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Abstract—Tomographic reconstruction from PET data is
an ill-posed problem that requires regularization. Recently,
Daubechies et al. [1] proposed an ℓ1 regularization of the
wavelet coefficients that can be optimized using iterative thresh-
olding schemes. In this paper, we extend this approach for
the reconstruction of dynamic (spatio-temporal) PET data.
Instead of using classical wavelets in the temporal dimension, we
introduce exponential-spline wavelets that are specially tailored
to model time activity curves (TACs) in PET. We show the
usefulness of spatio-temporal regularization and the superior
performance of E-spline wavelets over conventional Battle-
Lemarié wavelets for a 1-D TAC fitting experiment and a
tomographic reconstruction experiment.

I. INTRODUCTION

Dynamic Positron Emission Tomography (PET) recon-

struction is challenging due to the small number of accu-

mulated counts in each time-bin. One popular approach is

to use a regularization term, which acts as an implicit image

model, to make the inverse problem well-conditioned [2].

In [1], the authors proposed a sparsity constraint by an ℓ1
norm on the spatial wavelet coefficients w, which leads to

the criterion

λ(x1, x2) = arg min
λ≥0

{

||y − Pλ||22 + µ||w||1
}

, (1)

where the imaging operator P expresses the forward model

from the spatial object λ(x1, x2) to the observations y,

and where µ is the tuning parameter. The image λ(x1, x2)
is expanded on an orthogonal wavelet basis with wavelet

coefficients w, the ℓ1-term favors a sparse representation.

Most interestingly, this criterion can be optimized using an

iterative thresholding algorithm.

In this paper, we extend the non-parametric reconstruction

that follows from (1) for the reconstruction of dynamic

(spatio-temporal) PET data. Instead of using conventional

wavelets in the temporal dimension, we opt for exponential-

spline wavelets [3] that are tuned to represent well TACs

as encounted in dynamic PET imaging. The key concept is

that the activity distribution in the body is ruled by systems

of differential equations involving so-called compartmental

models. The proposed E-spline wavelets are ideally suited

for the sparse representation of solutions of these differential

equations.
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II. MATERIALS AND METHODS

A. Problem formulation

We consider the problem of reconstructing a (non-

negative) spatio-temporal activity distribution λ(x1, x2, τ)
from dynamic PET data y = Pλ [2]. The reconstruction

task is to find the non-negative minimizer of the criterion

||y − P{λ(x1, x2, τ)}||
2
2 + µ||w||1. (2)

The choice of the spatio-temporal wavelet decomposition that

determines the coefficients w is explained next.

B. Wavelet Representation

We represent the activity distribution λ(x1, x2, τ) on an
orthogonal wavelet basis [4], [5].

λ(x1, x2, τ) =
∑

i

∑

k

wj [k]ψj,k(x1, x2, τ), (3)

with i and k are the scale and translation parameters. We

use wavelets that are separable in space and time:

ψj,k(x1, x2, τ) = ψ
(1)
k1,j1

(x1)ψ
(1)
k2,j2

(x2)ψ
(2)
k3,j3

(τ). (4)

We include the (coarest-scale) scaling functions in this no-

tation which by convention crorrespond to j = jmax. We

consider different decomposition levels in the spatial and

temporal domain, i.e. jmax
1 = jmax

2 = Js and j
max
3 = Jt.

In this work, ψ(1)(x) are polynomial B-spline wavelets
[5], ψ(2)(τ) are E-spline wavelets [3]. We will use here E-
splines wavelets, as they possess some interesting properties

that are presented in the next section.

C. Exponential spline wavelets

A key property of the B-spline wavelets is that they have

N vanishing moments, where N is the order of the scaling

function. The E-spline wavelets, on the other hand have N

vanishing exponential moments [3], [6], [7]; i.e. we have that
∫ +∞

−∞

pα(τ)ψ
(2)∗
j (τ − τ0)dτ = 0, (5)

where α is the E-spline-defining parameter vector and pα(τ)
is the corresponding exponential polynomial given by:

pα(τ) =

Nd
∑

k=1

mk−1
∑

n=0

ckτ
neαkτ , (6)

α consists of Nd distinct αk’s of multiplicity {mk}
Nd

1 with

N =
∑Nd

k mk.
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The wavelets are closely related to the linear differential

system L{y} = x whose transfer function in the Laplace

domain is given by

Lα,γ(s) =

∏N

n=1(s− αn)
∏M

n=1(s− γm)
. (7)

Indeed, it can be seen that the exponential polynomials pα

are in the null space of the operator Lα,γ .

D. The iterative thresholding algorithm

To find the minimizer of (2) we use the same iteration

scheme as proposed in [1], which computes the next estimate

as

λn+1 = PSµ

(

λn + P
T (y − Pλn)

)

, n = 0, 1, . . . , (8)

where P is the projector on the non-negative functions and
the non-linear operator Sµ is defined componentwise by

Sµ(g) =
∑

j,k

Sµ(wj [k])ψj,k =
∑

j,k

Sµ(〈g, ψj,k〉)ψj,k (9)

where Sµ is the soft-thresholding function

Sµ(x) =











x+ µ
2 if x ≤ −µ

2

0 if |x| < 0

x− µ
2 if x ≥ µ

2 .

(10)

E. Implementation

The analysis and synthesis steps can be implemented by

means of a filter bank [4]. Explicit expressions for designing

the E-spline wavelet filters for given α and γ can be found

in [3]. One important point to note here is that these filters

are scale-dependent. We have assumed mirror boundary

conditions in our implementation. We have set µ = cst

for all wavelet levels, and the scaling function coefficients

were left unchanged. The degree of smoothness in the spatial

domain compared to the temporal domain can be tuned

by considering different depths Js and Jt of the wavelet

decomposition.

To avoid the typical blocky artefacts when using the

orthogonal DWT we have used the wavelet cycle-spinning,

as proposed in [8]. This method can be applied in the

current setting and tries to achieve some level of translation

invariance by choosing a randomly shifted DWT at each

iteration of (8).

F. Experimental results

1) 1D evaluation of the E-spline wavelets: To illustrate

the possibilities of the E-spline wavelets in dynamic PET

reconstruction, we performed a curve-fitting experiment on

a blood pool time activity curve encountered in dynamic 13N-

ammonia PET [9]. The time activity curve was given by an

exponential polynomial [9] corrupted by zero-mean Gaussian

noise of various variance σ2

y(τ) = (τ)2 exp(−0.4τ) + cst+ N (0, σ), (11)

and was sampled at times 0.5, 1.5, . . . , 99.5. The variance
was set to achieve data SNR of 0 dB and 20 dB respectively.
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Fig. 1. The tomographic simulation experiment. (a) TACs for the different
regions and (b) slice of the NCAT phantom with the positions of the voxels
used for the analysis (colour coded).

We evaluated the SNR of the curves reconstructed from

the largest n wavelet and scaling coefficients (ℓ0-norm).

The wavelet decomposition consisted of 5 levels and results

were averaged over all possible shifts with 100 realizations

per shift. We used orthogonal E-spline wavelets with α =
(0,−α,−α,−α) where α ranged from 0 to 1 in steps of
0.05.

2) Tomographic simulation study: We considered 2+1D

(spatial + temporal) simulations. The phantom consisted of

100 time frames of 100 × 80 pixels. The phantom was a
slice of the NCAT phantom containing the myocardium [10].

Four different TACs were simulated for respectively the left

and right ventricle, the myocardium and the background.

The time curves in the ventricles were given by exponential

polynomials [9], the time curves of the myocardium was

derived from the left ventricular input function using a two

compartmental model [9]. The phantom and the time curves

are illustrated in Fig. 1.

The simulated detector was set up as a geometric ap-

proximation of a commercial scanner consisting of 616

detector crystals in a ring. Photons were emitted back-to-

back according to an inhomogeneous Poisson process.

We simulated 10 noise realizations of the phantom. Each

realization consisted of almost 800,000 detected pairs. The

reconstructions were obtained after 100 iterations of (8) with

λ0 equal to zero. The projector for the reconstruction P was

based on the line-length model and involved multiple tracings

per detector pair. The reconstructed SNR was evaluated at 30

pixel locations, 10 per representative region (left and right

ventricle and left myocardium, see Fig. 1). Thus, for the three

regions we had 100 reconstructed TACs. We calculated the

SNR and the corresponding 95% confidence interval using

the bootstrap method. Results were obtained for different

tuning parameters µ.

The temporal depth of the orthogonal wavelet decom-

position was set to Jt = 5, while the number of spa-
tial levels Js was varied from 0 to 2. Two different α’s

were considered. The conventional (polynomial) B-spline

wavelets using α = (0, 0, 0, 0), corresponding to 4th order
Battle-Lemarié wavelets and E-spline wavelets with α =
(0,−0.6,−0.6,−0.6).
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Fig. 2. SNR as a function of the number of non-zero coefficients and α
for the curve fitting example. (a) input SNR = 0 dB and (b) input SNR =
20 dB.

III. RESULTS

A. 1D evaluation of the E-spline wavelets

The results for the 1D study are shown in Fig. 2. The per-

formance of the conventional B-spline wavelets corresponds

to α = 0. For high noise levels (close to 0 dB), the best
results are obtained for a low number of coefficients (less

than 10). The best performance is obtained for α = 0.5
(note again that α = (0,−α,−α,−α)) and is about 1dB
better than the results for the B-spline wavelets.

A higher number of coefficients can be used for the

medium noise range (around 20 dB). For α > 0 the best
results are obtained for a smaller number of coefficients

as compared to the conventional B-spline wavelets. For

α = 0.6, the best results are already obtained using only
15 coefficients whereas about 25 coefficients are necessary

for the B-spline wavelets. This illustrates that a sparser

representation is possible when using the appropriate E-

spline wavelets. Moreover, the best performance for α = 0.6
is about 3 dB better than for the best performance using

α = 0. Finally, from Fig. 2 it can be seen that there is a
broad range of α’s that can produce sparser representations

and perform better than the conventional B-splines.

B. Tomographic simulation study

The results for the tomographic reconstruction are shown

in Fig. 3. The highest reconstructed SNR is always found

when using the E-spline wavelets. A significant difference

(no overlapping 95% confidence intervals) was found for the

right and left ventricular time curves for using respectively

0 – 2 and 0 – 1 spatial decomposition levels. The SNR

is improved for a higher number of spatial decompositions,

however note that this reduces the spatial resolution. This is

not reflected in the current SNR curves because the regions

where we sampled the time curves were kept away from the

borders.

Reconstructed slices using different spatial levels of de-

compositions are compared to the non regularized solution

in Fig. 4.

IV. CONCLUSION

We have demonstrated the beneficial use of E-spline

wavelets in combination with ℓ1 spatio-temporal regulariza-

tion in dynamic PET imaging. The E-splines were found

to be advantageous over conventional polynomial B-spline

wavelets in modelling TACs.
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Fig. 3. SNR as a function of µ for the three regions and for a different number of spatial decomposition levels for the tomographic reconstruction
example. ( ) SNR obtained using the conventional polynomial B-spline wavelets (α = (0, 0, 0, 0)) and (. . . . . ) the corresponding 95% confidence
interval. ( ) SNR obtained using E-spline wavelets (α = (0,−0.6,−0.6,−0.6)) and (. . . . . ) the corresponding 95% confidence interval. It can be
observed that E-splines consitently outperform regular wavelets.
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Fig. 4. Reconstructed slices using different number of spatial decomposition levels and tuning parameter µ. Top and bottom row are spatial and temporal
slices, respectively. The time and space locations are indicated by the white bars. The results in the third column give a good compromize between spatial
and temporal regularization.
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