Locally Adaptive Smoothing Method Based on B-splines
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This paper presents a novel method for the edge-preserving smoothing of biomedical images. It is based on the convolution
of the image with scaled B-splines. The size of the spline convolution kernel at each image position is adaptive and matched
to the underlying image characteristics; i.e., wide splines for smooth regions and narrow ones for pixels belonging to
edges. Consequently, the algorithm reduces image noise in homogeneous areas while, at the same time, preserving image
structures such as edges or corners. We argue that the proposed adaptive filtering strategy provides a good balance between
the improvement in the Signal to Noise Ratio (SNR) and perceptual quality. Our algorithm takes advantage of the unique
convolution and factorization properties of B-splines. Specifically, the input signal is expressed in a B-spline basis; the
inner product with a B-spline of arbitrary size is then computed by using an adequate combination of 1D integrations
(preprocessing) and rescaled finite differences. The method is computationally efficient with a cost per pixel that is fixed

and independent upon the scaling factor.
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1 INTRODUCTION

Biomedical images are often degraded by noise. This tends
to produce artifacts that affect many image processing
tasks such as segmentation, registration, visual rendition
and feature extraction. Noise reduction is therefore of con-
siderable interest in many applications.

The simplest and most widely-used method for denois-
ing is to low-pass filter the image; for example, by moving
averaging, Gaussian filtering or, possibly, Wiener filtering.
These classical scale-invariant restoration techniques im-
prove the SNR, but they have the drawback of introducing
a significant amount of blur.

To overcome this limitation, a variety of local image
feature-dependent adaptive filtering strategies have been
developed during the past two decades. One of the first
methods that appeared in the literature is the gradient in-
verse weighted smoothing described in (1).

In this paper, we present a generalization of Wang’s
method that use B-splines as smoothing kernels. The key
component of the algorithm is the convolution at each lo-
cation with a smoothing B-spline whose scale depends on
the local characteristics of the image in the pixel neighbor-
hood. In our case, the masks storing the scale values are
calculated from the inverse image gradient and the more
sophisticated Noise Visibility Function (NVF) (2).

We choose local convolution kernels that are rescaled
(normalized) B- splines (with a unit integral); by tuning
the spline degree, we are able to switch from a moving
average to a weighted Gaussian-like smoothing. We also
adopt a continuous domain formulation by interpolating
the input image and expressing it into a B-spline basis.
Thanks to the convolution properties of B-splines, we are

then able to derive an exact and efficient scale-variant fil-
ter implementation; it uses a combination of moving sums
and size-adjustable finite differences that are implemented
efficiently by means of a look-up table.

2 ADAPTIVE FILTERING ALGORITHM

The continuous input signal h(z) is represented by its
spline interpolant which is in a one-to-one relation with
the discrete input samples h(k). Thus, we have h(x) =
ck M (x) = e, clk]B™ (x — k) where the sequence of
interpolation coefficients c[k] is calculated as shown in (3).

The output smoothed signal f(z) at position z is cal-
culated as the convolution of the input signal h(z) with a
B-spline kernel at scale a denoted by (g) which is given
by

fla) = cx g™« g2 (Z) (1)

For details about the derivation of the algorithm, see (4).
The first step of the algorithm that provides the exact
evaluation of the convolution given in equation (1) is to
calculate the (ny + 1)-fold integral of the interpolation co-

efficients c;.
g= A~ (m2+1) c, 2)

where A1 is the inverse finite-differences operator de-
fined as A~ (z) =Y, <, d(z — n). The second step is to
compute the inner products
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Figure 1: Spatial structure of the filter w, to calculate f(b)
with b = 50. The filter weights form (ny + 2) = 3 "clusters’
of length (n; + ng + 2) = 4, with an inter-cluster distance
of a = 10. (-’ integral function g and "0’ coefficients of g
ponderated by the filter weights).

o wo(k,p) = Gza(k)B" T4 (1 —ak —p—po) is a
filter mask which we can store in a look-up table;

o q(k) = (") (~1)* is the kth weighting coefficient
of the (n2 + 1)-finite difference at scale a;

o py = [%—ak—%ﬂ—‘ + b is the first

meaninful index in the sum over p that is computed
using the compact-support property of B-splines;

— (a=1D)(n2+1)
- 2

o T 18 a time shift.

The operation described by equation (3) is equivalent
to a discrete convolution with a modified ’a trous’ filter.
The scale-variant smoothing computation at each position
b consists in filtering the coefficients g(p) with (ng + 2)
“clusters’ of length (n; 4+ na2 + 2), each cluster’ being sep-
arated from its neighbors by a distance a as shown in Fig-
ure 1.

A box diagram for a fast implementation of this scale-
variant smoothing algorithm is shown in Figure 2. For each
of the NV scales in which we choose to quantize the mask,
we compute the weights w, and store them in a 3D look-
up-take of dimensions (ng + 2) X (ny +n2+2) x N. In
the initialization step, the B-spline expansion coefficients
¢k of the sampled signal h(z) are calculated and the run-
ning sum operator A~! is applied (ng + 1)-times. The
intermediate result g(p) does not depend on the scale a.
The filtered output f(b) at position b is calculated with
the modified ’a trous’ filter whose coefficients are stored
in the ith plane w, of the 3D look-up-table. The values
w, and the intercluster distance for the filtering depend on
a, but the computational complexity is constant and does
not depend on a. Not taking into account the initialization
step, we need (ng + 2)(ny + ng + 2) multiplications and
(ng 4+ 1)(n1 + ne + 1) additions per point, corresponding
to the filtering of g with the weights w,.

We obtain a higher dimensional scheme by successive
1D processing along the various dimensions of the data.

For the rest of the paper, we will restrict ourselves to 2D
processing.

(ng + 1)-times

L(bm)—l ¢ AL 9 W, f(b> -
wq(k,p)

Figure 2: Schematic representation of the locally adap-
tive smoothing algorithm. (b™!)~!: Computation of the
interpolation coefficients ¢. A~("2+1): Calculation of the
(ng + 1)-fold integral of c. wg, (k,p): Look-up table cal-
culation where k € [0,n2 + 1], p € [0,n1 + n2 + 1] and
a; € [ai,an] with N the number of scales. w,,: Filtering
with the weights calculated for each scale. f(b): Smooth-
ing output f at position b.

3 EXPERIMENTAL RESULTS

We propose now to realize a quantitative comparison of the
performance of the scale-invariant denoising filtering using
different B-spline kernels. We add Gaussian noise to Lena
as to have a SNR = 15 dB (see Figure 8 (a)). In order to be
able to evaluate the scale-invariant denoising with respect
to a ground truth, i.e., original Lena image (see Figure 3).
We perform the evaluation in terms of noise reduction (us-
ing the Signal to Noise Ratio (SNR) measure) and percep-
tual quality (using the Average Edge Width (AEW) and the
Michelson contrast (MC) measure). The metrics above are
defined as:
NP

e SNR = 10 - 10g10 (Z?:xl ;Lil m)
where in is the input image, out the denoised image
and n, and n, the x- and y-dimensions.

_ _TotBM
o ARW = NbEdges

ber of pixels in the image that belongs to a edge and
NbEdges is the total number of edges in the image.
For more information in how to compute this quantity
we refer to (5).

where TotBM is the total num-

MC — max(out)—min(out)

~ max(out)+min(out)
is the maximum (minimum) value over all the pixels
of the image out.

where max (out) (min(out))

The SNR of the scale-invariant smoothed image versus
the B-spline size is shown in Figure 4. For the correspon-
dence between scale factor and B-spline size note that the
support of a B-spline of degree n and scaled by a factor a is
a(n + 1). The peak SNR obtained for the best compromise
between denoising and edge blurring is 22 dB independly
of the B-spline degree but it is reached for a higher B-spline
size as the degree increases. From the slower falling of the
cubic B-spline SNR curve with respect to the rest we can
deduce that cubic B-splines offers a good compromise be-
tween noise reduction and boundary sharpness conserva-
tion for a scale-invariant smoothing with a kernel of a given
size.



Figure 3: Original Lena image.

The AEW of the scale-invariant smoothed image versus
the B-spline size is shown in Figure 5 (a). We observe a lin-
ear increment of the AEW measure with respect to the B-
spline size for all the B-spline kernels. The cubic B-spline
curve has a smaller slope that the rest of the considered
kernels. Thus, cubic B-splines results in less blurring than
their counterparts for a given B-spline size.

The MC of the scale-invariant smoothed image versus
the B-spline size is shown in Figure 5 (b). The contrast
decreases steeply for the convolution with a B-spline of a
smaller size than the corresponding to the peak SNR out-
put. It seems that the pronounced contrast loss is due to the
dramatic noise reduction caused by the convolution with
incremental size kernels. The linear decrement in contrast
observed after that point seems to be caused by the linear
increment of the blurring with the B-spline size. Moreover,
the cubic B-spline curve keeps itself over the rest for all
the sizes. So, we observe from another point of view how
the cubic B-splines results in images of higher quality for
a given B-spline size.
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Figure 4: For a noisy Lena with SNR = 15 dB: SNR wvs.
B-spline size.

As the three quality measures agree in indicating that the
use of cubic B-splines results in images of higher quality
for a given B-spline size, we decide to use cubic B-splines
for the interpolation and convolution in the rest of the ex-
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Figure 5: For a noisy Lena with SNR = 15 dB: (a) AEW
vs. B-spline size. (b) MC vs. B-spline size.

periments.

Next, we will compare the performance of the scale-
independent and scale-dependent smoothing implemented
as described in Section 2. We have chosen to use the fol-
lowing masks: the binarized inverted gradient and the bi-
narized inverted NVF function. For a detailed description
of the NVF function consult (2). The inverted gradient
and NVF function are binarized using the unimodal back-
ground symmetry method. The masks computed for the
noisy Lena are shown in Figure 8 (b) and (c). We can ob-
serve from them how the size of the spline convolution ker-
nel adapt somehow to the underlying image characteristics.
Wider splines are applied to smooth regions and narrower
ones to edges.

We show in Table 1 the quantitative comparison of the
denoising of Lena with SNR = 15 dB (see Figure 8 (a)) us-
ing the scale-invariant filter with a scale 2.0 and the gradi-
ent and NVF masks with scales [0.5,2.0]. We observe that
the scale-variant filtering approach (for both masks) have
a gain of 0.2 dB in SNR, 0.345 in MC and a AEW 0.5
pixels smaller that the corresponding scale-invariant filter-
ing. Figure 8 shows the visual result. We observe that the
scale-dependent smoothing reduces image noise in homo-
geneous areas, while preserving edges much better than the
scale-invariant smoothing.



Original | Uniform 2.0 | Gradient [0.5,2.0] | NVF [0.5,2.0]
SNR (dBs) | 21.737 14.987 21.949 21.843
AEW (pixels) | 5.245 2.857 4.868 4.708
MC | 1.594 1.094 1.354 1.354

Table 1: SNR, AEW and MC measures for the smoothed noisy Lena with SNR = 15 dB.

Original | Uniform 3.0 | Gradient [0.5,3.0] | NVF [0.5,3.0] | NVF [0.5, 1.0, 3.0]
SNR (dBs) | 11.912 Inf 17.098 24.544 19.868
AEW (pixels) | 12.061 6.286 8.658 6.660 7.333
MC | 0.98443 0.98096 0.98377 0.98624 0.98432

Table 2: SNR, AEW and MC measures for the smoothed noisy centromeres image.

To shown an example of the performance of the ap-
proach on a real biomedical image, we have applied our
algorithm on a fluorescent microscopy image of chromo-
some centromeres (see Figure 9). The quantitative com-
parison between the three approaches (scale-invariant filter
with a scale 3.0, and the gradient and N'VF filter with scales
[0.5,3.0]) is shown in Table 2. In this case, we measure the
SNR with respect to the original noisy centromeres image.
It seems from the data collected in the table that the NVF
method outperforms the other two: a higher SNR and MC,
and a lower AEW value. The truth is that the NVF mask
separates the background from the cells but does not dis-
tinguish the spots. In consequence, the NVF filtering does
not clean very much from the noise in the inter-spot regions
inside the nucleus. On the other hand, the gradient mask
clearly segments the spots. So, the gradient method gives
a better compromise between denoising and spot conser-
vation. As expected, the scale-invariant filtering introduces
much more blurring than the other two methods.

The key point here is that the masks we have imple-
mented indicate where the contours and the fine structures
are in the image but they do not give any clue on what is
the size of the smooth regions. High values in the magni-
tude of the gradient refers mainly to the contours of the im-
age. High values in the NVF function correspond not only
to the contours but also to areas of the images with high to
medium activity. The differences can be observed in Figure
6. We use this fact to point out the interest to introduce an
estimation of local scale (equivalently, spatial frequency)
into the method. For example, we have constructed a NVF
mask that separates the three differentiated scale regions in
the centromeres images: the background, the nucleus and
the spots (see Figure 7 (a)). We have computed the cor-
responding NVF denoised centromeres image with scales
[0.5,1.0,3.0] which is included in Figure 7 (b) to facili-
tate a visual comparison with the other methods. We ob-
serve sharp spots and clean smooth regions. The quantita-
tive comparison of the denoising with the tri-scaled NVF
with respect to the binarized gradient method shows a gain
of 1.8 dB in SNR, 0.0025 in MC, and a AEW 1.3 pixels
smaller as collected in Table 3.

In consequence, we observe the convenience to intro-
duce a measure of local scale into the method and incorpo-

(a)

(b)
Figure 6: For the centromeres image: (a) Inverted gradient
magnitude. (b) Inverted NVF function.

rate such an information to the mask to be able to smartly
control the degree of smoothing that is done in different
regions of the image. Another weak point of the method
is that the separable filtering we propose although fast is
not quite equivalent to dilating the B-spline in 2D (only if
the x- dilation is the same over the region covered by the
y-dilation). For that reason we plan to extend the method
to work for a non-separable tensor spline kernels.



(a)

(b)
Figure 7: For the centromeres image: (a) Inverted tri-
scale NVF mask. (b) Inverted NVF smoothed image with
[0.5,1.0,3.0]. We have use cubic B-spline interpolation
and convolution.

4 CONCLUSIONS

In summary, we have presented a novel adaptive B-spline
based smoothing algorithm that is capable of reducing
noise without degrading edges. The proposed scheme
is general and flexible. It works for all spline degrees
which allows one to easily switch from moving average to
Gaussian-like filters of arbitrary sizes. It is also extendable
for more sophisticated masks that are linear combination
of B-splines and that can be rescaled in a signal-adaptive
fashion. The overall operation count only depends on the
degrees of the chosen B-splines but it is independent of the
value of the local scale. The results we show are promising
and a further improvement of the method could be obtained
in a future work by the introduction of a measure of local
scale and by its extension to use 2D non-separable spline
kernels.
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Figure 8: (a) Noisy Lena with a SNR = 15 dB. (b) Inverted gradient mask. (c) Inverted NVF mask. (d) Space independent
smoothed image for as = 2.0. (e) Inverted gradient smoothed image with [a1, as] = [0.5,2.0]. (f) NVF smoothed image
with [0.5,2.0]. We have use cubic B-spline interpolation and convolution.
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Figure 9: (a) Inverted original noisy centromeres image. (b) Inverted gradient mask. (c) Inverted NVF mask. (d) Inverted
space independent smoothed image for as = 3.0. (e) Inverted gradient smoothed image with [a1,as] = [0.5,3.0]. (f)
Inverted NVF smoothed image with [0.5,3.0]. We have use cubic B-spline interpolation and convolution.



