may be cases
such as these where the two basic schemes are asymptotically
equivalent, the least squares procedure will always be superior,
especially at coarser sampling rates.

VI. CONCLUSION

In this paper, we have presented and illustrated the theory
that explains the behavior of the error as a function of the
sampling step for the two main convolution-based signal
approximation methods. The performance of these algorithms
is essentially determined by the ability of the representation
to reproduce polynomials up to a certain degree
While the pointwise analysis brings out this connection and
explains the general behavior of the error, the more
global Fourier and -analyses turn out to be more useful
in providing the answers to the questions formulated in the
introduction. Based on those results, we can now answer these
questions.

• Least Squares versus Interpolation: Although the (quasi-
)interpolation and least squares methods achieve the same
optimal rate, the least squares approach is superior. For
larger values of , our analysis suggests that the least
squares solution roughly behaves like an interpolation
with twice the order. For smaller values of, all methods
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Fig. 6. Cubic spline least squares approximation (bold) versus quasi-interpolation for the function	1(x) = �x � e
�x =2. Comparison of experimental

error curves (solid line) with the asymptotic trend (mixed line) predicted by the theory.

exhibit the characteristic decay, but the asymptotic
-error is usually smaller (by a known proportion) in

the least squares case.
• Sampling Step and Order Selection: For a given signal

, the sampling step and the approximation algo-
rithm should be selected such that the approximation error
is below a certain tolerance threshold. The simplest design
procedure is to use the asymptotic formula

as , which has the advantage
that the constant has been specified explicitly for
all algorithms. However, one should be aware of the
fact that this formula usually underestimates the error,
especially when the algorithm is asymptotically optimal
(i.e., is the smallest possible constant for
the given representation space). A much safer approach
would be to base the design on the generalbounds
derived in Section IV. While some of these estimates may
turn out to be too conservative to be of much practical
use, we can at least rely on our improved least squares
bound

In particular, we have derived a practical bound constant
for splines that provides a reason-
able estimate of the true error curve, even though it is
not absolutely safe. In this way, we get a safety factor
of at least over the corresponding asymptotic
formula.
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