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ABSTRACT

We present an iterative deconvolution algorithm that minimizes a functional with a non-quadratic wavelet-
domain regularization term. Our approach is to introduce subband-dependent parameters into the bound op-
timization framework of Daubechies et al.; it is sufficiently general to cover arbitrary choices of wavelet bases
(non-orthonormal or redundant). The resulting procedure alternates between the following two steps:

1. a wavelet-domain Landweber iteration with subband-dependent step-sizes;

2. a denoising operation with subband-dependent thresholding functions.

The subband-dependent parameters allow for a substantial convergence acceleration compared to the existing
optimization method. Numerical experiments demonstrate a potential speed increase of more than one order of
magnitude. This makes our “fast thresholded Landweber algorithm” a viable alternative for the deconvolution
of large data sets. In particular, we present one of the first applications of wavelet-regularized deconvolution to
3D fluorescence microscopy.
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1. INTRODUCTION

Wavelets have proven to be a very successful tool for the estimation of signals that are corrupted by noise.
The first example of image denoising based on wavelet coefficient thresholding came from medical imaging.'
Later, the asymptotic performance of this approach was demonstrated in a statistical framework.2 Another
interpretation of wavelet thresholding can be given in a variational setting® and is summarized below.

Let us denote by y a vector containing noisy measurements of some original signal Xorig. Let W be a matrix
that reconstructs a signal from its wavelet coefficients. To estimate Xqig, it is proposed to compute x = Ww,
where the wavelet coefficients w minimize the cost function

J(w) = lly = Wwlf3 + Allwl:. (1)

Here, ||y — Ww/|3 is the squared Euclidian norm of the “data mismatch”, while ||w||; represents the sum of the
absolute values of the wavelet coefficients of the estimate. The latter term, whose influence can be controlled
by the scalar A, favors estimates with a sparse wavelet expansion. This constraint makes sense because many
“natural signals” exhibit this property. When W is orthonormal, Parseval’s relation can be used to rewrite (1)
as

J(w) = [WTy = w2 + Awls, (2)

where 7 denote Hermitian transposition. Because the components of w are decoupled in this expression, it
can be minimized using a simple pointwise processing. More precisely, the minimization of (1) boils down to
soft-thresholding W7y (the wavelet coefficients of y) with threshold level A/2. This leads to

x=WT, 5 {WTy}, (3)

where 7, /2{ } indicates a componentwise application of the soft-thresholding function; for real coefficients, it is
defined by 7 /2(w) = sgn(w) (|w| — A/2) .



A similar approach can also be deployed for the regularization of inverse problems. Consider the image
formation equation y = HxX,iz + b, where b represents a noise contribution and H is a matrix that models the
linear distortions introduced by a measurement device. In the sequel, we will assume that H is a block-circulant
matrix corresponding to the impulse response of a shift-invariant system. The restoration problem then becomes
a joint deblurring and denoising problem, and the functional takes the form

J(w) = [y — HWw|3 + A[[w]]:. (4)

If A = 0, the functional reduces to the quadratic data-term. Its (least-squares) minimizer can be obtained
directly provided that one can compute the Moore-Penrose inverse of H. However — to balance the noise-
amplification that is inherent to this solution — the least-squares estimate is usually constructed iteratively.
The well-known Landweber iteration* can be seen as a gradient-based minimization of the data term, with a
fixed step size 7. Starting from an initial estimate x(?), we recursively set

x(HD) — x(m) THT(y — Hx(n)). (5)

Several research groups® ® have independently derived an algorithm to handle the case where A\ # 0. The
idea is essentially to alternate between (3) and (5) (note that the threshold level is adapted, though):

XD = W, o fWT (™ + 7HT (y — Hx™)]}. (TL)

Figueiredo and Nowak have shown that this “thresholded Landweber” (TL) algorithm yields results that are
comparable to the best deconvolution methods available.> However, its convergence is rather slow, requiring
several hundreds of iterations at high SNR levels. This is due to the fact that the step size 7 (and thus the
threshold level A7/2) must be chosen relatively small. This considerably limits the effect of each iteration on the
current estimate.

In this paper, we propose a generalized version of the TL algorithm that provides significantly faster conver-
gence. We revisit the bound optimization formulation of Daubechies et al. in Section 2, leading to an algorithm
with subband-dependent parameters. The performance of the method is illustrated by the experimental results
of Section 3.

2. BOUND OPTIMIZATION, REVISITED

Similarly to Daubechies et al.,” we replace the minimization of J(x) by the successive minimization of a series of
auxiliary functionals. However, our approach is different in at least two aspects. First, it is sufficiently general
to account for arbitrary wavelet bases (non-orthonormal or even redundant). Second, it takes into account the
subband structure of the wavelet basis, thus allowing for auxiliary functionals that are closer to the original cost
function; as a result, we need fewer iterations for its minimization.

We consider auxiliary functionals that depend on the current estimate, say w(™), as follows:

Jn(w) =37 (aglw™ = w;l13) + 7 (w) = [HW (w) — w)]3. (6)
jeSs

In this definition, the subscript j refers to the different wavelet subbands (which are indexed by the set S). In
particular, the vector w; contains the coefficients of w corresponding to the j-th wavelet subband. The constants
o are chosen such that the auxiliary functional is an upper-bound of the original cost function, that is to say,
Jn(w) > J(w) for every w. Moreover, we clearly have equality at the current estimate, i.e., J, (w(™) = J(w().
These properties guarantee that, by minimizing .J,,(w), we will also decrease .J(w). Indeed, if w(**1) minimizes
Jn (W), we have that

J(W(n-i—l)) < Jn<w(n+1)) < Jn(w(n)) — J(W(")).

This leads to an iterative (so-called bound optimization) algorithm of the form

w() — arg min J, (w).



The advantage of using (6) as an auxiliary functional is that one can derive an explicit expression of its
minimizer. Let us introduce the reconstruction matrices W; such that Ww = 3 jes W;iw;. Then a simple
computation reveals that

Tn(w) = C 4+ 3 a (WS + a7 " WTHT (y — HWw ™) — w3 + 2o [w; 1),
jeSs

where C is a constant that does not depend on w, and the transpose of W plays the role of a decomposition ma-
trix for subband j. If we omit the constant, J,(w) is a (positively) weighted sum of “subfunctionals” that depend
on different subbands. Therefore, each subband can be optimized independently. Moreover, each subfunctional
has the same form as (2), which means that we can use essentially the same thresholding operation as before

for its minimization. The main difference is that W7y has been replaced by wg.") + aj_leTHT(y — HWW(”)),
which can be interpreted as a wavelet-domain Landweber iteration with step size 7; = a;l. Also, the threshold
level must be adapted (A7;/2). This leads to the following iterative procedure on the wavelet subbands of the
estimate:

wi = 7o w4 WIHT (y - HWw (™)}, (FTL)

The standard TL algorithm can be obtained as a particular case of the previous derivation, using the same
constant « for all subbands in (6). By adapting the constants «;, we are able to use larger step sizes and
threshold levels. Thus we call the above procedure the fast thresholded Landweber (FTL) algorithm.

When W corresponds to a Shannon wavelet basis, we retrieve the fast algorithm that we have previously
derived.® An important difference is that the above description is also applicable to redundant decompositions.
The advantage of using a Shannon wavelet basis is that the different subbands are completely decoupled when
computing the wavelet-domain Landweber update. This choice also greatly simplifies the determination of
suitable constants «;. The preliminary results presented in the next section were obtained with this wavelet
basis.

3. EXPERIMENTAL RESULTS

We first performed a synthetic experiment. The standard MRI image was blurred with a Gaussian filter of
parameter o = 2 and corrupted by white Gaussian noise (see Fig. 1). We then compared the convergence speed
of the TL and FTL algorithms, for A ~ 0.0199. We used cycle spinning for both algorithms, as in the work of
Figueiredo and Nowak.? After five iterations, the result of the FTL algorithm seems to be closer to the original
image. This is confirmed by the quantitative measurements presented in Fig. 2, which shows the SER gain (in
dB) as a function of the number of iterations. After roughly 50 iterations, the FTL algorithm achieves a gain of
8 dB, a figure that would take more than 500 iterations with the TL algorithm.

In our second experiment we deconvolved a 3D image stack obtained in widefield fluorescence microscopy.
The data was actually obtained using a confocal microscope with the pinhole opened to the maximum, so as

Figure 1. (From left to right) The original MRI image; blurred and noisy version (BSNR = 40 dB); deconvolution result
after 5 iterations of the TL algorithm; result after 5 FTL iterations.
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Figure 2. The gain in signal-to-error ratio (SER) as a function of the number of iterations.

to simulate a widefield system. This allowed us to produce a confocal reference image of the same object (by
closing the pinhole to 1 Airy unit), with considerably reduced out-of-focus blur.

We observed a biological preparation containing fibroblast cells whose actin filaments were labeled with a
phalloidin marker (Alexad88). Fig. 3 shows maximum intensity projections of a 384 x 288 x 32 volume of interest.
The center images are deconvolution results after 10 iterations of the TL and FTL algorithms, respectively. While
the former still contains a lot of out-of-focus blur, the latter is clearly sharper. The spatial contrast of the FTL
result may actually be compared to the confocal image of the same region (on the far right). However, the
confocal image is relatively noisy because the signal intensity is reduced by the small pinhole configuration. Let
us mention that the confocal image was taken before the widefield image; thereby, potential bleaching effects
would mainly affect the widefield image. Also, we used the same laser power and scan frequency in both cases.

Figure 3. (From left to right) Original widefield image; deconvolution result after 10 TL iterations; result after 10 FTL
iterations; confocal reference.

4. CONCLUSION

The fast thresholded Landweber (FTL) algorithm can provide an acceleration of more than one order of mag-
nitude compared to the standard TL method. This considerably broadens the potential application field of
wavelet-regularized deconvolution. A very promising area is 3D deconvolution microscopy, where the computa-
tional cost of restoration algorithms is severely limited due to the size of the data sets.
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