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On the Approximation Power of Convolution-Based
Least Squares Versus Interpolation
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Abstract—There are many signal processing tasks for which . synthesis
convolution-based continuous signal representations such as sampling
splines and wavelets provide an interesting and practical s(x) s(hk) (Ihs)(x)
alternative to the more traditional sinc-based methods. The > 0,x) »
coefficients of the corresponding signal approximations are
typically obtained by direct sampling (interpolation or quasi-
interpolation) or by using least squares techniques that apply a
prefilter prior to sampling. Here, we compare the performance
of these approaches and provide quantitative error estimates 26( X - hk)
that can be used for the appropriate selection of the sampling ke
step k. Specifically, we review several results in approximation ) ) ) )
theory with a special emphasis on the Strang—Fix conditions, Fig. 1. Block diagram representation of a convolution-based interpolator.
which relate the general O(hL) behavior of the error to the Sampllgg is achieved by multiplication with the sequence of Dirac im-
ability of the representation to reproduce polynomials of degree Psu!fes.“)"e_zé(l /_, ;Lk)' The impulse response of the reconstruction fitter
n = L — 1. We use this theory to derive pointwise error estimates onlr) = e(e/h).
for the various algorithms and to obtain the asymptotic limit of

the L.-error as & tends to zero. We also propose a new improved to the samples of the input functiorfz) taken on a uniform
Ls-error bound for the least squares case. In the process, we

provide all the relevant bound constants for polynomial splines. grid: cu (k) = s(hk) (cf. Fig' 1). Morg recently, researchers
Some of our results suggest the existence of an intermediate rangehave proposed a systematic formulation of this class of repre-
of sampling steps where the least squares method is roughly sentations using essentially the same Hilbert space framework

equivalent to an interpolator with twice the order. We present gg developed in the context of the wavelet transform [8]-[10].
s e s ™ ™" Tis e o the design of “second generaton” methods for he
continuous representation of signals based on the principle of
a minimum error approximation [11]—-[13]. The corresponding
least squares solution can be obtained through a simple modi-
NTERPOLATION is one of the basic operations in signdication of the basic interpolation procedure, which consists of
processing. It is used extensively in picture processing &pplying an appropriate prefilter tgx) prior to sampling (cf.
rotate and rescale images or to correct for spatial distortiofsg. 2). This form of preprocessing is akin to the use of an
While the signal processing theory traditionally emphasizes thgti-aliasing lowpass filter in conventional sampling theory,
sinc-interpolation for bandlimited functions [1], this method igxcept that the optimal prefilter is not necessarily ideal. In
rarely used in practice because of the slow decay of(8inc fact, one may even take a reverse perspective and choose
Instead, practitioners usually rely on short kernel methogise representation such that the prefilter is particularly well
such as bilinear interpolation [2], cubic convolution [3]-[5]behaved. A good example of this is the use of B-spline filters
or polynomial spline interpolation [6], [7], which are muchtor computing polynomial spline approximations [12]. This
more efficient to implement, especially in higher dimensiongpproach has been used advantageously to design practical
These methods are all convolution-based in the sense that tgyst squares methods for image resizing [14], and, more

I. INTRODUCTION

use an interpolation model of the form recently, affine transformations [15]. For a given signal model,
x these methods generally outperform the standard interpolation
su(@) = Y ak)e(; - k) @ procedures.
keZ

From all the examples above, it appears that such nonban-
whereh is the sampling step and(x) the basic interpolation dlimited signal representations have a lot to offer for signal
kernel. The expansion coefficients in (1) typically correspormtocessing—both in terms of computational efficiency and
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analysis synthesis are qualitatively equivalent, i.e., they all achieve the optimal
sampling O(h") rate predicted by the theory [17], [18]. From a practical
s(x) 0 ¢, (k) (Rs)() point of view, however, there are many reasons to expect that
— -, (—x) 9, (x) el the least squares approaches should be superior—the question
is: by how much?

Our aim with this paper is to address these important points
and present the theoretical results that are relevant to the
> 8(x —hk) issue. The presentation will be partly tutorial with pointers to
kez the relevant literature but will also include some new results
Fig. 2. Convolution-based least squares signal approximation. The imputkiat are specific to least squares approximation. In order to
response of the optimal prefilter Is- ¢(—x/h), where? is the dual of>. make it as self-contained and understandable as possible for a
The signal approximatioﬂ?hs corresponds to the orthogonal projectionsof signal processing audience, we will present the derivation of
onto the signal subspadg, = span{ez(x/h = k)}rez. all key results. As a byproduct, we will also characterize all
the relevant constants explicitly. This will allow us to provide
What is effectively required to answer these questions isganeral guidelines and formulas that can be of direct use to
detailed characterization of the error as a functiorhofThis the practitioner.
turns out to be a key issue in approximation theory, and thereThe paper is organized as follows. In Section Il, we start
are many fundamental results available in this area of matheith a characterization of the relevant function spaces and
matical research. However, most of this theory has not yet bdaefly review the three main methods for obtaining signal
brought to the attention of the signal processing communitgpproximations:
Of special relevance is the general error bound provided byi) interpolation;
Strang and Fix in the early 1970’s [16]. Specifically, let the 2) quasi-interpolation;
function s;, in (1) represent ari.th-ordet approximation of 3) least squares approximation.
the (finite energy) function(z) € L, at the sampling step.

We then discuss the Strang—Fix conditions, which provide a
Then, we have the error bound

remarkable connection between the ability of the representa-
1 [t 1/2 tion to reproduce polynomials of degree= L — 1 and its
min [|s — sp|| < C - hY - {—/ wh$(w)|? dw (2) approximation power as expressed by (2). In Section Ill, we
Ch ™ Jo . . . . . .
investigate the pointwise behavior of the error for the various
whereC is a constant that does not dependsrand where approximation methods using the Taylor series as our main
5(w) denotes the Fourier transform efz). The right-most tool. In Section IV, we essentially rederive the basicbound
term in (2) represents the energy of tigh derivative of (2) for (quasi-)interpolators and provide a refined estimate
s. Since we are interested in making the connection witbr the least squares case, which strongly suggests that this
Shannon’s sampling theory, we can also interpret it aslater method is indeed superior. We also present experimental
measure of the bandwidth of the input signal However, error curves that support our speculation that there is an
there are two fundamental differences with the classical resisitermediate region where a least squares approximation of
for bandlimited signals. First, there is no special assumpti@nder L is roughly equivalent to a (quasi-)interpolation of
(such as bandlimitedness) on the class of admissible inputler 2L.. Finally, in Section V, we consider the asymptotic
signals. The only requirement is that the functierand its case and compute the limiting form of the various errors for
Lth derivative are square integrable, which is a very weak sufficiently small.
smoothness constraint, at least when compared with bandlim-
itedness. Second, th@(h%) form of the bound suggests thatA. Notations

tbhe re%reseg.tatlo'r will r;le.\;e; be'exalc:.t. Howelv%r, the er;f(')r' canL2 is the space of measurable, square-integrable, real-valued
e made arbitrarily small if the signal is sampled at a sufficieqi, oyiong or signals(z),z € R. It is a Hilbert space whose

rate. . . .. metric|| - ||2 (the Ly-norm) is derived from the inner product
Although the bound (2) is of considerable theoretical in- oo oo

terest, it needs to be made more specific and quantitatigg?x) r(x)) ::/ s(z)r(x) dz = 1 3(@)7(w) dw.

to be of direct use for signal processing. In particular, wi ’ oo 27 J_ oo

need a better handle on the value of the cons@nthich 3)

depends on the choice of the representation model (e_\ghere the right-hand side equality is Parseval’s relation, and

splines or wavelets) and on the algorithm used. In additioheres(w) and#(w) denote the Fourier transforms sfand

the error bound (2) does not really distinguish between tfie fespectively. TheL, or sup-norm is defined as

traditional interpolation or quasiinterpolation schemes and the +oo 1/p
[ st ae]

= sup [s(z)].  (4)
zER

least squares approximation methods (orthogonal projection),||s|lec = EIJPOO
which have been emphasized more recently. In fact, it is b _ _ B _
well known to approximation theorists that these methodde class of smoothness of a signal will be specified by its
- o appartenance to the Sobolev spak¢ (resp.,WZ), which is
1An approximation procedure has dih order of approximation if it can h ff . hogefi derivati defined i
reproduce all polynomials of degree= 1 — 1; a precise definition will be the space of functions who Irst derivatives are defined Iin

given in Section II-D. the L, (resp.L.,) sense.
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II. PRELIMINARY NOTIONS bandlimited functions. An interpolator that is commonly used
in image processing is Keys's short cubic convolution kernel
A. Convolution-Based Signal Representations (cf. [5])

A general approach to specify continuous signal represen- (a+2)|zP - (a+3)|z)*+1, 0< 7| <1
tations is to consider the class of functions generated from the?(z) = ¢ a(|z|® — 5|z|? + 8|z| — 4), 1< |zl <2 (9)
integer translates of a single functiaf{z) € L, [13], [16]. 0, 2 < |zl
We can adjust the resolution by varying the sampling step (or

step size)h and rescalingy accordingly. The correspondingWhiCh is parameterized by. Interpolation kernels may also
function space¥i,(¢) C Lo is defined as be constructed by taking the autocorrelation of an orthogonal

scaling function [21], [22].
x Interestingly, it is possible to relax the interpolation con-
Vilp) = {Sh(“’) => ch(k)‘P(ﬁ - k)|ch < 12} (3) dition without any noticeable loss in performance. This leads
ez to the concept of a quasi-interpolation, which is a standard
wherel, is the vector space of square-summable sequencestion in approximation theory [23]-[26] but has not yet
The only restriction on the choice of tlgeneratingfunction been exploited in signal processing. By definition, a quasi-
@ is that the se{(z/h — k}rcz is a Riesz basis of},(¢); interpolant of orderL. = n + 1 is a function ¢ that

this is equivalent to the condition interpolates all polynomiap,,(x) of degreen
0<A<Lipw) =) [¢pw+2rk)]* < B<+oo ae. (6) Vpa(z) € 7", Y palk)pqi(z — k) =pa(z)  (10)
keZ kez

where ¢(w) is the Fourier transform ofp(z), and where where #™ denotes the space of polynomials of degree
the constantsd and B are the so-called Riesz bounds [13]By rewriting this condition for the monomialg™,m =
This constraint ensures that each functigg(z) in V,(¢) 0,---,L — 1, it is not difficult to show that an equivalent
is uniquely characterized by the sequence of its coefficieditsmulation of this condition in the frequency domain is

Ch(/f). N
This formulation is quite general and includes all the signal PQu(w)|w=2rr = 0[k] (11)
interpolation models that were mentioned in the introduction, ¢g’f)(w)|w=2ﬂk =0, (m=1,---,L-1) (12)

as well as many others. A special case that is also covered

is Deslauriers and Dubuc’s dyadic interpolation scheme "vmere¢g'f) denotes thenth derivative of the Fourier trans-
which the generating function is defined indirectly through ®rm of ¢q:. In other words, the transfer function of a
refinement equation [19]. Other examples of this nature are tpgasi-interpolant of ordef. has zeros of multiplicityL at
various subspaces associated with the wavelet transform afidnonzero frequencies that are integer multiple2ofand
multiresolution analysis; this connection is further discussésl flat at the origin, i.e.pqi(¢) = 1 + O(¢F) as¢ — 0.

in [20]. Whether or not it is possible to construct quasi-interpolants
within a certain subspacé},(¢) depends on its order of
B. Interpolation and Quasi-Interpolation approximation; this is a notion that will be clarified in Section

II-D (Strang—Fix conditions). Note that there are many possible
quasi-interpolants within a particular subspace, a special case
eing the interpolator in (8). It is often desirable to select the

ope with the shortest possible support.

Example: Take ¢ to be the centered B-spline of degree
Nt @n = 9o * pp1 With @o(z) = 1,-1 < =<3 and
L)) =Y s(hk)<p(§ _ k) (7) 0 otherwise. Theny,, is piecewise polynomial of degree

vez h and is(n — 1) times continuously differentiable. This function

) ) . ) .generates the standard space of polynomial splines of degree
The operatot}, is bounded, provided that the input signal IS, [27], [28]. The Fourier transform of, is

sufficiently smooth; for examples € W3. Note that with B
this definition, the samples of the signa(z) and of its . _ (sinw/2\"T

“interpolation” (I;,s)(xx) are not necessarily identical. To get a #n(w) = w2 = sinc" " (w/(2m)) (13)
true interpolation (i.e.Yk € Z, s(z)|s=tt = ([1.8)(2)|s=ni),
we need to select a generating functigg,, € Vi(¢) that

The simplest way to represent a continuous sigiial) <
Ly in V(p) is to use its samples as the coefficients
the representation in (5). The corresponding “interpolatio
operator, which is schematically represented by the blo
diagram in Fig. 1, is defined as

which is a function that has zeros of multiplicifty = n + 1

satisfies the interpolation property for w = 27k, k # 0. If n> 1, theny,, is not interpolating and
is quasi-interpolating only up to order 2 (becaugg(() =
©int (T)|z=k = O[] (8) 1+ (n+ 1)¢%2/32 4 O(¢*) as¢ — 0). Higher order quasi-

_interpolants can be constructed by suitable linear combination

where 6[k] denotes the discrete unit impulse at the originys p_siiines. For instance, one can easily check that the cubic
For a given subspack,(¢) C Lo, the interpolation function spline kernel

omi(x/h) € V3,(¢) is generally unique [13]. A typical exam-
ple is the sinc function, which is the interpolation kernel for pqi(z) = (—ps(z + 1) + 8ps(x) — w3z — 1))/6  (14)
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is a quasi-interpolant of order 4; in fact, it is the shortest ori2. Strang-Fix Conditions

yvithin thg family qf cubic splines. For comp{;\rison, the cubic pq 4, gets smaller, the approximation errps — s;,|| gen-
interpolating functionyg () in (9) is a quasi-interpolant of erally decreases and eventually becomes negligible gses
order 3 only for the optimal choice = 1/2 and even 1SS 4 ;60 The general behavior of this error as a function of

oth_erwise. On_e_can also construct an interpolating (or cardinagpends on the ability of the representation to reproduce poly-
spline by defining nomials up to a certain degree This result is expressed by

. (21 f) sindt1(f) the Strang—Fix conditions [16], which relate the approximation
Pint,n(27f) = Z 5 (2 f + 210k) = Zsind”’l(f " k)' power of the representation to the spectral characteristics of
kez% g g = the generating function. Strang and Fix initially assumed that

@ is compactly supported, but their result has also be extended
for noncompacty with sufficient polynomial decay at infinity
This function is also a quasi-interpolant of orde¢1, but itis [30], [31].

not compactly supported far> 1. However,p;,. . (x) decays 1) Strang—Fix Conditions:Let ¢ be a valid generating
exponentially fast and can be implemented recursively [29]function with appropriate decay. The following statements are
equivalent:

C. Convolution-Based Least Squares i) The function spaced/,(¢) reproduce polynomials of

A more sophisticated approach for obtaining a represen- degreen = L — 1, which is equivalent to say that there
tation of the signals(z) € Lo in Vj(y) is to determine exists a functionpqr € Vi(y) (not necessarily unique)

its minimum L.-norm approximation (orthogonal projection). _ that is a quasi-interpolant of ordd. _
This least squares approximation is given by (cf. [13]) i) There exists a functiopqr € Vi(¢) (the same as in

. condition (7)) such that
(Bus)(a) = Y elk)o(5 — k)

(15)

ez Ve€R, Y pailr—k)=1 (20)
1 o /T kezZ
k) =={s(zx),¢(> -k (16)
) h< (=) (h )> Ve e R, Y (z—k)"pqilz—k) =0
Wherefﬁ € Vi(yp) is the dual ofy and where the factoh—! kEZ( 1 L-1) (21)
m=1,---,L—1).

is an inner product normalization. The dual (or biorthogonal)

function ¢ is defined by i) ¢(w), which is the Fourier transform a$, is nonvan-

ishing at the origin and has zeros of at least multiplicity

Fw) = e Bt - 1

kcZz

o>
PK
&

P(w) (17)

Pl = Z|¢(w + 27k)|? N ap(w)

L at all nonzero frequencies that are integer multiples
of 2.

iv) There exists a constaft such that approximation error

at step sizeh is bounded as

kcZz

where(a,)~! represents the convolution inverse of the sam-
pled autocorrelation sequeneg(k) := % x o(x)|z=x. The
approximation procedure described by (16) can be interprete®) Remarks and Comments:

in terms of the ?Iock diagram in Fig. 2. The signal is pre- 1) The maximum value ofL for which any of these
filtered with h=t¢(—z/h), sampled, and then reconstructed conditions is satisfied defines the order of approximation
by convolution with the rescaled generating functiefx/h). of the representation. With this definition, the order is
The only difference with the (quasi-)interpolation procedure  one larger than the degree For example, polynomial
in Fig. 1 is the presence of the prefiltering module, which has  splines of degreen have an order of approximation
a role similar to the antialiasing filter required in conventional L=n+1
sampling theory. In fact, ifo(z) = sindz), then the optimal  2) The more standard way of expressing Conditignis
prefilter is precisely Shannon’s ideal lowpass filter with the through (11) and (12). In fact, these two sets of equations
appropriate cutoff at the Nyquist frequency. form a discrete Fourier transform pair since we are
The orthogonal projection operator df,(¢) can also be dealing with periodized signals.
expressed in the more compact form 3) Conditioniii) provides the simplest practical test for
too 1 vy determining the order of approximatiah of a certain
(Pys)(x) = / s(y)ﬁK(ﬁ, ﬁ) dy (18) representation space.
—oo 4) The whole strength of this result is the equivalence
between a simple quasi-interpolation property and Con-
dition iv). Note that with our definition o}, (¢), the

h h

Vse Wy, |l ls—sill:< Okt 1552 (22)
@

where K (z,y) is the reproducing kernel associated with the

basic approximation spacé (¢):
o approximation is controlled in the sense specified by
K(z,y) =Y _ oz —k)$(y — k). (19) Strang and Fix in [16] becausBcy||?2/h < A™L.
kcZ | Pus||*> < A~1-]|s]|?, whereA is the lower Riesz bound
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in (6). This last condition is required for the proof of the Proof: Starting from (26), we get the following esti-
implication fromiv) to iii). mates:
There is a rich approximation theory literature on the BE L
Strang—Fix conditions and their various multivariate extents(z) — (I,s)(z)| < ——— Z ‘f _ k‘ ‘¢(f _ k)‘
sions, including results for noncompactly supported30], L-1! k h
[32], [33]; see also the surveys [17], [31], [34] and the /1(1 v
. -7
0

references therein. Some of the most general results to date ~!sup |3(L)(37)| dr

are provided by de Booet al. [35]. L vl
x
In the remainder of the paper, we will have a closer 100ks(y) — (I;,5)(x)| < T [lsP ]l S |5 — k‘ ‘<p( k)‘
at the way in which the quasi-interpolation properties affect Ll vez
the approximation error. In particular, we will compare the
performance of the (quasi-)interpolation and least squares O
signal approximation methods described previously. In order to be applicable, this estimate requires thdecays
sufficiently quickly. Specifically, for’, 1, to be finite, we need
[ll. POINTWISE ERROR ANALYSIS some polynomial decay at infinity
The simplest way to investigate the behavior of the error as
b is o | X @ S K-(Q+la)™, ML (28)

a function ofh is to look at what happens to the signal locally.
The basic tool for this analysis is the Taylor series expansion.
Specifically, if our signals is (n + 1) times continuously
differentiable (i.e..s € Wt!), we can write

This is a relatively mild condition that is satisfied for any
positive M if ¢ decays exponentially fast or if it has com-
) pact support. Interestingly enough, the converse statement of
s(y) =s(x) + (y — s)sV(x) + (y = =) s () Proposition 3.1 is also true, but the proof requires considerably
2! more work (cf. [33, Theorem 3.1]).
Foe g (y_x)ns(n)(x) + Rupi(y) 23) If w(x) decays like O(z~(**+1), we can improve our

n! estimate by considering one more term in the Taylor series
where the remaindeR,, 1 (y) is expansion. Using the same technique as before, we show that
(y — 37)"+1 L
Ryg(y) = —— _ Rt ey o
a () = (Ins)(@) + T B (5 ) 5P (@)
n(n+1
-/0 (1—7)" s (ry + (1 — 7)) dr.  (24) < Cppgr - WEFL 50| oo
A. Interpolation Error where
Let us first consider the (quasr)mterpoaljatlon error Ep(z) = (=1)F Z(x — b)Yz — k). (29)
3(2) = (Is)(@) = s(@) = Y shk)e (7 — k). (29) =

ke
This leads to the pointwise estimate fore WL+!
Replacings(hk) by its Taylor series development (23) with P Ve

y = hk and using the quasi-interpolation propertiesgfwe RL

get (@) = (h)(w) = = Bo ()P (@) + O ). (30)

—ht o\t sz
s(x) = (Ins)(2) = -1 z; (k - ﬁ) ‘P(ﬁ - k) B. Least Squares Error

1 To simplify the analysis of the error in the least squares case,

- {/ (1 -1 sB (rhk + (1 — 7)z)) d’/':|. (26) we will use the reproducing kernel formalism [cf. (18)]. For

0 this purpose, we first need to introduce what is yet another way

The only remaining terms are those associated with the remapfiexpressing the conditions forZah-order approximation. We
ders of the Taylor series becaugeis designed to perfectly shall assume thap satisfies the decay condition (28).
interpolate all expansion terms up to degree= L — 1. An Proposition 3.2: An equivalent form of conditions (20) and
immediate consequence is the following uniform estimate ¢#1) is
the error (cf. [33]):

Proposition 3.1: If ¢ is a quasi-interpolant of orddr with teo

sufficient decay, then eo(x) = . K(z,y) dy=1 (31)
L - ChL (D) +oo
Vs € Woo7 ||3 (I’LS)HOO < C%L h ||3 ||oo (27) em(a:) — / (y _ a:)mK(a:,y) dy -0
where —co
m=1,-,L—1 32)
Ce.L = 77 sup Z|ﬂ7—k| le(z — K.

Laconicy where K (z,y) is defined by (19).
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Proof: Let(op be the dual function fop; then, K is given Eroposition 3.3:_ If. % is such that the conditions in Propo-
by (19), which converges singesatisfies (28). Moreover, (28) sition 3.2 are satistified, then
implies that<p_ € L'. It then follows thatf <P(a:)_ da: # 0 Vse WE, s = (Brs)lloo < Creor, - BE - [|sP]los (36)
since otherwise,/ K(z,y) dy = 0, in contradition with
(31). We can therefore always select a (possibly differenthere

admissiblepg € V1 (¢) such that the moments of its duoab 1 +o0 .
are vanishing forn = 1,---,L — 1 and [ ¢o(z) dz =1 (L Crr = 7i5up U_Oo |z — " |K(z,y)| dy |-
linear constraints). Since the reproducing kernel is independent . . . .
of the choice of a particular basis, we can then expant) Proof: The remainder in (35) can also be written in the
as standard form
L
w00 R _ (y — =) (L)
ent)= [ Y lw-B - =Bl A=
T ke . where ¢ is some value betweem and y. This leads to the
oz —k)pqly — k) - dy estimate
m m hL
=22 (l )(—1>l<x ~ B)lpq(e — k) [s(2) = (Pus)(@)] < 77 - 157l
e [ e
= teaty -y - dy o I TR R R
m m . . We then make the change of varialfe= /A in the integral
=> > 1)U @ =k oz = k) and take the supremum. O
1=0 keZ Here, we also have to exert some caution and make sure
'/-l—oo ym_l& W) - dy that the bound in Proposition 3.3 is well defined. In practice,
—oco @ ' ¢ and its dualy have at least exponential decay. In such a

case, it can be shown thék (z,y)| < C - e~7*~¥l so that
In order to justify the permutation of various sums anthe constanCy j, is definitely finite. In fact, Proposition 3.3
integrals, we use the decay conditionsyarthe argument uses is also valid if¢ has sufficient polynomial decay at infinity;
Lebesgue’s dominated convergence theorem. Because of @i result can be obtained as a particular case of the general
assumption on the moments «Zb, all terms are zero exceptL, bound in [18, Theorem 2.2].
the last one: Considering one more term in the Taylor series expansion,
we can use the same argument as before to show that for
em(z)=(=1)" > (= k)" pq(z—k) form =0+, L-1. s € WZH
kcZ WE
. | B ) - (P = — e (T
Thus, (31) and (32) imply thapg is a quasi-interpolant. L! h

Conversely, ifoq is a quasi-interpolant of ordek, then the \ynere the auxiliary functior,(z) is defined as
same is true for its dual (cf. [36, Proposition 1]), and the mo-

)5 (@) + O+ (37)

. .. . +oo
?a?ir;tﬁcezlj]dltlons necessary for obtaining (33) are autom:étlcally er(z) = / (y - a:)LK(a:, y) dy. (38)
Using (18) and (31), we now write the approximation error ) Oo_ )
as Note that this last function can be shown to be equivalent
to the monowavelets introduced in [38]. The estimate for the
+oo 1 T x remainder term in (37) is essentially the same as in Proposition
3(37)—(Ph3)(37):/00 (3(37)—3@))%-’((%%) dy (34) 3.3, except that it usedl. + 1) instead ofL.

Similarly, we can obtain higher order asymptotic error

where we use the rescaled version of the reproducing kerrf@fPansions. Such estimates were recently described in the
Substituting the Taylor series (23) in (34) and using the fagpntext of the wavelet transform; for more details, refer to
that K (z,y) “kills” all difference monomials(y — z)™ up to [37]-(39].
degreen = L — 1, we end up with the contribution associated
with the remainder only C. Comments
N . The present analysis indicates that the local behavior of the
_ = Ty error is qualitatively the same in the (quasi-)interpolation and
s(@) = (Pus)(@) = _/ RL(y)ﬁK(ﬁ’ ﬁ) 9. B9 east squares cases. All estimates emphasize the characteristic
O(h%) decay. The only difference is in the magnitude of
This leads to the following standard error bound (cf. [18the constants involved, which tend to be smaller in the least
[37]-[39)). squares case.

— o0
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The functionsE; (z) andey(x) that appear in the pointwise where §(w) denotes the Fourier transform of the input signal
estimates (30) and (37) are both periodic with periodicity one. This leads to the following Fourier domain representation
This suggests that the error (fér sufficiently small) has an of the error:
oscillatory behavior with an amplitude that is proportional to

the Lth derivative of the signal. 3(w) = (Ins)Nw)
IV. L, ERROR BOUNDS = {8(w)(1 = p(hw)) } + {Z <w + 7k> P(hw )}
k70
For quantification purposes, it is usually more informative to N . *
investigate the behavior of thie; error. The most appropriate = Ei(w) + Ex(w) (40)

tool for this type of analysis is the Fourier transform. In order
to get ready for this task, we first prove a useful lemma. Where the error is decomposed in its in-band and out-of-band

Lemma 4.1:If F is M times continuously differentiable cOmponents.
and F(m)(gwk) =0foral ke Zk # 0andm = Proposition 4.2: If ¢ is a quasi-interpolant of orddr with
0,---,M — 1, and whereF"™) decays fast enough so that sufficient decay, then
L - ChE L8
STFMD (¢ 4 20k)] < C < oo Vs e Wy, |ls=Ins|la < Cpr- 7 -5l (41)
k A strongerL, version of this result can be found in [30, Th.
4.1]. Here, we present our own proof for tlhg case, mainly
because some of the intermediate inequalities will be required
to discuss the similarities and differences with the least squares
case.
Proof: All computations are performed in the Fourier

then

| |J\4

w
ZF(w+27rk) < i

sup Z FD (¢ 4 21k)

. C eS| . . . . .
k70 k70 domain using Parseval’s relation. We start with the first error
for all |w| <m. term
+oo
Proof: We replace F(w + 2rk) by its Taylor series |EL|? = i/ 13(w) 21 = ¢(hw)|? dw (42)
expansion of ordetd aroundz = 2xk and perform the 21 J oo

summation over all nonzero integérsBecause all derivatives
up to orderd — 1 are zero, we end up with the summatlorL
of the remainders only [cf. (24)]

and consider thd.th-order Taylor series expansion ¢f —
¢(hw)) around the origin. Sincg(0) = 1 and ¢ (0) = 0

form =1,-.-,L — 1, we have the following estimate:
. hw
> P omk) = s S 1= ot < L sup ot
k#£0 k0
/1 F(M)(27r/€+'rw)(1 —)M-1 g, which, together with (42), implies that
0

(L) .hL
Taking the absolute value and permuting the sum and gLl < <Ll sup ¢ (€ )|> h

integral, we obtain 1/2
LT a2 / L (D)
- <%/ W2 5(w)| dw) =Gy RE B,

w]\l —o0
Z Flw+27k)| < —— sup Z FOD(2nk 4+ €) (43)
k20 (M —1)! €1<7 | k=0
1 The second error term is
/ (1- )Mt dr )
0 1 +oo 2
I1E|? = _/ Z§<w + %k) |3(hw|? dw.
which yields the desired result since the value of the integral 27 J oo 120

is preciselyl/M.
We multiply $(w + 27k/h) by (1/k) -k = 1 and use the
Schwarz inequality on the sum to get

<w + —k)

) [T ek

A. Quasi-interpolants

2

Let us consider the block diagram in Fig. 1, and write down
the sampling equation in the Fourier domain |E2||* <

k20 00 k=20
. 2 .
oy @)= 8o+ Th)ot)  @9) <
kez |@(hwl|* dw.
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Next, we make the change of varialfle= w + 27k /h, which  where a,(w), which is 2z periodic, is defined by (6). The

yields approximation error in the Fourier domain can therefore be
+Oo written as
B? < —/ k2| p(hé — 2nk|* d . . .
H 2” « - £| kz;éo |<P 5 0 | 5 s(w) _ (Phs)A(w) _ el(w) + Cg(w) (46)
Zk2|<p &+ 2rk)|? where
k0 oL , |e(hw)|? }
< | a-sup -h _ [1 ¢ 47
P €[22 e1(w) 1y (hw) 8(w) (47)
. Polhw) ———— 27
+oo éa(w) = n ¢lhw 4 27k) - §lw+ —k ). (48)
. <2i/ w2L|§(w)|2 dw) =Cy- 2L, ||3(L)||2 kz;éo a(;(hw) h
T J—o

(44) Using this decomposition, we can establish the following new

S _ . error bound.
We now need to show that, is finite and to estimate it. ToO  Theorem 4.3:If "M (2rk) = 0,k € Zk # 0 and

do this, we use m=0,..-.L -1, then
1
k< wﬂg‘f‘ 2rk|? + 1€7) Vs e Wi, s — Pusllz < Kpor - h* |55
because + K:;{QQL RE s (49)
e? < 2w +y)? +y] = 2® + (x + 29)% where
This implies that 1 1 .
Koor = L) A - Sup Z(|<P|2)(2L)(£ +2rk)|  (50)
D16 + 2mk)|? - ¢ |tz
Cy < 212 sup 7 €T and whereA = inf,[a,(w)] is the lower Riesz bound in (6).
T ¢ Note that a sufficient condition fa, -7, to be finite is that
¢ has exponential decay.
ZIS + 27k [?|p(€ + 2mk)|? Proof: Using Parseval's relation (3), we evaluate the first
+ sup k#0 error term
§

(45 ' oo y 1/2
_||e1||:<§ [ s |1 - G dw> - (5

For each of these terms, we can use Lemma 4.1, assuming -

that has sufficient decay fap to be differentiableL times; To estimate the second term, we use a different technique:
one easily checks that both; (w) = |¢(w)|* and Fy(w) =

lw@(w)|? satisfy the necessary condition. Consequently llea]| = feLju||I))‘||=1<627f>
@ 1 9 _ _ 1 95
< _ = ~12V(2L—2) = sup
C2 S Cs=g 5 o — gy S kzﬂ(w ) (§+2mk) jeralifil=1 2T ; o (hw 1/2
V1 .7¢Eh”+2ljf)§<w+2—”k> dw.
o2 2oy P p|Y_(1€a1*) PP (€ +2ak))|. g (hw) h
i . . . .
k#0 Rearranging the factors and using the Cauchy—Schwarz in-
Finally, putting things together equality over the sum and over the integral, we get
1/2
ls=Inslla S IELHI B2l <™ - sVl - {Ca+ /). O | olpthw + 2nH)?
[le2]| < sup | o Z |f W
B. Improved Least Squares Estimate T \k#0 ®
By considering the block diagram in Fig. 2, we obtain the X ) 1/2
Fourier representation of the least squares approximation of lg(hw)l* |, 2m
z Slw+ —Fk dw
prrd o (hw) h

(Prs)Mw) = ¢(hw) Z é(hw + 27rk)§<w + 2%/6)

1/2
keZ 2
. o . o lle2|| < sup _/ Z|f |2|<P hw + 27 k| dw
Using the explicit transfer function of the prefilter[cf. (17)], f |2 dp(hw)

we get T k0 s
S oy 1 [t s(hw)2 ] 9 2
(Prs) (@) = p(hw) 3 W <w + 27%) (45) : [% / > % s<w + %k) dw] .

(2799
ey —o0 k;éO ‘r(
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The first factor is bounded by

oo . 5 K2
1 Z|fw|2|<p(hw+27r | i

% —00 k;éO &‘P(h’w)
1 |¢(hw + 27k) |2 27k)|?
= or J_ Z o, (hw) dw
kez 9/
L[
= [ V)P d

because of (6). Consequently

leall < —/ ot TR\
€2l = 2 h

Next, we make the change of varialfle= w + 27k /h, which

yields
1 /
27

We now need to estimate the quantity

1/2
Z |<p o

0 k0

,‘

1/2

oy =2
k50

lleal| <

(52)

Z |@p(hw + 27k)|* 27k)|?

fi(hw)
keZ, 9/
[

1705

C. Results and Discussion

The L, bounds in Proposition 4.2 and Theorem 4.3 are
both consistent with the Strang—Fix condition (22). However,
the new bound for the least squares case provides a finer
characterization of the error. It is made up of two distinct
terms that represent the so-called in-b&nd and out-of-band
(e2) contributions of the error, respectively [cf. (46)—(48)].
For smaller values of, the first part of the error becomes
negligible, and the bound is dominated by the secOxi#’ )
term. The corresponding constaﬁigL turns out to be
smaller than the constant in the Strang—Fix inequality (22),
or C, 1, in Proposition 4.2, probably reflecting the fact that
this term represents a portion of the error only [cf. (55)]. In
other words, we have an improved bound for smaller values
of h. This is a first indication that there is a true advantage in
using least squares over interpolation.

In addition, we note that the first part of the least squares
bound has the characteristic form of the error for an inter-
polator of order2L. This is the predominant term for larger
values ofh. Although we should not overinterpret this result,
we can at least identify empirical conditions under which the
performance of the least squares estimation is comparable to
that of an interpolator with twice the order. For this purpose,
we observe that the functiothy,(w) = [p(w)|?/a,(w) in
(51) represents the frequency response of an interpolator of
order 2L. The in-band errot|e; ||, which is given by (51),
therefore turns out to be exactly the same as the corresponding
error || F1 || [cf. (42)] for this “augmented” interpolator. Thus,

which plays a special role in both cases. It is easy to chedRder the condition thafle;|| > [le|, the least squares

that the functionf(w) = |¢(w)|? (or F(w) = |p(w)|?/a,(w)
sinced(w) is nonvanishing) has zeros of multiplicigy at all

nonzero frequencies that are integer multiple2of Hence,

we can use Lemma 4.1 to get the estimate

1_ |@(hw)|? Z |p(hw + 27k)|?
ag( hw . au(hw)
k=0
(hw)*t 1 212Y(2L)
< = 27k 53
< “Gnr 4P e €2k (53)

k50

solution of orderLZ should perform as well (or even better

if ||Fs|| > |lez]|) as the corresponding interpolator with twice
the order. This condition typically arises for largewhen the
signal is somewhat undersampled (not bandlimited). In this
case, the out-of-band error primarily depends on the decay of
¢(w)—aliasing tends to be reduced because of the prefiltering

with .

This general behavior of the error as a functionhoWas
verified experimentally using several test functions. Some of
these results are shown Fig. 3. These graphs were obtained by
applying various polynomial spline approximation procedures
to a test function and evaluating the correspondingerror

where we have used the lower Riesz bouhet a.,(w) to get py numerical integration. The upper and lower error curves
rid of the denominator. Using this relation in (51), we find thatorrespond to a linear interpolation and a cubic spline quasi-

1 +oo 1/2
leall 17 Koo+ (57 [ il do) - (69
7

— o0

interpolation [cf. (14)], respectively. They all exhibit the
characteristicO(h%) behavior predicted by the theory. The
thicker curve corresponds to the least squares linear spline
approximation. Interestingly, it first matches the cubic quasi-

whereK, oy, is given by (50). Similarly, we estimate the rightinterpolant curve very closely and then progressively switches

side of (52)

+oo

1
Jeal < VB (5 [

Putting things together, we end up with

1/2
WPE8(w) dw) . (55)

I — Pusll2 < llexllz + llezll2 < Kpar - B2 - ||s*D]|2

+\/K({;72L'hL'||3(L)||2. O

to its O(h?) asymptotic regime. Asymptotically, the least
squares approach achieves a near constant 7.7 dB improvement
over the interpolation method.

Note that the pseudo-equivalence between the least squares
approximation and an interpolation with twice the order is
consistent with the experimental results reported in [14] for
image reduction and enlargement. An exact equivalence has
also been demonstrated recently for the simpler task of signal
translation [40].
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Fig. 3. Comparison of experimental error curves for the quasi-interpolation (solid fine lines—diamonds: INT-1, and circles: QUASI-INT-3) and least

squares spline approximation (solid bold) of the functibn(x) e—?/2 (first derivative of a Gaussian). The theoreti€{h?) (linear splines)
asymptotic trend is represented in mixed lines.

= —x

For the special case of least squares polynomial splingssitive for all z, we then bound the Fourier transforms on
approximation, we can be more qualitative and provide simpdéther side of (57) by their values at the origin, which yields
bounds for the constants in Theorem 4.3. For this purpose, the required suprema
use the following lemma.

A +oo +oo
Lemma 4.4:Let f(w) be the Fourier transform of a real- F — —jez g d
valued positive functionf(z) > 0,z € R. Then [F(@)l /_Oo Fl@)e z 5/_00 | f(z)|d
+oo
T, ; ; = dzx = f(0
> Lfenb) + f=2r)] < sup |3 (6 + 2e8) [ s = o)
k=1 k0 . '
oo > flwt2rk)| =" fR)eF <3 (k)
Z[f(%/f) + f(=2nk)] (56) kez keZ =
k=0 = Z f(k) = Z frk). 0
holds. keZ kEZ

Proof: We start by writing the two inequalities

For the B-splines of degree, we considerf(w)

R R R (=1)"1(|¢,|2) @2 (¢), which is the Fourier transform
Z Jw+2mk)| < Z Hlw +2mk)| + (W) of f(z) = 2*"+% . pony1(x), Wherewa, 1 = ¢n * ¢, is the
k70 kez B-spline of degre@n + 1. This function satisfies the required
. positivity constraint, and we can use Lemma 4.4 to get an
sgp Z F&+2nk)| < Slgp Z f E+27k)| + sup |f( )] upper and lower bound for the spline constant in (49)
keZ k0

ATY? .07 < /K a1 < A7YR . CF (58)

which together imply that

The various quantities involved in this inequality are the Riesz
sup Z f(€ +2nk)| - sup|f( )| < sup Zf &+ 2nk) bound A, for the centered B-spline of ordet (or degree
kCZ k50 n=1L-1)
1 1
< sup ng"'%k) +SUP|f( )iE (57) AL:Z sin(?L<—+l> 2272L
kez lcz 2 lcz ((21 - 1)7r)

We also note thallyc, f(w + 27k) is the discrete Fourier |B?L|(42L 4% (59)
transform of the sequencg(k). Using the fact thatf is (2L)!
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TABLE |
VARIOUS BOUND AND LIMIT CONSTANTS FORPOLYNOMIAL SPLINES OF DEGREEn = 0, -+, 5
n=L-1 A o C =Gy G G
0 1 0.5 0.288675 0.288675 0.288675
1 1.73205 1624471077 3.72678x102  9.12871x102  9.12871x107>
2 2.73861 6.53137x10%  5.75055x103 575055107 5.75055x10°

430458 2.75036x102  9.09241x10™* 1.66004x102  2.91808x102

w

4 6.76209 1.17897x102  1.44488x10*  1.44488x10™*  1.44488x10*
5 10.6219 5.10458x10  2.29874x10°  4.02736x10°  6.67992x1073

and the spline constan€; andC}, which can be evaluatedthat at a givenk, it is possible to reduce the error quite

as substantially by switching to a higher order representation.
1 I Y2 RIS | v V. ASYMPTOTIC ERROR ANALYSIS
(2L)! e~ — (2rk) For smaller sampling steps, we can be more precise and
obtain a near-exact characterization of theerror using the
- | Bai| (60) Pointwise estimates in Section IlI.
(2L)!
P 1/2 A. Quasi-Interpolant Asymptotics
n 21(0) _\2 2b2r, + | Bar| © , .p ymp ;
Cp = (2L)! +(Cr) = W (61) For h sufficiently small, theD(hL+1) terms in (30) become
' ' negligible, and
|BQQLL| is Bernpulhs number of order2L, apd bar, = lim(||s(a:)—(Ihs)(a:)||2/hL)
[ z* por_1 dzx is the(2L)th moment of a B-spline of degree h—0
2L - 1,'WhICh also correspor)d.s to tk@pth derlva_ltlve of _ 1 lim HS(L)(x)_EL (E)H ' (62)
its Fourier transform at the origin. Specific numerical values L' =0 h/ll2
for these various splines constants are given in Table | fbhe function E(x), which is defined by (29), is simply
n =205 the periodized version off (z) = (—z)l¢(z). Its Fourier

Rigorously, we should only consider the larger constameries representation can therefore be determined by sampling
C# which is the only one that guarantees that the boutide continuous Fourier transformf(w) = (—j)“¢("(w) at
in Theorem 4.3 is preserved. In practice, however, the canultiples of 2x:
responding estlma_ite turns out to be rather conservat|\{e. The En(z) = (=j)* Z D (27k)ei2he (63)
smaller constanC’;, on the other hand, leads to an estimate
that is closer to the mark, even though it is not a true bounfi
This choice is not unreasonable because the same constant 3Q 1o zero, the signal tersi®)(x) in (62) can be locally

H i (= L L
appears in the asymptotic trerjtk — Ps|| = C, A [ls] represented by a constant within the duration of each of these

as h — 0, which is derived in Section V-B. Hence, theoscillations. Assuming that(™) is continuous, we write

estimate even provides an asymptotic margin of security

keZ
e functionE'r(z/h) oscillates with a periodicity:. As h

2
that is preciselyA; /2. It is also interesting to note that  lim Hs(L)(a:) ‘Ep (%)H
A7} 5 ~ (A7Y? . ©;)?, which is an approximate e (k41)-h y
relation that improves with increasirdgsince the various sums — lim / |3(L)(kh)|2‘EL(£)‘ dr
involved have essentially one dominant termkat 1. This h=012 Jkh h
observation suggests that, or, ~ /K 4, in other words, 1k N |2
the proportionality factor in the first error term in (49) has = }ILIL%Z hsE) (kh)[? - ﬁ/ Er (ﬁ)‘ dx
approximately the same order of magnitude as the constant kez
that would appear in the second (asymptotic) term for an =||s"|3 - ||EL||3
approximation with twice the order. where the right-most factor is the mean square modulus of

For all cases that we tested, we found the less conservatjgg(x)_ This quantity, which is independent bf is determined
estimate (i.e., (49) with/K;; = AZI/Q -Cr) to be a good as
predictor of the true error curve. The results for the least 5, 1 h 5
squares approximation of a Mexican hat function are shown [l ~n o |Er(z/h)]" da

in Fig. 4. Except for an uncharacteristic dip that occurs at a 1
lower sampling rate, the experimental error points are tightly = / |Er(z)]? do = Z | (2nk)2. (64)
sandwiched between the upper bound and the asymptotic trend 0 keZ

predicted by the theory. This example also illustrates the fddence, we get the following result.
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Fig. 4. Error bounds and asymptotic trends for the piecewise linear (fine) and cubic spline (bold) least squares approximations of the function
Wy(r) = (1 —2?)- e—2%/2 (second derivative of a Gaussian). The corresponding experimental error curves are represented in solid lines.

Proposition 5.1: If ¢ is a quasiinterpolant of ordet with Proposition 5.2: If V(¢) has andLth-order of approxima-

sufficient decay, then tion and¢ is such that3(0) = 1, then
Vs e WENWERL Lim(||s — Pas|l2/A"Y) = G5 - |15,
Vs e WENWEN,  Tim(||s — Lus|loh®) ’ sl /27 = Co
h—0 (67)
=9 B
—CO,L [Exad|P (65) where
1/2
where 1 .
O = 7 | - le b))
1 1/2 k#0
C& =1 <Z |¢<L)(27rk)|2> . This proposition can also be obtained as a corollary of [41, Th.
" \kez 4.1], which covers the more general case of oblique projection

operators. This recent paper also provides practical formulas
B. Least Squares Asymptotics for the determination of the asymptotic bound constant when

We can apply the same procedure to determine the asyrfﬁ)-SpeC'f'Ed indirectly in terms of a refinement filter (wavelet

totic behavior for the least square case, except that we ndgfisform).

to consider the functiore,(z) instead of E;(z). For this

derivation, we need an explicit representation of this functio

which is obtained through a manipulation similar to the one The constant€’, ;, that appear in the asymptotic limit for

in Proposition 3.2: the interpolation and least squares approximation are very
similar, except that the latter one is usually smaller since the
origin is excluded from the summation. These constants can

yL<P(y) dy) be determined explicitly for polynomial splines. Specifically,
for a spline quasi-interpolator of orddr, we have

ﬁ:. Results and Discussion

+ oo

S -bhela-k)- [

kez e

er(x) = (—1)L<

=(=)" ) _ @B @rk)ere, (66) . w0 o2\ Y2
. I ~ .
k#0 e :E<|¢<L>(0)|2+2Z Ean )
: k=1
Interestingly, this formula turns out to be the nonbiased (or iN? |
zero mean) version of (63). Based on (66) and (37), we get _\/<m%@> |Bar| (68)
the least squares counterpart of Proposition 5.1. L (2L)!
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Fig. 5. Piecewise linear least squares approximation (bold) versus interpolation for the fuh¢fioh= —« - =27/, Comparison of experimental error
curves (solid line) with the asymptotic trend (mixed line) predicted by the theory.

where |Bar,| is Bernouill's number of orde2L, and where construct quasi-interpolants with optimal asymptotic perfor-
mf; is the Lth moment of the interpolation kerngl. For a mance by adding the constraint that thh moment be zero
least squares spline approximation of ordiethere is no con- as well. One function that satisfies this requirement is the
tribution at the origin, anuDaSL is identical the constar®, ; orthogonal Battle-Lemaei’spline of orderL (cf. [36, Prop.
introduced earlier [cf. (50)]. These various spline constants &P, but there are many other possibilities since the quasi-
given in Table | forn =0, ---, 5. The superscript “int” refers interpolation constraints are linear. While there may be cases
to the cardinal spline interpolator. The last column presents thiéch as these where the two basic schemes are asymptotically
values for the shortest quasiinterpolants of orfiethe cubic equivalent, the least squares procedure will always be superior,
spline solution is the function defined by (14). For a giveAspecially at coarser sampling rates.
order, the general tendency @& < Ci% < g%, which is
consistent with our expectation. 7

These asymptotic error predictions are in excellent agree- VI. CONCLUSION
ment with all our experiments. In particular, we have rep- In this paper, we have presented and illustrated the theory
resented these asymptotes on all the graphs presentectha® explains the behavior of the error as a function of the
far using mixed dashed lines. Some additional comparisog&mpling steph for the two main convolution-based signal
between quasi-interpolation and least squares spline apprapproximation methods. The performance of these algorithms
imations are shown in Figs. 5 and 6. While the asymptotis essentially determined by the ability of the representation
rates are qualitatively equivalent, i.€(h%), the gap between to reproduce polynomials up to a certain degree- L — 1.
the two solutions can be substantial. The general shapeVWhile the pointwise analysis brings out this connection and
the quasi-interpolation and least squares curves is also qaés®lains the generaD(h’) behavior of the error, the more
different. The former approaches its asymptote from beloglobal Fourier andLs-analyses turn out to be more useful
whereas the latter reaches it from above. The least squaregroviding the answers to the questions formulated in the
error curves typically exhibit a faster decay for intermediat@troduction. Based on those results, we can now answer these
values ofh, which is a property that is consistent with theguestions.
general form of the bound in Theorem 4.3.  Least Squares versus Interpolatiohlthough the (quasi-

Interestingly, for splines of even degreethe least squares  )interpolation and least squares methods achieve the same
and cardinal interpolation constants are identical, suggesting optimal rate, the least squares approach is superior. For
that these algorithms are asymptotically equivalent. The reason larger values ofh, our analysis suggests that the least
for this is simply that the odd moments of a symmetric function squares solution roughly behaves like an interpolation
are zero by construction. We also note that it is possible to with twice the order. For smaller values fof all methods
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Fig. 6. Cubic spline least squares approximation (bold) versus quasi-interpolation for the fuiglion = —x - =27/, Comparison of experimental

error curves (solid line) with the asymptotic trend (mixed line) predicted by the theory.

exhibit the characteristi©(h%) decay, but the asymptotic
Ly-error is usually smaller (by a known proportion) in
the least squares case.

Sampling Step and Order Selectidror a given signal [2]
s(z), the sampling stefh and the approximation algo- [
rithm should be selected such that the approximation error
is below a certain tolerance threshold. The simplest desigH]
procedure is to use the asymptotic formulés,h) =

Co - h* - ||stF)|| as h — 0, which has the advantage [s]
that the constant’; has been specified explicitly for
all algorithms. However, one should be aware of the,
fact that this formula usually underestimates the error,
especially when the algorithm is asymptotically optimal
(i.e., Co = CL° is the smallest possible constant for
the given representation space). A much safer approach
would be to base the design on the gendialbounds [8l
derived in Section IV. While some of these estimates mayg,
turn out to be too conservative to be of much practical
use, we can at least rely on our improved least squaréd!
bound [11]

(1]

[12]
cus(s.h) S (Ku)? 120 5D+ Kb (D),

13
In particular, we have derived a practical bound consta[nt]
for splines(K; = CLS - A7"/?) that provides a reason- 14
able estimate of the true error curve, even though it Is
not absolutely safe. In this way, we get a safety factor
of at IeastAZl/2 > 1 over the corresponding asymptotic
formula.
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