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ABSTRACT

Based on the class of complex gradient-Laplace operators, we show the design of a non-separable two-dimensional
wavelet basis from a single and analytically defined generator wavelet function. The wavelet decomposition is
implemented by an efficient FFT-based filterbank. By allowing for slight redundancy, we obtain the Marr
wavelet pyramid decomposition that features improved translation-invariance and steerability. The link with
Marr’s theory of early vision is due to the replication of the essential processing steps (Gaussian smoothing,
Laplacian, orientation detection). Finally, we show how to find a compact multiscale primal sketch of the image,
and how to reconstruct an image from it.

Keywords: Multidimensional wavelet design, Laplacian-of-Gaussian, complex gradient, Wirtinger calculus,
pyramid decomposition, raw primal sketch

1. INTRODUCTION

Multiscale transforms are prominent tools for signal and image processing, computer vision, and modeling of
biological vision. Most notably, the 1-D wavelet transform acts as a multiscale version of an Nth-order derivative
operator, where N is the number of vanishing moments of the wavelet.! The extension to multiple dimensions and
to 2-D, in particular, is typically obtained by tensor-product basis functions. Considerable research effort has been
invested in developing alternative multiscale transforms that are better tuned to the geometry of natural images.
Some examples of these “geometrical x-lets” include biologically-inspired 2-D Gabor transforms,? wedgelets,?
ridgelets,*® dual-tree constructions®” and the M-band extension,® curvelets,” 19 contourlets,!! bandelets,!? 13
directional wavelet frames,!* and directionlets.'® Another important class of multiscale transforms are 2-D
directional filterbanks'® and steerable pyramids,'” ' which combine the structure of the Laplacian pyramid?’
with steerable filters.?!: 22

Here, we follow an alternative design strategy. From the complex gradient-Laplace operator, we define
associated complex polyharmonic B-splines. The spline spaces then form embedded approximation spaces, from
which we can define a wavelet basis that spans the orthogonal complement. A particular feature of our approach
is that the wavelets are defined from a single-generator wavelet. Next, we extend the wavelet basis to a mildly-
redundant pyramid structure by not subsampling the wavelet subband and exploiting the fact that a single
generator wavelet is used. Moreover, we benefit from the enlarged wavelet space to further shape the wavelet
function; i.e., the smoothing kernel within the wavelet is chosen to closely resemble a Gaussian. Due to the close
match of the processing elements with the ones proposed by Marr for modeling early vision,?® we coin the term
“Marr wavelet pyramid” for this decomposition. We also derive a compact multiscale primal sketch. Finally, we
propose an efficient image reconstruction algorithm given its primal sketch representation.
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2. OPERATOR-LIKE WAVELET BASES
2.1 Complex Polyharmonic B-splines
The complex gradient-Laplace operators form a class of differential operators that are most appealing for image

processing. They can be characterized as

=N .0 0 N
Lyn=(-A)" <_J8xl - 81‘2) ) (1)

where v € R™ and N € N. This is the complete family of complex operators that combines translation-invariance,
scale-invariance, and rotation-covariance.?*

Associated to this class of operators, complex polyharmonic B-splines are non-separable basis functions that
are defined in the Fourier domain as

p V, N (e
By = ) 2)
Ly n(w)
where the numerator V,, y(e/) is the localization filter, and the denominator L. y(w) = | (wy — jws) ™

is the Fourier transform of (1) in the distributional sense.

The localization filter regularizes the singularity of the Fourier transform at the origin. Let us consider the
polar-separable representation V. y(e/@) = V. (€/¢) - e/9%(@) where we specify modulus and phase as

(2 (i (5) s () + 5t (W) + sin’ (wlng%)w,
Onw) = Z(jlwn] - jlwa)?,

and where [w] stands for the unique w in [—m, 7| such that w — [w] = 2n7 for some integer n. The construction
makes (3, o coincide with the isotropic polyharmonic B-splines® that were earlier introduced as extensions of the

V. ()

elementary polyharmonic B-splines.?6 Thanks to the property ‘ B'v-, N’ = ﬂA%O, the autocorrelation filter
. R 2
Ay () = 37|, (w + 27| (3)
k
does not depend on N. The interpolant ¢2- of the spline space® associated to L7 Ly, n is also independent of
N; its Fourier transform is given by

P2y (W) = 0 (4)

2.2 Complex Wavelet Basis

The complex polyharmonic B-splines are valid scaling functions to build a multiscale analysis of Ly(R?):2" their
integer shifts form a Riesz basis; they satisfy the partition of unity property; and they satisfy a scaling relation
for a subsampling matrix D that corresponds to a rotation combined with a dilation. Specifically, in the Fourier
domain, the scaling relation can be described as

~ 1 . ~
Byn(DTw) = |det D2 H(e™) 3, v (w), ()

where H (e/*) is the scaling filter. We consider the embedded approximation spaces
V; = spanycy» {|det D|% By n(D'x — k)} (6)

to construct wavelets that span the orthogonal complements W; = V; ©, V;_1. The approximation coeflicients
at scale i are denoted as ¢;[k].

*This “augmented order” polyharmonic space is spanned by By, n(+) * By,5(—) = B2+,0.
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Figure 1. (a) Filterbank corresponding to the operator-like wavelet decomposition. (b) Filterbank corresponding to
the Marr wavelet pyramid. The synthesis is performed by the “subband regression” (SR) algorithm that projects the
redundant representation back into the basis.

2.3 Operator-Like Wavelets

One particular difficulty in multidimensional wavelet design is the choice of the M = |det D| — 1 wavelets that
span the wavelet subspace. We propose “operator-like” wavelets: a single wavelet generator is shifted on M
positions of the cosets defined by D. Specifically, we define the wavelets that span the detail space W_; as

0 0

N
ja:z:l_axg) {p2y} (x+e,), n=1,...,M, (7)

n — =N
D) = ()%
where the smoothing kernel ¢o, is specified by (4) and e,, is in the cosets C \ eg = (0,0) of the subsampling
matrix D. By writing the generator wavelet as ¢$3\, = 1, N, we can compactly denote the wavelet subspaces
W; as _
W; = span{|det(D)["/? ¢, n(D'x — D™k heez2\ pz2- (8)
We have proven®! that operator-like wavelets generate a semi-orthogonal basis of Ly (R?).
Practically, the wavelet decomposition is implemented using a filterbank. The wavelet filters can be obtained
by expressing 1/),(;7])\, as a function of the scaling function 3, n:
V’y*,N (ejw)
Ay (e7@)

W(n) (ejw)

3" (DTw) = |det D| ! e B n(w). 9)

In Fig. 1 (a), we show the filterbank that is used to implement the wavelet transform. The dual filters at the
synthesis side can be determined by deriving the scaling relations for the (unique) dual functions, or, by expressing
the perfect reconstruction condition on the filters. Notice that the wavelet coefficients are complex-valued. From
now omn, we restrict ourselves to the dyadic subsampling scheme D = diag(2, 2).
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3. MARR WAVELET PYRAMID
3.1 Marr’s Theory of Vision

The complex gradient-Laplace operator has been widely applied in image processing. Moreover, as proposed by
David Marr in his seminal work on vision,?® it also plays a central role in the modeling of the early stage of
the primate’s visual system. In his framework, image smoothing by a Gaussian, application of the Laplacian
operator, and detecting zero-crossing with their orientation, are identified as basic operations of low-level vision.
As an outcome of these basic operations, Marr introduced the concept of the “raw primal sketch”. This theory
has highly influenced the fields of vision and image processing; e.g., scale-space theory.?® 3° Reconstructing
back an image that closely matches the original one from its (multiscale) primal sketch representation has been
a long standing challenge. It is related to the inversion problem from zero-crossings that has been addressed
for signals® 34 and for Laplacian-filtered images.?>36 Most interestingly for our purpose, Mallat3” investigated
this problem using the (fully redundant) wavelet transform. In the improved algorithm,®® Mallat and Zhong
reconstruct using the positions and the values of the modulus maxima of the wavelet coefficients. Two separate
fully redundant wavelet transforms are required.

3.2 Marr Wavelet Pyramid

The operator-like wavelet decomposition can be tuned to match the basic operatorions in Marr’s model in a
multiscale fashion.

e FLirst, we select the operator L, y with v = 3, N = 1; i.e., the pure Laplacian is combined with the complex
gradient.

e Second, since the three wavelets 1/1?1), n =1,...,3 originate from the same generator function 3 1, we can

rearrange them in a single subband and add the “missing” shift (for ey = [0 0]7); i.e., we do not subsample
the wavelet subband after filtering with W(O)(ej“"). The enlarged wavelet spaces can be denoted as

Wj_ = span {1/13,1(2%( - k/2)}k622 ) (10)

and the (non-subsampled) wavelet coefficients at scale i as d;[k]. In this slightly redundant scheme, the
reconstruction of the pyramid decomposition is performed using the subband regression algorithm; i.e.,
the pyramid data is reprojected onto the (non-redundant) wavelet basis such as to minimize a quadratic
consistency error criterion.?® This extension improves the shift-invariance of the decomposition and allows
conventional image processing algorithms to be deployed “in-band”.

e Third, the smoothing kernel ¢, which is an interpolant, can be changed to better resemble the Gaussian
using the additional freedom from the enlarged wavelet space. Specifically, we filter the wavelet coeflicients
with A(e™*), which turns @2, into J2,. The latter function is known to converge to a Gaussian as v
increases.?> The generator wavelet can now be written as

b(x/2) = A (Jafc - 8‘9) {80} (). (1)

Thanks to the Gaussian-like smoothing kernel, the Marr wavelet (11) becomes quasi-steerability; i.e., Re{t}
can be rotated at any angle by a suitable combination with Im{}.

The filterbank implementation of the wavelet pyramid is shown in Fig. 1 (b). The redundancy factor is only
4/3, bringing the total redundancy (including the factor 2 for the complex-valued coefficients) to 8/3.
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Figure 2. (a) Test image “house”. (b) Marr wavelet pyramid. (c¢) Wavelet primal sketch. The map indicates which
coefficients are part of the sketch representation. (d) Flowchart of how the sketch is obtained for each subband.

3.3 Wavelet Primal Sketch and Its Reconstruction

We are able to obtain the wavelet primal sketch by applying an Canny-like edge detection. As schematically
shown in Fig. 2 (d), the local gradient information can be extracted from the real and imaginary parts of the
wavelet coefficients. Next, non-maximum suppression along the direction perpendicular to the local edge and
hysteresis thresholding allow to extract a robust edge map. In (b), the Marr wavelet pyramid for the test image
in (a) is shown, and the map indicating the constituting coefficients of the wavelet primal sketch in (c).

Next, we propose a reconstruction procedure that is inspired by the one proposed by Mallat and Zhong.

Practically, our algorithm uses alternating projections between two spaces:

e First, we define the space M of all Marr pyramid transforms of real-valued functions in L?(R?). Any such
Marr pyramid transform is invariant under the projector

Pu=Wo®Reo W™,

(12)

which consists of three operations: the inverse wavelet transform W ~! is an orthogonal projector onto
the image with respect to the norm that is minimized by the subband regression algorithm; the pointwise
transform Re is an orthogonal projector onto the space of real-valued images; and the wavelet transform
W provides the Marr wavelet pyramid of the new image.

e Second, we want the Marr pyramid that has the same values on the domain §2; of the wavelet primal sketch.
We search for a solution that is consistent with the wavelet primal sketch (i.e., the desired values d;[k] on
;) and that minimizes some ad-hoc wavelet-domain energy. Specifically, we would like the coefficients to
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(b)
Figure 3. Reconstruction from the wavelet primal sketch. (a) Result after one iteration. (b) Result after 30 iterations
(PSNR 35.8dB).

be small and essentially non-oscillating. Therefore, we propose to minimize the regularizing norm

[ lkDsacliy = 2 D 1l + A (1] = dilk = ea]|” + [di K] — difk — ea] ) (13)

i€Z keZ?

where e; and e are the unit horizontal and vertical vectors, respectively. Let us define R as the space
of pyramids with a consistent primal sketch; i.e., (d;); k such that (d;|q,) match. A critical component of
our algorithm is the projector Pr onto R, which is orthogonal with respect to the norm (13), and which
is specified in detail in Appendix A.

The reconstruction algorithm can now be formalized as the search for an image corresponding to an admissible
Marr wavelet pyramid such that

(d}[K])ix € M, subject to min |(d[K])ixl 5 (14)
(dle,;)=(dila;)

where (d;]q,) is the given wavelet primal sketch. This objective can be reached by alternating between the
projectors P and Pg, a procedure that is proven to converge to the orthogonal projection on A = M NR.40 If
we start from the zero element of M, we are eventually going to converge to the element of A whose norm (13)
is minimum.

In Fig. 3, we show the results of the reconstruction algorithm for the “house” image. The high threshold
value of Canny’s hysteresis threshold is chosen in an empirical way as a factor 3/2 of median-absolute-deviation
(MAD) at each scale. The low threshold value is then adapted such that the number of wavelet coefficients for
the primal sketch at scale i remains limited at 15%. After 30 iterations, the reconstruction algorithm reaches
good quality (PSNR 35.8dB).

4. CONCLUSION

The new wavelet design was based on the complex gradient-Laplace operator. First, we obtained a complex-
valued basis for Ly(R?) for the operator-like wavelets. Then, the Marr wavelet pyramid is derived with limited
redundancy and improved steerability. We also showed how to obtain a compact multiscale primal sketch from
the proposed decomposition. Finally, a reconstruction algorithm was proposed that allows to recover a good
approximation of the original image from its wavelet primal sketch.

APPENDIX A. PROJECTION OPERATOR Pr

The projector Pg transforms a pyramid (d[k]); x € M into the closest sequence (d} [k]); x € R with respect to
the regularizing norm (13). We define the update term ¢;[k] = d}[k] — d/[k]. The coeflicients ¢, [k] have to be

Proc. of SPIE Vol. 7446 74460W-6

Downloaded from SPIE Digital Library on 13 Oct 2009 to 128.178.48.127. Terms of Use: http://spiedl.org/terms



chosen such that: (1) the norm |(e;[k]); k|% is minimum; (2) the boundary conditions imposed by the wavelet
primal sketch of f, denoted as (d;|q,), are satisfied with ¢; Q, — di|q,, for every scale i.

Q, = d;

The minimization of |(e; [k])i,kﬁ% is solved at every scale i for k € Z%\ Q;. We can easily derive from (13)
that the constraint

0 1 0
Gkl — (|1 —4 1| %e)k]=0 (15)
0 1 0

should hold. The solution is found by a simple numerical implementation that alternates between applying the
update formula
by

010
erext = L0 1 | e (16)

and imposing the boundary conditions. The regularization can be reduced for coarser scales; e.g., \; = 4°.

The projector Pg is further refined to suppress spurious edges. We denote €2, as the domain at scale i of
the wavelet primal sketch of the current estimate. We extend the boundary conditions by imposing on €} \ €2;
that the magnitude should be reduced at the low threshold value of the Canny edge detector. Note that this
associated space with the refined projector changes at each iteration, meaning that convergence is no longer
guaranteed.
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