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Abstract—We present a fast variational deconvolution algorithm
that minimizes a quadratic data term subject to a regularization on
the 1-norm of the wavelet coefficients of the solution. Previously
available methods have essentially consisted in alternating between
a Landweber iteration and a wavelet-domain soft-thresholding op-
eration. While having the advantage of simplicity, they are known
to converge slowly. By expressing the cost functional in a Shannon
wavelet basis, we are able to decompose the problem into a series
of subband-dependent minimizations. In particular, this allows for
larger (subband-dependent) step sizes and threshold levels than
the previous method. This improves the convergence properties
of the algorithm significantly. We demonstrate a speed-up of one
order of magnitude in practical situations. This makes wavelet-reg-
ularized deconvolution more widely accessible, even for applica-
tions with a strong limitation on computational complexity. We
present promising results in 3-D deconvolution microscopy, where
the size of typical data sets does not permit more than a few tens of
iterations.

Index Terms—Deconvolution, fast, fluorescence microscopy,
iterative, nonlinear, sparsity, 3-D, thresholding, wavelets,
1-regularization.

I. INTRODUCTION

A. Motivation

DURING the past decade, biological imaging has been rev-
olutionized by the widespread availability of novel fluo-

rescence labeling techniques and the development of advanced
3-D optical microscopy [33]. As biological research moves to-
wards molecular scale, the constraints in terms of resolution
and light efficiency are becoming more and more stringent. In
this context, scientists are increasingly relying on computational
methods to take full advantage of their instrumentation [6], [16],
[17], [25].

The use of deconvolution to enhance micrographs is com-
monly referred to as deconvolution microscopy [23], [34]. The
results are the most striking in 3-D, as demonstrated by the pi-
oneering work of Agard and Sedat [1], which had a significant
impact on the field. The main challenge in 3-D resides in the
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size of typical data sets, which severely restricts the computa-
tional complexity of numerical restoration methods. With the
present state of computer hardware, one cannot afford more than
the equivalent of a few tens of FFTs on a complete 3-D stack.
This explains why most software packages for deconvolution
microscopy are still based on relatively standard methods, at
least when compared to the state-of-the-art in 2-D imaging [3],
[27]. For instance, the Tikhonov–Miller and Richardson–Lucy
algorithms are widely used; they require two (respectively four)
FFTs per iteration, so that they are usually stopped after 30 to
40 iterations.

Wavelet regularization is a relatively recent technique in
the area of deconvolution. Several research groups have in-
dependently proposed a restoration procedure that alternates
between wavelet-coefficient thresholding and a Landweber
update. Some of the ideas of the method, which we shall call
the thresholded Landweber (TL) algorithm, can be traced back
to the work of Starck et al. [29], [30]. Figueiredo and Nowak
presented the first formal derivation of the TL algorithm using
a statistically based penalized likelihood formulation [14]. The
algorithm was then rederived in a deterministic variational
framework and generalized to a more general class of linear
operators by Daubechies et al. [11]; note that these authors
also provided a general convergence proof that can be readily
transposed to the algorithm that we present in this paper. Bect
et al. considered a similar wavelet-regularized cost function,
but with an additional total variation term [4]. Most recently,
Chaux et al. extended this type of approach to frame-based
wavelet regularization [9].

The TL algorithm offers attractive features for 3-D decon-
volution microscopy. First, it belongs to the class of nonlinear
wavelet-based methods, which have already proven to be very
efficient for image-restoration applications such as denoising.
In a series of 2-D deconvolution experiments (see [14]), the TL
algorithm was actually shown to perform best against several
other wavelet-based deconvolution methods. Second, the TL al-
gorithm is simple to implement. Since it is iterative (unlike other
wavelet-based methods, e.g., the ones described in [12], [19],
and [26]), additional constraints such as positivity can be easily
incorporated. Finally, it requires only two FFTs and two wavelet
transforms per iteration. This represents an intermediate compu-
tational complexity compared to the standard algorithms men-
tioned before.

The only weak point of the TL algorithm is its slow conver-
gence speed. This is especially true at high SNR levels, which
may require several hundred iterations. The primary purpose of
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Fig. 1. Image-formation and measurement model.

this paper is to propose a variation of the TL algorithm that min-
imizes the same functional but that is substantially faster com-
putationally. Our efforts are directed towards making wavelet
regularization a tractable alternative for deconvolving large data
sets. In particular, we demonstrate its feasibility on a 3-D stack
of widefield fluorescence micrographs. To our knowledge, this
is the first practical implementation of wavelet-based 3-D de-
convolution microscopy, and the perspectives in this area appear
to be quite promising.

B. Image-Formation Model

In this paper, we are concerned with the recovery of a multi-
dimensional signal from its noisy observation through a convo-
lutive imaging system.

Fig. 1 shows a model of the image-acquisiton chain that
applies, for example, to fluorescence microscopy. Generally
speaking, we are interested in -dimensional signals. The
observed image is the -dimensional convolution of an original
image (the characteristic function of the object of interest) with
the impulse response (or point spread function, PSF) of the
imaging system. In practice, we only have access to a finite
number of samples of the image and these measurements are
corrupted by noise.

In the sequel, to simplify the presentation, we will adopt a
purely discrete description of the image-formation process. We
shall assume that

where and are vectors containing uniform samples of
the original and measured signals, respectively; represents the
measurement error. These vectors have

components, where stands for the number of samples
along dimension . is a square, (block-) circulant matrix that
approximates the convolution with the PSF in Fig. 1.

C. Deconvolution as a Variational Problem

The recovery of from is an ill-posed problem [5]. To
obtain an estimate with reasonable accuracy and robustness to
noise, one must often rely on prior information about the orig-
inal signal. The estimation of is then formulated as an op-
timization problem which incorporates this prior information.
The quality of a given estimate is typically measured by a
cost function of the form

(1)

The data term quantifies the “prediction error” with re-
spect to the measurements. The regularization term is
designed to penalize an estimate that would not exhibit the ex-
pected properties. The regularization parameter balances the

contribution of both terms. In practice, the value of needs to
be adjusted appropriately; this is either done empirically by trial
and error or by using some data-driven cross-validation method
[5], [32]. The problem of deconvolution is then to find an es-
timate that minimizes the cost function . This functional
can also interpreted as a (negative) log-likelihood in a Bayesian
statistical framework, and deconvolution can then be seen as a
maximum a posteriori (MAP) estimation problem [5], [14].

In this paper, we will consider cost functions that favor
wavelet expansions with a small number of nonzero coeffi-
cients. This is typical of objects that are piecewise smooth
[22]. The property of natural images having a sparse wavelet
expansion is heavily exploited in compression standards such
as JPEG2000 [10]. Here, we will concentrate on the case of
an orthonormal wavelet decomposition, which will be char-
acterized by an (orthonormal) decomposition matrix . In
our notation, the matrix-vector product yields the
coefficients of in the wavelet basis, and reconstructs
the signal from these coefficients. We implicitely include the
(coarsest-scale) scaling functions when referring to the wavelet
basis, unless specified otherwise. The cost function is then
defined by

(2)

Here, the data term measures the residual in the image-domain
using the (squared) Euclidian norm . The regularization
term is the sum of the absolute values of the wavelet coeffi-
cients, which is denoted with the -norm . In contrast
with traditional quadratic regularization, the -norm leads to a
nonlinear deconvolution algorithm. Compared to the norm,
it puts less weight on coefficients that are greater than 1, and
more weight on coefficients that are smaller than 1. This tends to
favor signals that are “sparse” solutions with a few large wavelet
coefficients.

D. Organization of the Paper

The remainder of the paper is organized as follows. In Sec-
tion II, we present the basic building blocks of the algorithm and
relate them to classical image processing tasks. In Section III,
we recall the formalism of Daubechies et al. leading to the ex-
isting thresholded Landweber algorithm. In Section IV, we de-
rive a faster algorithm that minimizes the same functional in the
case of Shannon wavelets. The last section is devoted to numer-
ical experiments that illustrate the performance of the proposed
algorithm, on both simulated data and real 3-D microscopy data.

II. PRELIMINARIES

There are two particular cases of (1) and (2) that provide the
basic building blocks of the thresholded Landweber algorithm.
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A. Nonregularized Case

The first one corresponds to . The cost function then
reduces to

(3)

A minimizer of this expression is the classical least squares es-
timator, which is given by , where1

is the pseudoinverse of . It is the solution with the smallest
(Euclidian) norm. In practice, can be simply computed
in the frequency domain (i.e., in the DFT basis), where is
diagonalized.

However, this direct method is prone to noise amplification
because the matrix may have small but nonzero eigen-
values. In order to delay this amplification process, the mini-
mization of (3) is often performed iteratively. Starting from an
initial estimate , one constructs a sequence that
converges to a minimizer of . A gradient descent on (3)
with a fixed step size yields the following update formula:

(4)

This algorithm is usually named after Landweber [20]. For an
in-depth investigation of this very basic procedure—the grand-
father of iterative deconvolution—we refer to [5].

B. The Pure Denoising Case

The second particular case occurs when . The cost
function becomes

(5)

This corresponds to a pure denoising problem, where we want to
recover the original signal from the nonblurred but noisy mea-
surement (see [8] for a complete mathematical treatment).
When the wavelet basis is orthonormal—as in our case—the
minimization of this expression is straightforward, since the
quadratic term can be written in the wavelet domain (Parseval
relation)

(6)

where and are the wavelet coefficients of and , re-
spectively. In this form, the cost function is completely decou-
pled, which implies that its minimization can be achieved in a
coefficient-wise fashion. The solution involves the soft-thresh-
olding function

(7)

where is the positive-part function

if
otherwise

1In the case of complex vectors/matrices, will denote Hermitian
transposition.

Fig. 2. Bound-optimization principle: an estimate of the minimizer of the orig-
inal cost function is constructed by minimizing an auxiliary functional. The
process is repeated iteratively.

The minimizer of (5) is simply given by

where denotes a component-wise application of the
soft-thresholding function. Note that this formalism can be
adapted to complex wavelet decompositions by replacing

by in (7). Interestingly, this algorithm
was first proposed empirically for noise reduction in magnetic
resonance imaging [35]. It has become very popular in the field,
following the impulsion of Donoho and Johnstone who justified
it on solid statistical grounds [13]. Several authors have also
proposed a Bayesian interpretation of the method, see, e.g., [2],
[24], and [28].

C. General Principle of Bound Optimization Algorithms

Except for simplified cases such as those just mentioned, the
functional defined by (2) cannot be minimized directly by
a coefficient-wise rule. This is primarily due to the convolution
matrix , which makes the wavelet coefficients of interdepen-
dent, hence precluding a simple coefficient-wise rule. Instead,
one can use an iterative minimization technique as proposed in
[4], [11], and [14]. Interestingly, this involves a judicious com-
bination of the two aforementioned methods. In the next section,
we shall briefly review the derivation of Daubechies et al.; it is
based on a bound optimization approach [18], [21], which es-
sentially consists in replacing by a succession of auxiliary
functionals that are easy to minimize.

Using the current estimate , the key idea is to construct
an auxiliary functional with the following properties:

• when coincides with ;
• when upper-bounds .

As illustrated in Fig. 2 for , these properties guarantee
that, by minimizing , we will also decrease . The
general update equation is thus

A general discussion of convergence criteria for bound opti-
mization methods would be outside the scope of this paper; the
reader is referred to [21] and the references therein. Moreoever,
as mentioned in the introduction, the paper by Daubechies et al.
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contains a convergence proof that can be readily extended to
cover both algorithms presented in this paper.

III. EXISTING THRESHOLDED LANDWEBER ALGORITHM

A. Bound With Decoupled Wavelet Coefficients

Daubechies et al. [11] proposed to use functionals of the form

(8)

Here, the (real and positive) scalar must be chosen strictly
larger than the spectral radius of

where

Equivalently, since is a convolution matrix, is the
largest squared modulus of the DFT coefficients of .

Let us discuss this choice in more details. First, the constraint
on ensures that is a proper bound for .

Property 1: Assume that holds in (8). Then
, except at , where .

Proof: The inequality ensures that
is positive-definite. This means that, when , we

have

whence it follows that is a strict upper bound of ,
except at where the equality is met.

Second, the specific form of (8) makes it easy to minimize
, based on the following observation.

Property 2: Definition (8) is equivalent to

where is a constant that does not depend on .
Proof:

where is a constant that does
not depend on . We complete the proof by adding the constant

(which does not depend on )
so as to complete the quadratic term.

The above derivation reveals that the term , which hin-
ders the direct minimization of , is canceled by the negative
term in (8). As a result, is not premultiplied by anymore in
the expression of Property 2. This means that the wavelet coef-
ficients of are now completely decoupled and the minimiza-
tion of involves a simple coefficient-wise operation in the
wavelet domain.

B. Resulting Algorithm

To make this more apparent, we will denote by the ex-
pression ; note that this is exactly
the update formula of the classical Landweber iteration (4), with
step size . Omitting and dividing by the (positive)
constant , the minimization of thus reduces to the min-
imization of

Now this is almost exactly the pure denoising functional of (5),
with as the noisy signal and as the regularization pa-
rameter. We have already seen that its minimizer is obtained via
a simple soft-thresholding operation on the wavelet coefficients
of . In the present case, the threshold level will be .

To summarize, the resulting TL algorithm alternates between
the following two steps, starting from an initial estimate :

• compute the Landweber iteration
, with step-size ;

• perform the wavelet-domain denoising operation
, with threshold level .

IV. FAST THRESHOLDED LANDWEBER ALGORITHM

Using the algorithm described above, Figueiredo and Nowak
have reported numerical results that are competitive with
state-of-the-art 2-D deconvolution methods [14]. However, the
convergence of this algorithm can be rather slow, especially
when one choses a small regularization parameter . This is
typically the case for higher signal-to-noise ratios (see the
numerical examples in Section V), which still require regular-
ization, but at a moderate level.

Starting from this section, we will assume that the regulariza-
tion term of (2) is expressed in the Shannon wavelet basis (see
[22, p. 223] or [31, p. 51]). This wavelet family allows for larger
(subband-specific) step sizes and threshold levels, resulting in a
significant speed-up.

A. Shannon Wavelet Basis

Besides being orthonormal, the main characteristic of
Shannnon wavelets is that their spectrum is ideal and disjoint
across subbands. This proves to be especially convenient when
dealing with convolution operators.

Let us denote by the different wavelet subspaces.2

More precisely, our convention will be that there are
wavelet subspaces, and that corresponds to the
coarsest-scale scaling function subspace. In other words, the
indexing set is . Fig. 3 illustrates the fre-
quency support of these subspaces in the 1 D case, where
corresponds to the number of scales of the decomposition. For

2We use the terms subband and subspace interchangeably.
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Fig. 3. Frequency support of the Shannon-wavelet subspaces in the 1-D case.
The figure corresponds to j = 3, which means that W represents the
scaling function subspace.

higher dimensions, we use a separable extension of the Shannon
wavelet basis. Note that in our finite-dimensional setting, Her-
mitian symmetry is violated at the mid frequency point, which
implies that our basis elements are complex-valued.

We use the (boldface) symbol to denote the decomposi-
tion matrix that yields the coefficients of a signal in subspace

. The original signal can be reconstructed from its wavelet
coefficients using the formula

(9)

Note that we can use the transpose of because the Shannon
wavelet basis is orthonormal. In this equation, rep-
resents the orthogonal projection of on .

The following result states that, for the Shannon wavelet
basis, the projection matrix commutes with any
convolution matrix.

Property 3: Let be a block-circulant matrix. Then, for the
Shannon wavelet basis

Proof: Let be an arbitrary vector. Applying (9) to
yields

Now recall that, with the Shannon wavelet basis, the subspaces
have disjoint frequency supports. Because does not

modify the frequency support of a signal (since it is diagonalized
in the DFT basis), it must be that . Therefore,

for and

From this relation, we can reapply the same argument to obtain
for every . This is equivalent to the commu-

tativity of and .

B. Derivation of a Subband-Adapted Bound

Our algorithm is based on the idea of cutting the cost function
into subband-specific terms, thanks to the above commutativity
property.

Property 4: When using the Shannon wavelet basis

where is the projection operator on the th subband.
Proof: Using (9), we first observe that

Property 3 tells us that we can rewrite the components of this
sum as , which shows that they are mutually or-
thogonal (since the subspaces are orthogonal). This
implies that we can separate the data term as follows:

Combining this relation with the fact that
yields the desired result.

The above result allows us to bound the cost function in a
subband-specific manner. The idea is to apply the bound of
Daubechies et al. to the individual terms of the sum in Prop-
erty 4, leading to the following type of auxiliary functional:

(10)

The fundamental difference is that we now have subband-de-
pendent constants , which can be chosen significantly
smaller than the constant of the standard algorithm. More pre-
cisely, for the sum in (10) to be positive, it is sufficient that, for
every

where

We point out that the definition of (a squared matrix
norm) is similar to that of . However, in the latter, the
maximum is taken over subspace . Therefore, we necessarily
have

Equivalently, since is a convolution matrix, is the
largest squared modulus of the DFT coefficients of , over
the frequency support of subband . This value can be much
smaller than (the largest squared modulus over the
whole spectrum). Fig. 4 compares choices for and
in a simplified 1-D situation.

When the previous condition is met, upper-bounds
. Still, is easy to minimize (thanks to the commu-
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Fig. 4. Comparison of the constants � and (� ) for a fictitious 1-D low-
pass convolution kernel. The dashed curve represents the squared modulus of
its Fourier transform.

tativity stated in Property 3). This transposition of Properties
1 and 2 to our new auxiliary functional can be summarized as
follows:

Property 5: Assume that holds for every
in definition (10). Then , except at

, where . Moreover, (10) is equivalent to

where the constants do not depend on .
Proof: The definition of implies that

for every . When , there is at least one for
which this inequality is strict. If , the equality is clear.
This proves the first part of the property.

Applying Property 2 to every term of the sum in (10) yields

Since we are using Shannon wavelets, we can use the commuta-
tivity of with the convolution matrices and to derive
the second part of the property.

C. Resulting Algorithm

Let us define the constants and the intermediate
signal

Since the Shannon wavelet basis is orthonormal, we can replace
by in the expression of Property 5. The minimization of

then becomes equivalent to the minimization of

Each term of this sum depends on the wavelet coefficients of
in a different subband. As a consequence, we can minimize

them independently. Moreover, the individual terms have the
same form as in (6), up to a (positive) multiplicative constant.
Our new auxiliary functionals can thus be minimized using es-
sentially the same algorithm as before—with the same cost per
iteration—but with subband-dependent parameters.

The resulting “fast thresholded Landweber” (FTL) algorithm
alternates between the following two steps.

• Compute the Landweber iteration

with subband-dependent step sizes .
• Perform the wavelet-domain denoising operation

with subband-dependent thresholds .

V. NUMERICAL EXPERIMENTS

A. Implementation Details and Computational Cost

The FTL algorithm is simple to implement, for it essentially
consists in going back and forth between the frequency domain
and the wavelet domain.

In the first step, one must start by computing the Landweber
correction term . This is done in the DFT basis,
where is diagonalized. The actual update should a priori be
performed in the wavelet domain, since the step sizes are sub-
band-dependent. However, in the particular case of a Shannon
wavelet basis, it can be carried out in the frequency domain: it is
equivalent to multiplying each frequency component of the cor-
rection term by , where refers to the wavelet subband that
contains the considered frequency.

As described above, the second step just requires the appli-
cation of a wavelet transform to , followed by a soft-thresh-
olding and an inverse wavelet transform of the result. However,
in practice—for both algorithms presented in this paper—we
use the random-shift method described in [14]. The main moti-
vation is to reduce unpleasent artifacts that are common side-ef-
fects of thresholding operations in nonredundant wavelet bases.
Still, we would like to do so without having to resort to a fully
shift-invariant (undecimated) transform. The compromise con-
sists—for every iteration—in applying a random (circular) shift
to the intermediate estimate , before performing its wavelet
decomposition. After the thresholding and the inverse trans-
form, the new estimate is shifted back to the original position.
By doing this, the effect of thresholding is “averaged out” over
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multiple shifts during the iteration process. Note that a shift in
the image domain corresponds to a simple modulation in the fre-
quency domain. This means that the random-shift method can
be used at no significant additional cost.

The computational cost is, therefore, essentially the same as
for the classical thresholded Landweber algorithm, which also
requires two (one direct and one inverse) wavelet transforms
per iteration. We use a frequency-domain implementation of the
wavelet transform [7]. Thus, every iteration essentially amounts
to computing two FFTs, which is no more than the standard
algorithms mentioned in the introduction.

One last remark relating to the scaling-function subspace: to
simplify the presentation, we have not distinguished it from the
wavelet subspaces so far. However, the scaling-function coeffi-
cients are usually not included in the regularization term, which
means that they are not thresholded in practice.

B. Evaluation Protocol

To compare the performance of the thresholded Landweber
(TL) and the fast thresholded Landweber (FTL) algorithms,
we performed several experiments on synthetic and real data.
The literal way of assessing the convergence speedup of our
algorithm would be to compare the intermediate estimates to
the true minimizer of the cost function. Generally, however,
this true minimizer is not available and its determination would
involve an overwhelming amount of computations. Therefore,
following the common practice in the field, we will use the
quadratic error between the intermediate estimates and the
original image (gold-standard). This is justified from at least
two standpoints.

• The user standpoint: Ultimately, what counts in practice
is the difference between the deconvolution result and the
original signal.

• The theoretical standpoint: The true minimizer can be
shown to be “close” to the original signal in the following
sense. When the noise level and the regularization param-
eter tend to zero, the minimizer of the cost function tends
to the original signal (see the paper by Daubechies et al.
[11] for a rigorous formulation and proof).

For each experiment, we used the same regularization parameter
for the TL and FTL algorithms. For the phantom experiments,
this value was optimized to yield the result closest to the original
signal after a large number of FTL iterations (so as to approach
the true minimizer reasonably well). In the real data cases, it was
adjusted empirically for best visual appearance.

C. Visual Comparison in 2-D: Results for a Limited Number
of Iterations

In the first experiment, we took a 512 512 image of a neuron
cell acquired on a confocal microscope as our (ground-truth)
original image. We then simulated an optical defocusing blur
produced by a widefield microscope. We used a standard
diffraction-limited PSF model [15], [33], which is represented
in Fig. 5(b). Gaussian white noise was added to the result; the
variance was set such that the blurred signal-to-noise ratio
(BSNR) was equal to 40 dB. The BSNR is used to quantify the
noise level with respect to the original signal strength, while

Fig. 5. (a) Original confocal image (courtesy of Bertrand Vileno, LNNME,
EPFL) and (c) the simulated widefield image of Section V-C. The square root
of the PSF is shown in (b), with a 16� zoom factor compared to (a) and (c).
(a) Original. (b) PSF. (c) Measured.

taking into account the attenuation introduced by the simulated
imaging device. It is defined as

Here, is the total number of pixels per image and
stands for the average gray level of the blurred

original image.
Fig. 5 shows the original image (a) and the simulated mea-

surement (c). Estimates at different stages of the TL and FTL it-
erations are displayed in Fig. 6. For both algorithms, we used the
same initial estimate (the measured image ), the same number
of decomposition levels and the same regularization
parameter. It is seen that the images obtained after ten or 30 iter-
ations of the TL algorithm are less sharp than the one obtained
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Fig. 6. Deconvolution results for the setup of Fig. 5: comparison on a
128� 128 region of interest. (a) Original. (b) Measured. (c) FTL, ten iterations.
(d) TL, ten iterations. (e) TL, 30 iterations. (f) TL, 100 iterations.

with ten iterations of the FTL algorithm. This is especially true
for the details inside the object which exhibit better contrast than
in the latter. It is only after a larger number of iterations (100)
that the output of the TL algorithm gets closer to the FTL result
with ten iterations, at least from a visual standpoint. We did not
include the results of the FTL algorithm with more than ten iter-
ations, since the differences are not perceptible visually because
the algorithm has already essentially reached convergence.

D. Quantitative Comparison in 2-D: Number of Iterations to
Reach a Given Level of SER Gain

The above results strongly suggest that the FTL algorithm
requires fewer iterations than the TL algorithm to reach a given

Fig. 7. SER gain as a function of the iteration number for the experiment of
Section V-C.

level of restoration quality. Fig. 7 gives a quantitative insight:
it shows the evolution of the signal-to-error ratio (SER) as a
function of the iteration number. For an estimate , the SER is
defined as

For each estimate , we compare this figure to the SER of
the measured signal, leading to the SER gain

One can observe that the FTL algorithm requires less than ten it-
erations to reach an improvement of 8 dB. This is roughly thirty
times less than the TL algorithm, which takes about 300 itera-
tions to reach the same level.

We performed a series of more extensive experiments on four
standard test-images (Cameraman, MRI, House, Bird). We con-
volved these images with a 9 9 uniform blur kernel and added
white Gaussian noise to the results in order to replicate the ex-
perimental setup of Figueiredo and Nowak. We considered dif-
ferent noise levels ( dB) and we av-
eraged the SER gains over 30 noise realizations. For each test
case, we used the same value of and the same initial estimate
for both algorithms. The value of was optimized to yield the
best possible SER gain after 300 iterations of the FTL algorithm.
The initial estimate was obtained using the same Wiener-type
filter as Figueiredo and Nowak [14]

The results are summarized in Table I. For each image, we in-
dicate the SER gain of the FTL algorithm after ten and 30 it-
erations. We also give the number of iterations of the TL algo-
rithm required to reach the same SER improvement. The corre-
sponding acceleration factors (number of TL iterations, divided
by number of FTL iterations) are listed in the fifth and eighth
column. The acceleration factors vary between 1.5 to 4.7 for
low BSNR levels (10–20 dB) and 32.3 to 191.5 for high BSNR
levels (40–50 dB).

Note that the accelerated algorithm that has been derived here
is specific to Shannon wavelets and is not directly transposable
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TABLE I
NUMBER OF ITERATIONS REQUIRED TO REACH A GIVEN LEVEL OF SER GAIN (SERG)

to other types of basis functions. Nevertheless, the results ob-
tained for the Cameraman image are comparable to those re-
ported by Figueiredo and Nowak in terms of restoration quality,3

even though these authors used different wavelets than ours. In
fact, they observed that the performance of their algorithm was
only very mildly dependent on the choice of a particular type
of wavelet. Still, the present results suggest that there should
be ways of accelerating the convergence with other types of
wavelets as well, which calls for further investigation.

E. Visual Comparison in 3-D: Experiment on Fluorescence
Microscopy Data

For the last experiment, we used 3-D image-stacks of a bi-
ological sample. The sample contained fibroblast cells stained
with a DiO dye from Invitrogen Corporation (Carlsbad, CA).
This dye is predominantly retained in the cell membrane.
In addition, fluorescent microbeads were introduced into the
sample medium. The dye and the microbeads were chosen to
have approximately the same peak excitation and emission
wavelengths; a 505–530 nm bandpass filter was used to delimit
the detection spectrum.

The sample was observed on a Zeiss LSM 510 confocal mi-
croscope with a 63 , 1.4 NA oil-immersion objective. We first
acquired a stack of images with the pinhole completely open. In

3Table I of [14] indicates a gain of 6.33 dB at 40 dB BSNR, while our experi-
ments yielded 6.03 and 6.61 dB after ten and 30 iterations of the FTL algorithm,
respectively.

this configuration, the confocal effect is not used and the system
becomes essentially equivalent to a widefield microscope. This
results in images with out-of-focus blur due to the poor local-
ization of the widefield PSF along the -dimension. The second
set of images was acquired with the pinhole radius set to 1 Airy
unit. In this configuration, much of the out-of-focus light is re-
jected by the system, resulting in significantly sharper images.
We then used the confocal data set as a reference for comparing
the performance of the TL and FTL algorithms on the widefield
data set.

Maximum intensity projections (along the axis) of both data
sets are shown in Fig. 8. Below are the results of ten iterations
of the TL and FTL algorithms on the widefield stack; this cor-
responds to roughly 1 min and 30 s of computation time on a
2.66-GHz Intel Xeon workstation. We used a 3-D version of
the diffraction-limited model mentioned above (with parameters
corresponding to manufacturer specification:

) to generate the PSF and we took the measured widefield
image as the initial estimate.

The TL algorithm cannot produce a visible deconvolution ef-
fect within ten iterations; its output is very similar to the original
widefield data. On the other hand, the FTL algorithm rapidly
produces an estimate that is significantly sharper. In particular,
the thickness of the cell membranes is comparable to the con-
focal image. Also, the fluorescent microbeads are brighter than
in the widefield image. The results were shown to biologists who
were positively impressed.
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Fig. 8. Maximum intensity projections of 384� 288� 16 image stacks.
(a) Widefield image and (b) confocal reference image of the same object.
(c), (d) Results of the deconvolution algorithms applied to the widefield image:
(c) TL, ten iterations; (d) FTL, ten iterations.

VI. CONCLUSION

We have presented a fast algorithm for wavelet-regularized
variational deconvolution. It is based on the use of a Shannon
wavelet basis, which allows for a subband-adapted minimiza-
tion strategy. As a result, the update introduced by each step of

the FTL algorithm is much more efficient than with the stan-
dard TL algorithm. For BSNR levels above 30 dB, we have ob-
tained acceleration factors of one order of magnitude or better.
This corresponds to relatively standard acquisition conditions
for deconvolution microscopy, at least when considering fixed
specimens.4 Thanks to this substantial speed increase, we have
demonstrated the feasibility of 3-D wavelet-based deconvolu-
tion microscopy on a widefield fluorescence image stack.

A direct extension of the proposed algorithm is to consider
subband-dependent regularization parameters [11] and/or other
sparsity-enforcing penalizations (that is, other thresholding
functions, see [14]). The principle of the method could also
be applied to other types of operators that are block-diagonal
in the basis that is used for regularization. The possibilities of
this type of procedure are numerous and our current experi-
mentations suggest that there is room for improvement, which
calls for further investigations and more extensive comparative
studies.
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