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Abstract

Many image processing systems, including those for printing applications, need sampling conversions for the rep-

resentation of an image from one lattice to another. For example in the case of printing, classical halftoning requires

new sample values on the halftone lattice. Although often considered as a straightforward procedure, resampling can

cause so-called sampling moire due to aliasing. These artifacts are often very noticeable and as such undesirable, in

particular for high-quality printing. In color printing, each color separation uses its own halftone lattice. Therefore,

moire patterns will not only display an unexpected new frequency and orientation, but also influence the color ap-

pearance itself. These artifacts are frequently encountered in commercial (even high-quality) printing since the inter-

polation algorithms used in RIPs are simple (e.g., bilinear interpolation) and do not take into account the nature of the

target lattice. Approaches such as simple low-pass filtering unacceptably blur the edges, while manual selective

smoothing by an operator is very time-consuming.

This paper proposes an optimal prefilter which is based on the least-squares linear resampling paradigm. Our ap-

proach requires proper discrete/continuous models, i.e., for both the source and the target lattices, and computes the

associated reconstruction function which minimizes the error between the representations in the continuous domain.

The reconstruction function jointly takes into account the Nyquist areas of every color separation using a novel

hexagonal spline model resulting into an optimal prefilter before halftoning. Experimental results show that after

prefiltering, the images are much less prone to moire while not suffering from noticeable edge blurring.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Printing techniques are based upon a common

principle. Since they can only put ink or not (i.e., a
binary process), they rely on the limited spatial

resolution of the human visual system (HVS) to
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create the perception of an intermediate shade of

the ink�s color. Halftoning techniques distribute

small bi-level features on the paper. Ulichney

(1987) gives an excellent overview of halfton-

ing techniques in general. In this paper, we focus

on classical halftoning or amplitude modulation,
which places dots of varying sizes upon a regular

lattice. This technique is still frequently used and

very robust against ink-spreading problems.

Color printing technology is using another im-

portant property of the HVS which allows to

synthesize (almost) any color by a proper combi-

nation of three primary ink colors: cyan (C), ma-

genta (M), and yellow (Y). Black ink is also added
for technical and economical reasons (for a de-

tailed discussion of color halftoning we refer to

Kang (1999)). Every color separation uses its own

halftone lattice, but they are mutually rotated.

Interaction of these periodic structures could easily

give rise to moire-patterns known as intersepara-

tion moire. A common approach to minimize in-

terseparation moire is by maximizing the angles of
rotation. Typically, the black separation is at 45�,
cyan at 105�, magenta at 75�, and yellow (which

is the least visible) at 90�. If the separations are
correctly aligned, an acceptable rosette structure

becomes visible. An in-depth treatment of tech-

niques to obtain moire-free separations can be

found in literature (e.g., see Amidror, 2000).

Unfortunately, interseparation moire is not the
only way moire patterns arise in color printing.

Since the original image is resampled for each

color separation to the corresponding lattice, ali-

asing of the image content can give rise to so-called

sampling moire. As such, the moire patterns for

each separation are different, showing each one a

new low frequency at an ‘‘unnatural’’ orientation

and creating a new color appearance when the
separations are joined. Current resampling algo-

rithms used in RIPs are fairly simple and do not

incorporate any knowledge about the target lat-

tice, e.g., nearest neighbour interpolation, bilinear

interpolation, cubic convolution of Keys (1981).

Therefore they do not prevent high-frequency

components against turning into moire patterns.

The advent of advanced scanners and digital
cameras increases the availability of high-resolu-

tion images and likewise the possibility of high-

frequency components being present. Typical

‘‘dangerous’’ image content includes fine textures,

fabrics in clothes, and grills. One approach to

prevent sampling moire is by applying low-pass

filtering in order to suppress these high-frequency

components. However, such a method unaccept-
ably blurs edges. Another way is to let the operator

manually smooth dangerous regions in the image,

but such areas are difficult to predict and the job is

time-consuming, as reported by Miller and Zaucha

(1995) and Russ (1992). In the previous paper Van

De Ville et al. (2000), we presented a non-linear

resampling technique in order to obtain better re-

sults when resampling grayscale images by com-
bining two linear resampling techniques. This

method requires the computation of a risk image

(estimating the amount of dangerous aliasing

energy leading to moire patterns). Our current

approach is less complex, it is applicable for color

printing, and can be implemented as a prefilter

which does not require to modify the RIP device.

This paper further elaborates the paper Van De
Ville et al. (2002b). In order to obtain a joint

optimization of the prefilter for every color separa-

tion, we introduce hexagonal splines. Those bivar-

iate splines, although straightforward to construct

by a simple recipe, appear novel and are well-

suited for our application. It is worthwhile to note

that these splines are not equivalent to box splines

(de Boor et al., 1993). Next, we apply the theory of
least-squares resampling, as proposed by Unser

et al. (1995), to our two-dimensional signal

models. This will enable us to employ the pro-

posed technique to design a proper prefilter which

suppresses sampling moire in color printing.

Finally, we draw conclusions and give some indi-

cations for future research.

2. Generalized two-dimensional spline signal model

A continuous/discrete model allows to con-

struct a ‘‘smooth’’ signal in the continuous domain

based on the sample values. Splines are a family of

basis functions, which have a limited size of sup-

port, and expands as the order of the spline model
increases. One of the most important spline fami-

lies are the B-splines: piecewise polynomial func-
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tions, for a survey we refer to Unser et al. (1993).

In general, they are not orthogonal, but they form

a Riesz basis and satisfy the partition of unity

condition. It is also interesting to mention the

convolution property, which enables us to con-

struct splines of the next order by convolving the
spline with the first-order spline. Note that first-

order spline interpolation is better known as

‘‘nearest neighbour’’ interpolation; second-order

spline interpolation as bilinear interpolation.

These models are appropriate for one-dimen-

sional signals and can be easily extended to two-

dimensional rectangular lattices by means of the

tensor-product. In this paper, we propose to con-
struct a spline basis suitable for general periodic

lattices, e.g., hexagonal lattices. A two-dimen-

sional periodic lattice is characterized by the ma-

trix R ¼ ½r1jr2� composed of the lattice vectors r1
and r2 which are linearly independent. A well-

defined unique tiling cell is the Voronoi cell con-

taining all points closer to its lattice site than to

any other site. The indicator function for the
Voronoi cell of the origin is easy to define:

vRðxÞ ¼
1 x 2 Voronoi cell;
1=mx x edge Voronoi cell;
0 x 62 Voronoi cell;

8<: ð1Þ

where mx is the number of lattice points to which x
is equidistant. Note that vRðxÞ tiles the plane by
definition. Now we choose the first-order spline to

be b0ðxÞ ¼ vRðxÞ. Spline functions of higher order
are constructed by subsequent convolutions:

bnðxÞ ¼ b0 
 bn�1ðxÞ
detðRÞj j ; nP 1; ð2Þ

where each spline function is normalized by the

surface area of the Voronoi cell j detðRÞj. The
signal space SðbnÞ based on the shifted splines bn

contains the signal models sðxÞ:

SðbnÞ ¼ sðxÞ sðxÞ
�����

(
¼
X
k2Z2

cðkÞbnðx� RkÞ;

cðkÞ 2 R

)
: ð3Þ

In order to represent a function gðxÞ, the spline
coefficients cðkÞ must make sðRkÞ ¼ gðRkÞ. For
the first- and second-order this condition is easy

to satisfy by choosing cðkÞ ¼ gðRkÞ, while higher
orders need an inverse filter operation to obtain

the right values for cðkÞ. For this paper we only
consider first- and second-order spline models.

Nevertheless, the generalization of the proposed
technique to higher orders is straightforward. We

introduce the notation of the spline with a sub-

script R to refer to a sampled version on the lattice

R:

bn
RðxÞ ¼ bnðxÞ

X
k

dðx� RkÞ: ð4Þ

As an illustration, consider the regular hexagonal
lattice, characterized by the matrix

R ¼
ffiffiffi
3

p
=2 0

�1=2 1

	 

: ð5Þ

Fig. 1. The generalized spline functions for a hexagonal lattice. (a) First order; (b) second order.
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We first define the first-order hexagonal spline

(n ¼ 0) as the indicator function of the Voronoi

cell of the lattice. Fig. 1(a) shows the first-order

hexagonal spline. Note that it fills up the two-

dimensional space if it is copied upon each lattice
site (i.e., the partition of unity condition is ful-

filled). A convolution of this spline with itself (and

the proper normalization by its surface area) re-

sults into the second-order spline (n ¼ 1), shown in

Fig. 1(b). Using this recipe, splines of arbitrary

order can be constructed, becoming smoother as

the order increases. We have proven that this

spline family fulfills the necessary conditions
(Riesz basis, convexity, positivity) to be a sensible

continuous/discrete model. Additionally, the order

of approximation corresponds to the nomencla-

ture we introduced, i.e., (nþ 1)th order. An ana-

lytical expression of the Fourier transform has

been obtained. For more in-depth treatment of

these generalized splines, we refer to Van De Ville

et al. (2002a).

3. Least-squares based prefiltering

Artifacts in color printing caused by sampling

moire are very undesirable, not only because they

introduce new frequency components (i.e., with a

new frequency and a new orientation), but also
because new color tints due to different aliasing

for each color separation arise. Since the Nyquist

areas of the lattices of each color separation are

different (i.e., mutually rotated), moire patterns are

different in each color separation and might in-

terfere with each other. This phenomenon will be

illustrated later in the following section.

The first step for the derivation of a prefilter is

to select the discrete/continuous signal models to

represent the sampled images on their source and

target lattice. An interesting approach is least-

squares resampling: the reconstruction function

minimizes the squared error between the continu-
ous model for the image on the source lattice and

the model for the image on the target lattice using

the new sample values, see also Unser et al. (1995)

and Unser (2000). Consider a source lattice R and

a target lattice eRR, where the notation with the tilde
refers to the target lattice. Based on the two-

dimensional splines of the preceding section, we

can easily reconstruct an image in the continuous
domain, using a reconstruction of the approxi-

mation spaces SðbnÞ on the one side and Sð~bbnÞ on
the other side. We are aiming at a convolution-

based scheme

~ssðRkÞ ¼ hðRkÞ; hðxÞ ¼
X
k

Unðx� RkÞgðRkÞ;

ð6Þ

where the reconstruction function UnðxÞ realizes
the least-squares approximation between both

spline reconstructions, i.e., solving the minimiza-

tion problem

min
~ss2Sð~bbÞ

ks� ~ssk: ð7Þ

Fig. 2 illustrates the principle of least-squares re-
sampling by a block diagram. Since the error

sðxÞ � ~ssðxÞ must be orthogonal to Sð~bbnÞ, we can
write

hsnðxÞ � ~ssnðxÞ; ~bbnðx� eRRkÞi ¼ 0; ð8Þ

Fig. 2. Resampling by means of a least-squares approximation obtains new sample values ~ssðeRRkÞ such that the error ks� ~ssk2 between
the signal model sðxÞ on the source lattice R and the signal model ~ssðxÞ on the target lattice eRR is minimal.
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which can be worked out as

hsnðxÞ; ~bbnðx� eRRkÞi

¼
X
l

~ccðlÞ~bbnðx
*

� eRRlÞ; ~bbnðx� eRRkÞ
+

¼
X
l

~ccðlÞ ~bbnðx
D

� eRRlÞ; ~bbnðx� eRRkÞ
E

¼ detðeRRÞ
��� ��� X

l

dðx� eRRlÞ~ccðlÞ
" #


 ~bb2nþ1
 !

ðeRRkÞ:

Solving this equation for the coefficients ~ccðkÞ re-
sults into

~ccðkÞ ¼
sn 
 ~bbn 
 ð~bb2nþ1~RR

Þ�1ðeRRkÞ
j detðeRRÞj

: ð9Þ

As such, the reconstruction function UnðxÞ for the
convolution-based scheme of Eq. (6) is

UnðxÞ ¼
ðbn

RÞ
�1 
 bn

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{ð1Þ


 ~bbn 
 ð~bb2nþ1~RR
Þ�1

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{ð2Þ


 ~bbn
~RR

z}|{ð3Þ

ðxÞ
j detðRÞj ;

ð10Þ
where the overbraced expressions represent re-

spectively: the spline transform of the spline model

on the source lattice, the least-squares filter, and

the reconstruction filter of the spline model on the

target lattice.
For more details on the derivation and the

computation of Eq. (10) we also refer to Van De

Ville et al. (2002a). The first-order solution U0ðxÞ
corresponds to the well-known principle of ‘‘sur-

face projection’’: neighbouring samples of the

source lattice are weighted by the relative overlap

of source�s and target�s cell. No inverse filters

are needed and the support is limited. For the
second-order least-squares approximation, the re-

construction function contains an inverse filter

~bb3~RR

� ��1
, which implicates that the theoretical sup-

port of U1ðxÞ is the whole plane. However, the fast
decay makes an approximation on a limited sup-

port appropriate with negligible error.

4. Application to color printing

Instead of proposing different reconstruction

functions based on the lattice of each color sepa-

ration (in a least-squares sense), we propose a joint
criterion. For the purpose of illustration, Fig. 3

shows the frequency domain and each of the Ny-

quist areas of the color separations and their

largest enclosed circle. The resolution of the square

source lattice is assumed to be 300� 300 dpi. The

resolution of the halftone target lattices is 100�
100 dpi. Note the correspondence with the general

rule of thumb that the source lattice should be of
2–3 times higher resolution than the halftone res-

olution. Next, we consider the enclosed circle of all

Nyquist areas of the color separations. The lattice

of which its Voronoi cell covers most efficiently the

surface area of the enclosed circle is the hexagonal

lattice (and so is its reciprocal cell in the frequency

domain, see also Petersen and Middleton (1962),

Mersereau (1979), Ulichney (1987)). We computed
the least-squares reconstruction function for re-

sampling from the source square lattice to this

hexagonal target lattice, and used it as a prefilter

before halftoning since the incorporation into

PostScript or a RIP device is difficult to realize.

The advantage of considering the color separa-

tions together, is obviously that we only need a

Fig. 3. The outer square is the Nyquist area of the source lat-

tice, while the small rotated squares are the Nyquist areas of the

color separations. An hexagonal cell is able to cover the largest

enclosed circle most efficiently. The gray region in one quadrant

corresponds to the frequency region represented by the test

image zoneplate.

D. Van De Ville et al. / Pattern Recognition Letters 24 (2003) 1787–1794 1791



single prefilter which can even be applied before

the image is converted to the CMYK colorspace.

We first illustrate the origin of moire patterns

by considering the test image ‘‘zoneplate’’ (a two-

dimensional frequency sweep). Fig. 4(a) shows the

result of the zoneplate after regular halftoning.
Severe moire patterns appear differently for each

color separation; the combination also shows new

colors.

Fig. 5 shows the optimal prefilters based on the

least-squares approximation paradigm between

the source lattice and the hexagonal target lat-

tice. The filter coefficients are taken at the integer

lattice sites and applied after normalization, i.e.,

P
k UnðRkÞ ¼ 1. The numerical computation pro-

cedure of the reconstruction function is iteratively

and can also be found in (Van De Ville et al.,

2002a).

Fig. 6 shows the test image zoneplate after

prefiltering and halftoning. The moire patterns are
very well suppressed in both color separations.

The influence of the order of the models used for

original and resampled image is almost unnotice-

able. In fact, higher orders (nP 2) are not very

desirable: (1) the size of the support for a decent

approximation of the prefilter increases, (2) the

frequency response gets sharper and ringing arti-

facts might appear. Of course, its important to

Fig. 5. The optimal prefilter based on the least-squares approximation between the source lattice and the hexagonal target lattice.

The values at the integer lattice sites are used as filter coefficients after normalization. (a) First order; (b) second order.

Fig. 4. (a) The test image zoneplate after regular halftoning. Note (different) moire patterns occur in the cyan and magenta separation.

The digital annex contains the CMYK TIFF ‘‘zone_CM.tif’’ which allows the interested reader to view the individual separations.

(b) A normal test image (part of the ISO 400 test set) after regular halftoning.
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examine that the filter does not deteriorate normal
images by blurring the edges. With the set of test

images from ISO 12640:1997 (1997), we could not

see any differences of the halftoned image with and

without prefilter. Figs. 4(b) and 7 show a part of

an ISO400 test image which exhibit no noticeable

difference between the image after halftoning with

and without prefiltering. The second-order should

produce sharper results, but the halftoning process
almost completely masks this effect.

5. Conclusions

Moire patterns in color printing are very un-

wanted artifacts which could ruin a print job. The

advent of advanced scanners and digital cameras
increases the availability of high-resolution images

and even so the possibility of high-frequency com-
ponents giving cause to moire patterns. Resampling

techniques such as nearest neighbour and bilinear

interpolation are common practice, but they do

not incorporate the properties of the target lattice

in any way. In the case of color printing, moire

patterns due to aliasing can exhibit new fre-

quencies, orientations, and color tints. Based on a

novel class of two-dimensional spline models, we
propose a reconstruction function based on a least-

squares approximation and apply it as a prefilter.

The assumed target lattice is hexagonal in order to

jointly optimize for all color separations. Results

show that moire patterns are well suppressed while

there is no visual loss of edge sharpness in ‘‘normal’’

images.

Future research could try to incorporate the
algorithm into the resampling device itself, or

Fig. 6. The test image zoneplate (cyan and magenta) after regular halftoning, but after applying the least-squares prefilter. (a) First

order; (b) second order.

Fig. 7. Normal test image. (a) Halftoned after first-order least-squares prefiltering. (b) Halftoned after second-order least-squares

prefiltering.
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precompensate for the ‘‘common’’ resampling

technique it implements. Another interesting op-

tion is to choose the orders of the spline models

differently. For example, the order of the spline

model for the target lattice could be chosen equal

to one (corresponding to a rough model for the
halftoned image), while the order of the spline

model for the source lattice could be chosen higher.
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