IMAGE RESAMPLING BETWEEN ORTHOGONAL AND HEXAGONAL LATTICES
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ABSTRACT

Resampling techniques are commonly required in digital
image processing systems. Many times the classical inter-
polation functions are used, i.e., nearest-neighbour interpo-
lation and bilinear interpolation, which are prone to the in-
troduction of undesirable artifacts due to aliasing such as
moire patterns. This paper presents a novel approach which
minimizes the loss of information, in a least-squares sense,
while resampling between orthogonal and hexagonal lat-
tices. Making use of an extension of 2D splines to hexag-
onal lattices, the proper reconstruction function is derived.
Experimental results for a printing application demonstrate
the feasibility of the proposed method and are compared
against the classical techniques.

1. INTRODUCTION

Digital images are sampled on a regular lattice. The con-
version of this representation from one lattice to another is
called image resampling. This operation is indispensable
for many applications such as printing. We propose a new
method to resample between orthogonal and hexagonal lat-
tices.

The standard procedure for linear resampling consists
of two conceptual steps: first, an image in the continuous
domain is reconstructed; second, this function is resampled
on the target lattice [1, 2, 3, 4]. Shannon’s sampling the-
orem assumes that images are band-limited, and proposes
to choose the interpolation filter to the ideal low-pass fil-
ter. However, real-world signals are not band-limited and
both the image and the interpolation function have a finite
support. Due to the slow decay of the ideal interpolation
functions (which are sinc-like), it is also quite difficult to
approximate them on a finite support. Additionally, ideal in-
terpolators tend to generate the Gibb’s phenomenon, which
becomes visually apparent in images as ringing along the
edges.

Instead of holding on to the band-limited hypothesis,
many authors, such as Unser [5, 6, 7, 8], set up a family
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of basis functions based on splines. These splines have
a limited size of support, which expands as the order in-
creases. Ultimately, a spline representation of infinite order
approaches the ideal filter. For example, first-order spline
interpolation is better known as “nearest neighbour” inter-
polation; second-order spline interpolation as bilinear inter-
polation. Higher orders, such as bicubic spline interpolation
yield even smoother results.

The standard approach does not minimize the informa-
tion loss. Annoying artifacts due to aliasing (such as moire
patterns) might arise. Unser et al. [5, 9] derived an al-
gorithm based on the principle of convolution-based least-
squares spline approximation. In particular, the samples on
the target lattice are chosen such that the mean squared error
between the spline representation on the source lattice and
a similar one on the target lattice is minimized. This theory
was developed for a 1D spline representation, and extended
to 2D orthogonal lattices by means of tensor-product splines
(i.e., the 2D spline is the product of two 1D splines).

This paper discusses the case of resampling between or-
thogonal and hexagonal lattices, therefore requiring a spline
definition suitable for hexagonal lattices. We propose a
simple recipe to construct hexagonal splines and make use
of these splines to derive the least-squares reconstruction
function. To demonstrate the feasibility of the proposed ap-
proach, we implemented our method for the practical case
of gravure printing, a printing technique which is very sus-
ceptible to aliasing artifacts when using classical resam-
pling procedures.

2. TWO-DIMENSIONAL SPLINES

We will denote a 2D function in the continuous domain as
g(x), where x € R%. The Ly-norm of g(x) is derived from
the inner product: ||g|| = (g,g)"/*. Analogously, we de-
note a discrete 2D array as c(k), where k € Z 2. We denote
the Ip-norm of c(k) as [[cl]1, = (X pege ck)e* (k)7

A 2D lattice can be characterized by a matrix R =
[r1|r2] constituted of two linearly independent vectors r
and r, [10]. It is convenient to define an array of impulses
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on the lattice sites:

Or(x) = > d(x — Rk), €)

keZ?

where §(x) represents a Dirac function.

Related to a lattice is a Voronoi cell, which is defined as
the set of all points that are closer to the origin 0 than to any
other site of the lattice. The Voronoi cell is represented by
its indicator function yr(x):

1, x € Voronoi cell,
Xr(x) =< 1/m, xonedge Voronoi cell, 2)
0, x ¢ Voronoi cell,

where m equals the number of lattice sites to which x
is equidistant. Note that this function, when periodically
copied onto all the lattice sites, covers the complete plane:
dr * xr(x) = 1, where the x-operator denotes the 2D con-
tinuous convolution. It is said that the Voronoi cell tiles the
plane.

Consider a function g(x), which is sampled on each lat-
tice site of a lattice R.. Using a shift-invariant 2D generating
function ¢(x), we define the approximation space S(¢) as
follows [11]

sw=%whw=zdwv4m} ®

keZ?

where the coefficients c¢(k) need to be chosen such that
s(Rk) = g(Rk). As such, any function s(x) € S(¢) is
characterized by a sequence of coefficients c(k). Notice
that these coefficients are not necessarily samples s(Rk) at
the lattice points. Several conditions are required to obtain a
sensible continuous/discrete model [11], among which most
importantly to form a Riesz basis.

Splines suitable for a regular orthogonal lattice, de-
scribed by the unity matrix, can easily be obtained by us-
ing the tensor-product of two one-dimensional B-splines
8™ (x) = B"(x1)p"(xz2). The superscript n refers to the
n-th degree of piecewise polynomials or to the n + 1-th or-
der of approximation [12].

Consider now a regular hexagonal lattice, described by

[0

We dgfine the surface area of the Voronoi cell as Q =
‘det(R)) = +/3/2. Matrices and functions related to the

hexagonal lattice are denoted by the “-notation.

To construct a spline basis on the hexagonal lattice, we
are especially interested in preserving the convolution prop-
erty because it plays an important role in the derivation of
the least-squares approximation later on. Therefore, we first

@

Fig. 1. Splines derived on a hexagonal lattice. (a) First
order, (b) Second order.

define the first-order hexagonal spline as the indicator func-
tion of the Voronoi cell: 3°(x) = xg(x). Note that this
spline is normalized to the surface area of the basic cell:
fBde = Q. By convolving this function with itself re-
peatedly, we construct hexagonal splines of higher orders:

20 an—1
g = 2 ©
Q

Figure 1 shows the hexagonal splines of first and second
order. The successive convolutions imply that the splines
become smoother as the order increases. Interesting prop-
erties of the hexagonal splines (analytical form, Riesz ba-
sis, convexity, partition of unity, computation of the spline
transform) can be found in [13].

3. LEAST-SQUARES RESAMPLING

Consider now two periodic lattices, i.e., an orthogonal
source lattice R and a hexagonal target lattice R. The
two-dimensional splines of the previous section allow us to
easily reconstruct an image in the continuous domain, us-
ing a reconstruction of the approximation spaces S(5") and
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S(™). We are aiming at a convolution-based scheme
§"(Rk) = s(Rk); s(x) =) @"(x—Rk)g(Rk), (6)

k

where the reconstruction function ®™(x) realizes the least-
squares approximation between both spline reconstructions.

The minimum Ly-norm approximation of a function
g(x) can be found by projection on S(5™). As such, the
error g(x) — §"(x) is orthogonal to S(3™). Since the orig-
inal function g(x) is only known at the lattice sites Rk, we
replace g(x) by its approximation in S(5™), using a spline
model for the source lattice. This enables us to write

(9"(x) —g (7

where ¢g™(x) and §"(x) are the spline representations re-
spectively on the orthogonal and hexagonal lattice. We can
rewrite the expression as

(9" (x), 8" (x — Rk))
= ﬁ" x—Rk) 6"(X—Rk)>

" (x), 3" (x — Rk)) =0,

(x — Rk), 3"(x — Rk)),

%
= ) dk 8)

where ¢(k) are the spline coefficients on the hexagonal lat-
tice. We now use the founding property of the hexagonal

splines 3" « 3" (x) /2 = 32" +1(x):
g" * 3 (x) = (Zé (x — Rk)é )) * 2 (x). (9)
The solution of Eq. (8) can be written as

E(k) _ gn*ﬁn *SngnJrl)fl

(Rk), (10)
where b"(x) = " (x)0r(x) is the “sampled spline”. This
enables us to write the least-squares interpolation function
for resampling from the lattice R to R as

(b")”

() = () 7w A G () B (0)/9

1 2 3

(11)
where the underbraced expressions indicate:

1. the direct spline transform to compute the spline co-
efficients on the source lattice;

2. the least-squares approximation filter;

3. thejinal convolution to reconstruct the function in
S (™) using the new spline coefficients.

The computation of Eq. (11) requires the solution of two di-
rect spline transforms (the inverse filters). One solution is to
invert the matrix corresponding to the set of linear equations
induced by the forward filters [7]. Another approach could
be to implement the inversion scheme by means of recursive
filters similar to the approach proposed by Unser [14, 6].
However, the factorization of the filter corresponding to the
hexagonal splines is not trivial. Therefore, we propose to
numerically approximate the reconstruction function on a
limited support by means of a well-known iterative proce-
dure [15].

In the case of n = 0, the reconstruction function of
Eq. (11) becomes °(x) = 3° x 3°(x)/Q. No inverse
filters are needed and the support is limited. This case is
sometimes referred to as “surface projection”: neighbour-
ing samples of the source lattice are weighted by the relative
overlap of source’s and target’s cell.

For the second-order least-squares approximation, the
reconstruction function is given by

(%)% 51 (x)/Q

The presence of the inverse filter (53)~! implicates that the
theoretical support of ®*(x) is the whole plane [13]. How-
ever, the fast decay shows that an approximation on a lim-
ited support is appropriate.

Note that this approach can easily be applied to resam-
pling from hexagonal to orthogonal lattices. In that case,
the inverse filters can be computed by recursive filters given
in [14].

Pl(x) = f' * (12)

4. RESULTS

We implemented the proposed resampling method for a
gravure printing application. The images are resampled to
a hexagonal lattice before halftoning. Figure 2 shows the
results of a test image after resampling using classical inter-
polation functions in (a)-(b), and after least-squares resam-
pling in (c)-(d). The corresponding reconstruction functions
are depicted in (e)-(f). Kindly note that the moire patterns
are better suppressed by the least-squares approach and the
second order least-squares produces sharper results.

5. CONCLUSION

In this paper, we presented a new method to resample be-
tween orthogonal and hexagonal lattices. After proposing
a simple recipe to derive a two-dimensional spline basis
for hexagonal lattices, we applied the principle of a least-
squares approximation to derive a suitable reconstruction
function. Many applications involving hexagonal lattices
can make use of this approach.
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Fig. 2. Results after resampling the test image “shirt” to the gravure lattice. (a) Interpolative resampling (first order), (b) Inter-
polative resampling (second order), (c) Least-squares resampling (first order), (d) (Least-squares resampling (second order).
(e) Reconstruction function for “surface projection” ®°(x). (f) Reconstruction function ®!(x).
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