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Abstract

The subject of this thesis is image restoration, that is, deconvolution and denoising.
Our work is motivated by applications in the rapidly expanding field of biological
imaging and in particular fluorescence microscopy. Inverse problems in this area
typically involve regularly structured but high-dimensional data sets, thus requiring
a specific tradeoff between restoration quality, computational complexity and user
interaction. Our interest lies in novel algorithmic solutions for addressing these
challenges. The common point of our developments is that they rely centrally on
wavelets and multilevel concepts.

The thesis is organized in three main parts. In the first part, we provide a
general overview of fluorescence microscopy in the context of biological research.
We then review the current state of the art in deconvolution microscopy, within a
unifying variational framework.

The second part is concerned with deconvolution using a non-quadratic (typi-
cally `1) wavelet-domain regularization. In the context of deconvolution microscopy,
this approach is novel. It amounts to imposing a sparsity constraint on the object
to be recovered, a concept that has recently attracted considerable interest in sig-
nal and image processing. This type of regularization was shown to belong to the
most effective restoration methods, but it involves a computationally challenging
optimization problem. We propose a multilevel version of the standard “thresh-
olded Landweber” algorithm that yields a substantial acceleration. This allows us
to apply wavelet regularization to large-scale deconvolution problems encountered
in deconvolution microscopy.

In the third part, we present some applications of risk estimation techniques
for automating the process of image restoration. We first propose a denoising
method that is specifically designed for very low light intensities. The algorithm is
designed from the beginning for complete self-adjustment of its parameters and for
low computational complexity. It also performs competitively with most existing
approaches for Poisson intensity estimation. Our second contribution is a general

i



ii

method for estimating the signal-to-noise ratio during the execution of iterative
image-restoration procedures; it is applicable to most algorithms emanating from
variational formulations, in particular those involving wavelet regularization.

Keywords: inverse problems, variational, reconstruction, restoration, deconvo-
lution, denoising, non-linear, sparsity, `1-regularization, wavelets, multiresolution,
multiscale, multilevel, multigrid, fast, convergence acceleration, preconditioning,
bound optimization, majorize-minimize, surrogate optimization, 3D, microscopy,
widefield, confocal, fluorescence, risk estimation, Stein’s unbiased risk estimate
(SURE), linear expansion of thresholds.



Résumé

Le sujet de cette thèse est la restauration d’images, c’est à dire la déconvolution
et le débruitage. Les applications en microscopie par fluorescence pour l’imagerie
biologique, qui connâıt actuellement un développement considérable, constituent
l’une des principales motivations de notre travail. Les problèmes inverses dans ce
domaine ont typiquement une structure régulière mais une dimension algébrique
très grande, ce qui nécessite des compromis spécifiques entre qualité de restauration,
complexité calculatoire et intervention de l’utilisateur. Nous nous intéressons donc
à de nouvelles solutions algorithmiques permettant de répondre à ces contraintes.
Les fils conducteurs de nos développements sont les ondelettes et des concepts dits
“multi-niveaux” ou “multi-grilles”.

Cette thèse est organisée en trois grandes parties. Dans la première, nous don-
nons une vue d’ensemble de la microscopie par fluorescence dans le contexte de
la recherche en biologie. Nous faisons ensuite l’état de l’art en microscopie par
déconvolution, dans un cadre variationnel unificateur.

La seconde partie concerne la déconvolution basée sur une régularisation par
ondelettes non-quadratique (typiquement une norme `1). Dans le cadre de la mi-
croscopie par déconvolution, cette approche est nouvelle. Elle revient à appliquer
une contrainte de “parcimonie” à l’objet que l’on cherche à reconstituer. Ce concept
a récemment attiré un intérêt considérable en traitement du signal et des images. Il
a été montré que ce type de régularisation fait partie des méthodes de restauration
les plus performantes, mais il implique un problème d’optimisation relativement
difficile. Nous proposons une version multi-niveaux nettement plus rapide d’un al-
gorithme devenu standard, le ”Landweber seuillé”. Ceci nous permet d’appliquer
la régularisation par ondelettes à des problèmes à grande dimension rencontrés en
microscopie par déconvolution.

Dans la troisième partie, nous présentons des applications de techniques d’es-
timation de risque à l’automatisation du processus de restauration d’images. Nous
proposons premièrement une méthode de débruitage conçue spécifiquement pour

iii



iv

les très faibles intensités de lumière. L’algorithme est conçu dès le départ de sorte
qu’il puisse auto-ajuster entièrement ses paramètres. Notre seconde contribution
est une méthode générale pour estimer le rapport signal à bruit durant l’exécution
de procédures de restauration d’image itératives ; elle est applicable à la plupart des
algorithmes émanant d’une formulation variationnelle, en particulier ceux utilisant
une régularisation par ondelettes.

Mots clés : problèmes inverses, variationnel, reconstruction, restauration, décon-
volution, débruitage, non-linéaire, parcimonie, régularisation `1, ondelettes, multi-
résolution, multi-échelle, multi-niveaux, multi-grille, rapide, convergence, accéléra-
tion, préconditionnement, optimisation de majorant, majoration-minimisation, op-
timisation par substitution, 3D, microscope, champs large, confocale, fluorescence,
estimation de risque, estimateur de risque non-biaisé de Stein, combinaison linéaire
de seuils.
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Chapter 1

Motivation and overview

1.1 Image restoration in fluorescence microscopy

The widespread availability of fluorescent protein markers and digital microscopy
in the 1990’s has revolutionized biological research. Today, fluorescence microscopy
is the primary modality for biological imaging, and experimental requirements—
such as high-resolution, small-animal or live-specimen imaging—are continuously
stimulating new developments.

Specifically, three disciplines can be identified as playing a key role for modern
microscopy, namely, biochemistry, optics and digital image processing. Of funda-
mental importance is the engineering of novel fluorescent probes with improved
characteristics. This topic is intimately connected with the design of advanced
optical-microscopy techniques; indeed, the latter increasingly depend on non-linear
characteristics of fluorescence, such as stimulated emission depletion or photoacti-
vation [104, 101, 20]. This evolution calls for sophisticated computational methods
that are able to efficiently synthesize the images of interest from the measured data.

This thesis is primarily concerned with image restoration, that is, deconvolu-
tion and (to a lesser extent) denoising. Deconvolution represents the archetype
of an ill-posed inverse problem and naturally arises in the context of structured
imaging schemes; this includes some of the most recent types of microscopes (4Pi,
STED...) as well as conventional widefield and confocal systems. Denoising differs
from deconvolution in that it is a better-conditioned problem.

Image restoration can be distinguished from image reconstruction as well as
from image enhancement. From our standpoint, image enhancement refers to an

1



2 Motivation and overview

operation that improves the subjective quality of an image, possibly to facilitate
its interpretation. Image enhancement is a generic procedure in the sense that it
relies on image-processing primitives—such as morphological processing or feature
enhancement—that do not take into account the physical acquisition process. This
is in contrast with image restoration, which aims at a quantitative improvement
of the image quality based on physical insights. An extreme situation is when the
interpretation of the data is only possible after a nontrivial numerical transforma-
tion; one then deals with image reconstruction. This is typically a less-structured
inverse problem where the measurement domain can differ significantly from the
image domain. These considerations are summarized in Table 1.1.

For a given light budget, the benefits of image restoration are typically a higher
signal-to-noise ratio and an improved contrast. In the context of bioimaging, these
advantages can be exploited in a variety of ways. On the post-acquisition side, image
restoration facilitates both the visual and the computational analysis of the data; in
fact, it can be considered as indispensable within a quantitative imaging approach
(e.g., for colocalization studies). Image restoration can also help to optimize the
acquisition process itself: indeed, for a target image quality, it typically allows for
weaker excitation light and/or shorter exposure times. These are critical parameters
when imaging live specimens.

1.2 Algorithmic challenges

Image restoration is a challenging task because it depends on many parameters;
ideally, it should be part of an integrated approach that takes into account the
complete image-acquisition chain (see Fig. 1.1). The first task is to obtain a forward

Image
formation

Image
detection

Original image
for denoising Image

restoration

Measured
image Estimate of the

original image
Original image

for deconvolution

Aberrration
parameters

Distortion
parameters

Tuning
parameters

Image acquisition

Figure 1.1: The image acquisition and restoration chain.
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Table 1.1: Comparison of image restoration with related image-processing tasks.
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model that accurately describes the physics of the image-acquisition process. Such
a model plays an important role for optimizing the acquisition process (that is, for
generating the best-possible data); it is also a fundamental component of almost
any image-restoration procedure.

The forward model usually depends on various elements (e.g., point spread func-
tion, characteristic function of the detector) and parameters: in Fig. 1.1, we distin-
guish between distortion parameters (e.g., gain, quantization step) and aberration
parameters (e.g., bandwidth), the latter being mostly relevant to deconvolution.
The next step is thus to characterize the imaging system, that is, to fit the model
to the actual experimental conditions. This may require separate calibration data
(e.g., fluorescent-microbead or dark-count images); sometimes the model identifi-
cation can also be based directly on the measured data (blind approach).

The task of image-restoration itself can be divided in two parts. First, one
must design a good restoration procedure, that is, choose its degrees of freedom for
optimal restoration quality and processing complexity. Approximation theory and
estimation theory are important tools in this context. Second, one must provide a
rationale for adjusting these degrees of freedom in practice.

In summary, an algorithm developer must find a compromise between three
usability criteria:

• restoration quality;

• computational complexity1;

• automation2.

This compromise eventually determines the attractivity of the image-restoration
procedure for the end-user.

1.3 Contributions and organization of the thesis

The thesis is organized as follows.
A general introduction to bioimaging and fluorescence microscopy is given in

Part I. Chapter 2 represents our contribution to the promotion of life sciences as
an exciting application field for image processing. It is followed by a mathematical
description of the image-acquisition process and a review of existing deconvolution
methods in Chapter 3.

1This includes both CPU and memory requirements.
2In the sense of minimizing the user input.
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The core of the thesis (Part II) is concerned with non-linear wavelet-based de-
convolution. This approach can be justified using approximation-theory arguments
[40, 58], sparsity principles [205] or a more standard Bayesian formalism [78]; it is
also known to yield very good results for 2D image deconvolution [78]. Our main
contribution is a multilevel version of the so-called thresholded Landweber algo-
rithm (Chapter 6). Compared to the standard version, the multilevel version yields
an acceleration of one order of magnitude in experimental situations, which allows
us to address large deconvolution problems; in particular, we present one of the first
applications of wavelet-regularized deconvolution to 3D fluorescence microscopy.

Our approach is strongly inspired from multigrid techniques; in fact, it rep-
resents one of the first successful applications of multigrid ideas to image decon-
volution. The wavelet representation is an important component of our “divide-
and-conquer” strategy, because it naturally leads to effective multilevel schemes.
Indeed, its structure is inherently multiscale and invariant to dyadic shifts; when
dealing with a convolution operator, this allows for inter-level transfer operators
that are hardly more expensive than Mallat’s fast wavelet-transform algorithm. In
addition, it provides a decomposition of the spectral domain that is well adapted to
the low-pass operators that are typically encountered in deconvolution problems.
An important step towards this general observation is to consider the particular
case of Shannon wavelets (Chapter 5).

The other main topic of our work (Part III) is the application of risk-estimation
techniques to image restoration. We first propose a restoration method that is
specifically designed for very low light levels (Chapter 8). In this situation the
effect of shot noise predominates over the convolutive nature of the imaging sys-
tem. Here too, we build upon previous variational and Bayesian approaches that
have established wavelet-domain thresholding as one of the most effective denois-
ing methods. We also borrow ideas from a recent class of data-driven restoration
methods [140, 24] where the image priors (such as interscale dependencies) are di-
rectly built into the restoration algorithm and formulated so as to minimize its
computational complexity. The result is a completely automatic denoising proce-
dure that provides state-of-the-art results, while its computational cost is essentially
equivalent to a non-redundant Haar wavelet transform. Again, this represents an
attractive solution for processing high-dimensional data sets typically produced in
fluorescence microscopy.

In Chapter 9, we also present a recursive risk-estimation approach for iterative
restoration algorithms. The method is generic and applicable to ill-conditioned
deconvolution problems. It essentially allows for monitoring the (estimated) signal-
to-noise ratio during the execution of any iterative algorithm.

At the beginning of Part II and Part III, we provide introductory chapters that
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aim at a higher-level discussion of our work.



Part I

An introduction to
fluorescence microscopy and

deconvolution

7
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Tell me, and I will forget.
Show me, and I will remember.

Involve me, and I will understand.
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Chapter 2

The colored revolution of
bioimaging

This chapter is Copyright c© 2008 IEEE and Artech House. Reprinted, with permission, from
[236, 3].
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With the recent development of fluorescent probes and new high-resolution mi-
croscopes, biological imaging has entered a new era and is presently having a pro-
found impact on the way research is being conducted in the life sciences. Biolo-
gists have come to depend more and more on imaging. They can now visualize
sub-cellular components and processes in vivo, both structurally and functionally.
Observations can be made in two or three dimensions, at different wavelengths
(spectroscopy), possibly with time-lapse imaging to investigate cellular dynamics.

The observation of many biological processes relies on the ability to identify and
locate specific proteins within their cellular environment. Cells are mostly trans-
parent in their natural state, and the immense number of molecules that constitute
them are optically indistinguishable from one another. This makes the identifica-
tion of a particular protein a very complex task — akin to finding a needle in a
haystack. However, if a bright marker were attached to the protein of interest, it
could very precisely indicate its position. Much effort has gone into finding suitable
markers for this purpose, but it is only over the course of the past decade, with
the advent of fluorescent proteins, that this concept has been revolutionized. These
biological markers have the crucial properties necessary for dynamic observations
of living cells: they are essentially harmless to the organism and can be attached
to other proteins.

Fluorescence microscopy was invented almost a century ago, when microscopists
were experimenting with ultraviolet light to achieve higher resolutions. In the
very beginning, observations were limited to specimens that naturally fluoresce1.
Rapidly, fluorescent dyes for staining tissues and cells were investigated. But it was
not until the 1940s that fluorescence microscopy became popular, when A. Coons
and M. Kaplan introduced a technique to label antibodies with a fluorescent dye to
study antibody-antigen interactions, which profoundly changed the field of immuno-
histochemistry [55]. The discovery that really brought fluorescence microscopy to
the forefront came in 1994, when M. Chalfie et al. succeeded in expressing a natu-
rally fluorescent protein, the now famous green fluorescent protein (GFP), in living
organisms [39]. This was a landmark evolution in the field2, fostering a whole new
class of tagging methods.

While genetic engineering is at the origin of this new methodology, a number
of innovations from the fields of physics, optics, mechanical and electrical engi-
neering have been combined to provide the necessary instrumentation. Impressive
enhancements in classical microscopy have been achieved, and new imaging systems
are actively being developed. A key element for the evolution of microscopy in gen-

1This property is called autofluorescence or primary fluorescence.
2The 2008 Nobel Prize in Chemistry went to O. Shimomura, M. Chalfie and R. Y. Tsien, “for

the discovery and development of the green fluorescent protein, GFP”.
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eral was the shift to digital imaging in the 1990s, with the availability of affordable
high-sensitivity acquisition devices and powerful computer hardware.

The capabilities of today’s systems often lead to enormous data sets that, in
most cases, require post-processing for their interpretation. Signal processing meth-
ods for biological research are only at their prelude; the needs are considerable and
most probably not even clearly formulated yet. It is thus predictable that signal
processing will be one of the main challenges of fluorescence microscopy in the
forthcoming years.

The goal of this chapter is to provide an overview of the main aspects of modern
fluorescence microscopy. We first cover the principles of fluorescence and highlight
the key discoveries in the history of fluorescence microscopy. In subsequent sec-
tions, we present the optics of fluorescence microscopes and examine various types
of detectors. Finally, we discuss the signal and image processing challenges in flu-
orescence microscopy and highlight some of the present developments and future
trends in the field.

2.1 Fluorescence in molecular and cellular biology

2.1.1 The physical principles of fluorescence

Definition

Fluorescence is a phenomenon by which a molecule, upon illumination at a specific
wavelength, reemits light at another (typically longer) wavelength. A molecule
that has the ability to fluoresce is called a fluorophore or fluorochrome3. It has
distinctive excitation and emission spectra (see Fig. 2.1), although in practice, it
is often characterized by the two wavelengths corresponding to the respective peak
intensities of these spectra.

A molecule can exist in a variety of energetic states, which, for the most part, are
determined by the configuration of its electrons and the vibrational agitation of its
atomic nuclei. If a photon with sufficient energy is absorbed by a fluorophore, the
latter moves from its ground state to an excited electronic state (see Fig. 2.2(a)).
Fluorescence occurs when the excited molecule returns to the ground state by re-
leasing energy through emission of a photon. Because some of the energy gained
during excitation is converted to heat, the emitted photon has a lower energy than
the absorbed one. This explains the difference in wavelength mentioned earlier

3Specifically, the former describes an atomic compound responsible for fluorescence, while the
latter is a more general term for a dye that renders a body fluorescent.
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Figure 2.1: Representation of typical excitation/emission spectra of a
fluorophore (in relative intensities). The excitation spectrum shows the
emission intensity as a function of excitation wavelength, and the emission
spectrum shows the relative emission intensities as a function of emission
wavelengths for an excitation at the peak absorption wavelength. Expla-
nations on the filters are given in Section 2.2.

(since E = hν = hc/λ), which is also known as the Stokes shift. Fluorophores
whose spectra present a large Stokes shift are usually preferred since their emitted
light can be separated from the excitation light more easily by the means of optical
filters (see Fig. 2.1).

Related phenomena

When in an excited state, a fluorophore can be forced to the ground state in a
process called stimulated emission: in the presence of an incident photon, the
molecule emits a new photon that has the same wavelength, direction, polarization
and phase. This phenomenon is relevant to some of the concepts discussed later,
but is best known as the light-amplification principle behind lasers.

Another important concept is that of multiphoton excitation. A fluorophore
can also be excited by the simultaneous absorption of two or more photons, given
that the combined energy of the photons corresponds to the energy required for
single-photon excitation (see Fig. 2.2(b)). In this particular situation the excitation
wavelength is longer — in the case of two-photon excitation, twice as long as the
single-photon excitation wavelength.



2.1 Fluorescence in molecular and cellular biology 15

1 

2 

3 

S0 

S1 

(a)

1

(b)

Figure 2.2: Jablonski diagrams representing the energy-level transitions
involved in the fluorescence of GFP. Thick lines represent electronic energy
levels; thin ones are associated vibrational energy levels. (a) Upon absorp-
tion of a photon at a specific wavelength (blue), the molecule moves from
the ground state S0 to the excited state S1 (1). Vibrational energies are
immediately converted into heat in a process called vibrational relaxation
(2). When the molecule returns to the ground state, the remaining energy
is released via emission of a new photon at a longer wavelength (green).
(b) In the case of two-photon excitation, the excitation wavelength (red)
is longer than the emission wavelength (green). The intermediate virtual
state is indicated by (1).

2.1.2 The green revolution

The developments that had the biggest impact on biological research and made
fluorescence microscopy ubiquitous took place during the past two decades. Con-
sequently, we shall focus on this period for the remainder of this section. However,
these recent developments could not have occurred without previous discoveries
and inventions in a variety of fields, starting in the 16th century. An overview of
events that played an essential role in contributing to the development of modern
fluorescence microscopy is given in the form of a timeline in Figures 2.3 and 2.4.
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1565 Nicolás Monardes observes luminescence in the extract of the wood lignum 
nephriticum, a substance used for treating kidney ailments.

1646 Athanasius Kircher relates that an infusion of lignum nephriticum reflects blue 
and transmits yellow light.

1800 Frederick William Herschel discovers infrared radiation.

1801 Johann Wilhelm Ritter discovers the ultraviolet region of the spectrum.

1833 David Brewster observes red radiation in a solution containing chlorophyll 
upon illuminating it with white light.

1845 John F. W. Herschel (the son of F. W. Herschel) discovers the phenomenon of 
fluorescence in a quinine solution.

1852 George Gabriel Stokes describes the luminescence observed in the fluorspar 
mineral as fluorescence, and formulates the Stokes law.

1871 Adolf von Baeyer discovers and synthesizes fluorescein, still widely used as 
a dye.

1878 Ernst Abbe formulates the theory that links resolution to the wavelength of 
light, and proposes the use of ultraviolet light to increase the resolution of 
microscopes.

1904 August Köhler and Moritz von Rohr develop the ultraviolet microscope. 
Autofluorescence observed in the visible domain starts the era of fluorescence 
microscopy.

1905 Albert Einstein describes the photoelectric effect.

1908 August Köhler and Henry Friedrich Wilhelm Siedentopf build and demon-
strate the first fluorescence microscope.

1911 Max Haitinger coins the term fluorochrome to describe dyes that render non-
fluorescent objects fluorescent. Numerous investigations into fluorescent dyes 
begin.

1911 
1913

The first commercialized fluorescence microscopes, using carbon arc lamps, 
are produced by Reichert (Otto Heimstädt and Carl F. W. Reichert, 1911) and 
Carl Zeiss (Heinrich Lehmann, 1913). Observations are limited to specimens 
that present autofluorescence.

1929 Philipp Ellinger and August Hirt propose a fluorescence microscope with 
epi-illumination for the observation of living organisms. They use the fluo-
rochromes fryptaflavine, which stains cell nuclei, and fluorescein, to study 
kidney function.

Figure 2.3: Early history of fluorescence microscopy
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3000
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1935 Alexander Jablonski presents his model to explain fluorescence.

1935 The first photomultiplier tube is built by Harley E. Iams and
Bernard Salzberg [3].

1941 Albert Coons and Melvin Kaplan introduce immunofluorescence, a labeling 
method still in use today [1].

1948 Theodor Förster describes resonance energy transfer.

1957 Marvin Minsky submits his patent for the confocal microscope [4].

1958 Arthur Schawlow and Charles Townes invent the laser.

1960 The first functioning laser is built by Theodore Maiman [5].

1969 George Smith and Willard Boyle invent the CCD.

1978 Colin J. R. Sheppard and Rudolf K. Kompfner propose the concept of two-
photon microscopy [6].

1980 John G. J. Bauman et al. introduce fluorescence in situ hybridization (FISH), 
a method for localizing specific genetic sequences by labeling RNA molecules 
with a fluorochrome [7].

1983 David A. Agard and John W. Sedat reconstruct chromosomes from Drosophila 
larvae using computer deconvolution [8].

The Colored Revolution

1990s Affordable digital imaging hardware and commercial confocal fluorescence 
microscopes become widely available, launching a new era in microscopy. 

1990 Winfried Denk, James H. Strickler, and Watt W. Webb experimentally demon-
strate two-photon microscopy [9].

1991 Joseph R. Lakowicz et al. describe fluorescence lifetime imaging (FLIM) [10]. 

1994 Martin Chalfie et al., and Satoshi Inouye and Frederick Tsuji express GFP in 
living organisms (e. coli and c. elegans) [2] [11].

1994 Stefan Hell and Jan Wichmann invent STED microscopy [12].

2006 Localization-based fluorescence techniques devised by Eric Betzig et al. 
(PALM [13]) and Michael Rust et al. (STORM [14]) yield super-resolved im-
ages that rival the resolution of electron microscopy.

ISI Web of Science citations for Fluorescence Microscopy from 1985-2006

Figure 2.4: Modern history of fluorescence microscopy
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In the early 1990s, fluorescent labeling techniques such as immunofluorescence4

and covalent marking5 were already widely in use for imaging. However, a straight-
forward means for selectively labeling a given protein with a non-perturbing flu-
orescent marker was not yet available. Only such a tag would make the in vivo
observation of interactions between a specific protein with other proteins and the
environment feasible.

The breakthrough came in 1994, when Chalfie et al. [39] succeeded in expressing
a fluorescent protein that naturally occurs in a jellyfish species in other organisms by
modifying their genome to code for this protein. At the origin of this innovation,
accordingly dubbed “the green revolution” [208], was the discovery of GFP by
Shimomura et al. in 1961 [199]. During their studies of the jellyfish aequorea
victoria, whose fluorescing nature was described for the first time in 1955, they
discovered that the source of the fluorescence was a naturally produced protein. Its
chemical structure was reported by Shimomura in 1979, and in 1992, Prasher et al.
cloned and determined its genetic sequence [177], paving the way for the work of
Chalfie et al.

Since the first experiments with GFP, many variants have been engineered and
discovered. From the naturally occurring GFP, called wtGFP for wild-type GFP,
and from similar fluorescent proteins occurring in other marine organisms, new,
more powerful mutants have been derived. Their properties range from different
excitation and emission spectra6 to stronger fluorescence and higher resistance to
photobleaching [258]. Two widespread examples are cyan fluorescent protein (CFP)
and yellow fluorescent protein (YFP), named for their characteristic emission spec-
tra.

Biologists can label virtually any desired protein with a fluorescent protein by
means of straightforward procedures. The first step leading to the creation of a
labeled protein is to append the marker protein’s sequence to that of the target.
The resulting sequence is then introduced into cells, where its transcription results
in the synthesis of a fusion protein. A common means for doing this is by placing
the gene onto a plasmid7, which can then be taken up by a cell. Such plasmids

4A technique (also called immunostaining) for detecting an antigen (protein) with a
fluorochrome-labeled antibody.

5Proteins are purified, covalently labeled with a fluorescent molecule, and then introduced into
cells.

6The currently available fluorescent protein tags offer a wide choice of wavelengths within the
visible spectrum.

7Plasmids are small, circular, double-stranded sequences of DNA that naturally occur in bac-
teria and are part of their genome. They can easily be introduced into cells, where they are
expressed in the same fashion as chromosomal DNA. Plasmids are not replicated upon cellular
division; however, in some cases they are integrated into the cell’s chromosomal DNA.
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Figure 2.5: Image of a neuron where specific receptor proteins (delta
opioid) have been fused with eGFP and appear in green. The red dots
(GABA immunostaining) correspond to intracellular proteins located inside
the neuron and its extensions. The nuclei of surrounding cells are stained in
blue with DAPI, a fluorochrome that specifically binds to DNA. Courtesy
of G. Scherrer, P. Tryoen-Toth and B. L. Kieffer, IGBMC, Illkirch, France.

exist for a wide range of fluorescent proteins and are available from specialized
companies.

The fusion protein (Fig. 2.5) is expressed throughout the lifetime of the cell, as
long as its sequence is present in the cell’s nucleus. Note that this procedure typi-
cally results in the expression of both the fusion and natural versions of the protein,
since the genetic sequence of the former does not replace that of the latter. Al-
though the function and localization of the two variants are in most cases identical,
it is necessary to verify that the label has no influence on cellular functions.

The availability of fluorescent protein tagging techniques led to a fundamental
change in the way biological research is conducted and to an explosion of experi-
mental possibilities. For further details, we refer to Section 2.5 and [134, 156].
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2.2 Microscopes and image formation

We now turn our attention to the instrumentation for fluorescence imaging. This
section provides a brief description of the two main types of image forming sys-
tems: widefield and confocal microscopes. While the former are usually less ex-
pensive than the latter (depending on the configuration), their optical resolution is
intrinsically more limited, especially in the axial (i.e., z) direction. Both systems
can yield volume images of the sample under inspection, possibly with the help of
deconvolution. However, in widefield microscopes the volume is acquired plane by
plane (as opposed to point by point in standard confocal systems), which allows for
faster acquisitions.

2.2.1 The widefield microscope

Principle

Widefield microscopy is based on the paradigm of Köhler illumination, according
to which the sample is observed under a uniform light beam. Fig. 2.6(a) shows how
this is obtained in a simplified epi-illumination microscope: the light source (an
arc or filament lamp) is magnified by the collector lens and projected onto the iris
diaphragm. This aperture is located in a conjugate plane of the objective’s back
focal plane. Therefore the latter acts as a condenser lens and the intensity from
the iris is uniformly dispatched on the sample.

Let us now consider a single point of the sample. It will reemit light by reflection
and possibly by fluorescence. If located in the focal plane, this will generate a
beam of parallel light rays through the microscope tube. The image is formed by
integrating the effect of all secondary point sources within the specimen; it can be
observed through the eyepiece, or recorded by placing a CCD sensor in the image
plane.

One of the critical parameters in this setting is the numerical aperture (NA); that
is, the angular opening of the light cone emerging from the object and collected
by the objective. The magnification effect results from the combination of the
objective, tube and ocular lenses.

Components for fluorescence imaging

Fluorescence imaging requires specific additional components for controlling the
spectrum of the light (see also Figure 2.1). While usual lamps produce “white light”
(covering the whole visible spectra, with some peaks at characteristic wavelengths),
the fluorescent sample has to be illuminated with a specific excitation wavelength.
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Figure 2.6: Schematics of widefield (a) and confocal (b) fluorescence mi-
croscopes, showing their main components. The illumination path is shown
in yellow and/or blue (excitation at 395 nm) and the image-forming path
in green (emission at 509 nm), to suggest the spectral composition of the
different light beams in the case of a GFP-tagged sample.

This is ensured by inserting an excitation filter on the illumination path. The
emission filter, on the other hand, ensures that only the wavelength corresponding
to fluorescence reemission gets transmitted to the sensor or to the eyepiece, whereas
reflected light (at the excitation wavelength) is discarded. A dichroic mirror helps
achieving this by reflecting light below a certain transition wavelength (which is
chosen to be between the excitation and emission wavelengths of the fluorophore)
and transmitting light above that wavelength.

Incoherent point spread function

Because of the random nature of photon reemission, fluorescence microscopy is an
incoherent imaging process. This means that each point of the sample contributes
independently (without interference) to the light intensity distribution in the image
space. Moreover, in the paraxial approximation, moving the object does not influ-
ence its image, except for a shift. From a signal-processing standpoint, a widefield
microscope can thus be modeled as a linear space-invariant system in intensity. In
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Figure 2.7: Cross-sections of the image of a fluorescent bead with a 1-NA
objective (ideal 3D intensity PSF, or 3D Airy function). The upper row
corresponds to a widefield microscope (|hλem |2), while the lower one is for
a confocal system (|hλex |2|hλem |2). Here λex = 395 nm and λem = 509 nm
represent the respective excitation and emission wavelengths of GFP. Left
sides: x-z section; right sides: x-y sections at two different depths. All
units are in µm and refer to the object space.

other words, the light intensity (which is the physical value measured by a pho-
todetector) in the neighborhood of the primary imaging plane (z = 0) is given by
a convolutive expression:

I(x, y, z) ∝
∫

R3

∣∣∣hλem

( x
M
− u, y

M
− v, z

M2
− w

)∣∣∣2 χ(u, v, w) du dv dw (2.1)

where M is the magnification of the objective (notice that the axial magnification
is M2). Here, χ is the characteristic function of the object; it describes its ability
to convert incident light into fluorescence intensity at the emission wavelength λem

and is thus mostly related to the fluorophore concentration. The impulse response
|hλem |2 is called the incoherent (or intensity) point spread function (PSF), since
it defines the image of an ideal point object (χ(x, y, z) = δ(x, y, z)). For a given
wavelength λ it is defined by a 2D Fourier transform:

hλ(x, y, z) =
∫

R2
P (u, v) exp

(
i2πz

u2 + v2

2λf2

)
exp

(
−i2πxu+ yv

λf

)
du dv. (2.2)
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In this expression f is the focal length of the objective. P represents the pupil
function, which is an indicator function that corresponds to the circular aperture
of the objective. Its radius r is related to the focal length by NA ' r/f . Notice
the presence of the depth coordinate z in the phase factor — it accounts for the
defocusing effect illustrated in Fig. 2.7.

2.2.2 The confocal scanning microscope

Principle

In a confocal microscope ([154], Fig. 2.6(b)) the illuminating point source is usually
obtained from a laser. The latter illuminates a pinhole located in a plane conjugate
to the sample. In this way, the light is focused onto a very small volume of the
sample, and the returning fluorescence radiation is collected by a photomultiplier
tube (PMT [164]). The essential difference with a widefield microscope is the
detection pinhole, which drastically reduces the proportion of light coming from
out-of-focus points, especially in the axial direction.

Since only one point is observed at a time, the object has to be scanned. In
the x and y dimensions, this is achieved by using a scan mirror, which deflects
the illumination beam, hence moving the illumination spot in the same plane.
In the z direction, the sample is usually moved mechanically by the means of a
motorized stage. The ability to resolve different planes within the object is called
optical sectioning and leads to a complete volumetric representation (a stack of 2D
images).

A critical parameter in this setting is the pinhole diameter, which is usually
expressed in Airy units (AU)8. One Airy unit corresponds to the size of the central
disc of the PSF of the system (Fig. 2.7, second image in the bottom row). The
smaller the pinhole, the better the resolution; however, this also means that less
light is collected, implying a higher noise level.

Incoherent point spread function

The imaging process of fluorescent material can be modeled as follows: first, we
have to take into account the effect of illumination, which consists in multiplying the
fluorescence strength of the object by the PSF of the objective (taking into account
the scan coordinate (x0, y0, z0)). The reemitted light intensity is then given by

|hλex(x− x0, y − y0, z)|2χ(x, y, z − z0) (2.3)
8After back-projection in the object space, i.e. dividing the effective diameter by the magnifi-

cation factor.
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where λex denotes the excitation wavelength. The intensity at the detector is the
convolution of this expression with the objective PSF, evaluated at the origin (the
position of the detection pinhole, which is assumed to be ideal):∫

R3
|hλem(x0 − x, y0 − y,−z)|2|hλex(x− x0, y− y0, z)|2χ(x, y, z− z0) dx dy dz (2.4)

where λem denotes the reemission wavelength. Notice that we did not indicate the
magnification factors here, which is equivalent to back-projecting the image into
object space; also, the returning light beams are descanned when they hit back on
the scanning mirror. Since hλex and hλem are symmetric in x, y and z, the final
intensity PSF of the system is htotal = |hλexhλem |2, illustrated in the lower part of
Fig. 2.7. It shows that a confocal microscope has a PSF that is more concentrated in
space than a widefield one; i.e., a better resolution, especially in the axial direction.

2.2.3 Sample setup and aberrations

In an ideal optical system, wavefronts propagate without undergoing phase distor-
tions, also called aberrations. Modern microscope optics are highly sophisticated
and are corrected to high levels of precision to avoid such distortions. The optical
properties of the sample play an important role in the formation and correction
of aberrations. Samples are placed onto a glass slide and need to be covered with
a glass coverslip for use with most objectives. As shown in Fig. 2.8, there is an
immersion layer between the objective and the sample (to increase resolution, an
immersion medium with a high refractive index, such as oil, is used). To minimize
aberrations, each objective is designed for a specific setup, corresponding to param-
eters such as the refractive index of the immersion medium, the coverslip thickness,
and the imaging depth. Small deviations from these optimal values (e.g., due to
temperature changes or incorrect sample preparation) can introduce aberrations.
A common and often unavoidable source of aberrations is the imaging depth in
situations where the refractive indices of the specimen and immersion layers are
mismatched. In the case where this mismatch is significant, it may result in the
PSF becoming non-stationary, especially along the axial direction z [89].

2.3 Detectors

Fluorescence imaging can sometimes be a real challenge due to very low light con-
ditions. Especially for live samples undergoing fast biological changes, it may not
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Figure 2.8: Schematic representation of a typical sample setup.

be possible to integrate more than a few tens of photons at each sampling posi-
tion. Such conditions call for very sensitive detection devices with very accurate
synchronization and control.

2.3.1 Characteristic parameters of detection systems

Most detectors are actually designed for specific applications and provide increased
accuracy along the corresponding dimensions. In what follows, we briefly review
the main characteristics of a detection device with respect to different parameters.

Wavelength

One of the critical parameters of a detector is its quantum efficiency ; i.e., the
average rate of incoming photons that are converted into an electronic charge.
This rate strongly depends on the wavelength, and is therefore also called spectral
sensitivity.

Intensity

Some detectors operate by internal amplification of the light signal they receive,
which leads to the notion of gain. Detectors with gain adjustment offer increased
interscene dynamic range, that is, the range of intensity levels that they can adapt
to, for different imaging situations. The intrascene dynamic range characterizes the
range of intensities to which the sensor can respond linearly, for a given imaging
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situation. The maximum value, divided by the noise level, defines the peak signal-
to-noise ratio (SNR). The quantization precision (number of bits per sample) must
be chosen accordingly.

Spatial resolution

For array/line (resp. point) detectors, the pixel size (resp. detection aperture)
represents a tradeoff between resolution and noise level. Another parameter is the
effective photosensitive area, which may not cover the whole detector.

Temporal resolution

Long integration times will reduce noise but slow down the acquisition process.
High readout speeds will allow faster frame rates/scan frequencies. For fluorescence
lifetime measurements, one needs to precisely know when a given event occurred,
which requires high synchronization and timing accuracy.

Operating temperature

Cooling is often mandatory for noise reduction.

2.3.2 Detection technologies

We can distinguish between two main types of detectors for fluorescence microscopy:

Semiconductor detectors

They are based on an internal photoelectric effect and are most often encountered
as 2D or 1D array detectors. Typical examples are CCD (Charge Coupled Device,
[29]) cameras for widefield microscopy.

Figure 2.9(a) presents the structure of a CCD sensor. Its elementary building
block (pixel) is a MOS (Metal-Oxide-Semiconductor) photocapacitor, whose role
is to convert photons into electric charge. While the internal conversion process
can achieve rates close to 100 %, the transmission coefficients of the electrodes and
the insulating layer limit the overall quantum efficiency of the detection to 40 % at
most. To improve upon this value, the photocapacitor can be illuminated from the
silicon substrate side, or back-illuminated. However, this requires a complex (and
expensive) etching process to reduce the substrate thickness.

The accumulated charge is essentially a linear function of the number of in-
coming photons, until a saturation level is reached. Above that level, additional
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Figure 2.9: Examples of detectors for fluorescence imaging. (a) MOS
photocapacitor in a full-frame-transfer CCD array. Two layers of a semi-
conductor silicon crystal with (P-type or N-type) impurities are separated
by insulating silicon dioxide (SiO2). When a photon penetrates into the
substrate, it can excite electrons that are part of the crystalline structure.
By applying suitable voltages at the electrodes (or gates) P1, P2 and P3,
these are “trapped” under the SiO2 layer. (b) Transmission-mode PMT,
composed of a vacuum tube and several electrodes that are applied a volt-
age gradient. The first one is protected from outside oxidation by a window
that is transparent to light.

charges may diffuse to neighbouring pixels, an effect known as blooming. The max-
imum number of electrons, divided by the average number of electrons generated
by noise (see below), gives the peak SNR. High sensitivity cameras can reach ratios
of 30000:1 or better.

In CCD detectors, the charges are read-out using an analog shift-register9. In
the full-frame transfer scheme illustrated in Fig. 2.9(a), the charges of each pixel
row are sequentially moved towards the shift register by adjusting the gate voltages
P1, P2 and P3 in a periodic pattern. At the register, each row is again sequen-
tially “emptied” and the charges are converted to voltages which are amplified and
digitized.

9As opposed to digital shift-registers used in CMOS detectors, which allow each pixel to be
accessed individually, at the expense of a reduced photosensitive area.
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Photomultiplier tubes

PMTs ([164, 243]) are based on the photoelectric effect. They have no intrinsic
spatial resolving power and are thus mostly used in combination with a scanning
system and a detection aperture, typically in confocal microscopes. Figure 2.9(b)
shows the schematic diagram of a PMT.

When photons with sufficient energy hit the photocathode, they may excite elec-
trons and induce their release inside the tube. These are directed towards the first
dynode by means of a focusing electrode. There, some are reflected, while others
are absorbed and can excite secondary electrons. The number of reflected and sec-
ondary electrons divided by the incoming electrons defines a single dynode gain g.
In total, a series of n dynode stages (typically a dozen or more) is traversed before
the anode finally collects the electrons that have been produced. This principle can
lead to very high gains, gn being of the order of 106 to 108.

The photocathode is a key element as it determines the quantum efficiency of
the system for the most part. Typically, less than 30 % of the incoming photons
are effectively “converted” into electrons, depending on the wavelength.

2.4 Limiting factors of fluorescence imaging

Two sources act as the principal limiting factors in fluorescence imaging: 1) the
instrumentation, which, apart from its inherent resolution limitation, introduces
measurement noise, and 2) the sample itself, whose optical properties and emission
characteristics are often non-ideal.

2.4.1 Noise sources

Photon shot noise

The fundamental limitation of any photodetector resides in the random nature of
photon emission. The arrival of photons at the detector is well described by a Pois-
son process whose (statistical) intensity is proportional to the (physical) intensity
of the fluorescence signal.

Background noise

The ambient radiation, especially in the infra-red domain, can also be a significant
source of noise; it often requires the use of additional filters at the detection stage.
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Dark current

Among the numerous internal noise sources of the detector, thermal agitation is the
most important. The higher the temperature, the higher the kinetic energy of the
electrons. For semiconductor detectors, this results in so-called dark currents (that
exist even in the absence of light), which tend to charge the photocapacitors when
the integration time and/or the temperature are too high. For point detectors such
as PMTs, thermal energy can trigger spontaneous electron emissions. Consequently,
high-sensitivity detectors are very often cooled down to reduce thermal noise.

Auxiliary noise sources

For semiconductor devices, additional noise is generated at read-out time. In partic-
ular, the charge transfer in CMOS sensors is less efficient than in CCD chips. Both
technologies are subject to amplifier noise. For PMTs, there can be fluctuations in
the internal gain of the unit, which also result in noise. Finally, any detector with
digital output produces quantization noise (i.e., roundoff errors).

2.4.2 Sample-dependent limitations

Photobleaching

An important property of fluorophores is that they become more chemically reac-
tive as they are being excited. Depending on the environment, they can undergo
reactions that lead to permanent changes, by which the molecule loses its capabil-
ity to fluoresce altogether, or becomes non-absorbent for the specified excitation
wavelength. This effect, called photobleaching, limits the total intensity of light,
and accordingly, the exposure time, until loss of fluorescence occurs. As a result,
the observation time of a fluorescence-tagged specimen is limited. Photobleaching
is a cumulative effect; this means that reducing the exposure time or excitation
intensity will not prevent it, but merely reduce the rate at which it occurs.

Autofluorescence

Many organic molecules are naturally fluorescent, and thus even unstained biolog-
ical samples can emit fluorescence in the visible domain. This autofluorescence
is an important source of noise when it overlaps with the emission of a selected
fluorophore, especially when the latter is sparsely expressed or exhibits weak fluo-
rescence. This interference can render the detection of a signal very difficult.
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Absorption and scattering of the medium

In a biological specimen, the intensity of the fluorescence signal decreases as the
fluorophore’s depth within the specimen increases. This attenuation is due to the
absorption and scattering10 of light; it strongly limits both the depth at which
a fluorophore can be excited and the depth at which a fluorescence signal can be
detected11. These effects are not always negligible. Therefore, to obtain truly quan-
titative measurements, it may be necessary to develop reconstruction algorithms
that take into account the space-varying and complex nature of the refractive in-
dex.

2.5 Advanced experimental techniques

Besides standard imaging that involves the quantitative analysis of local fluorophore
concentrations, there exist more sophisticated experimental techniques for study-
ing protein-protein interactions and for investigating biological processes at the
molecular scale. Among the techniques presented below, FLIM and FRET can be
performed on both widefield and confocal microscopes. The photobleaching tech-
niques, however, are usually performed with lasers and often require the ability to
precisely define the region to be bleached; they are therefore mostly implemented
on confocal microscopes.

2.5.1 FRET

Protein-protein interactions take place at scales that are too small to be resolved by
optical microscopy; however, they can be detected by exploiting a mechanism called
fluorescence resonance energy transfer (FRET). This process is a direct transfer of
energy (i.e., it does not involve the emission or absorption of a photon) between a
suitable donor and an acceptor, as illustrated in Fig. 2.10. FRET is only possible
between two fluorophores if the emission spectrum of the donor overlaps with the
excitation spectrum of the acceptor. An example of a suitable pair of fluorescent
proteins is the aforementioned CFP/YFP couple.

The efficiency of FRET strongly depends on the distance that separates the
two molecules (the rate is inversely proportional to the 6th power of the distance)
and on the relative orientation of their dipole moments. This means that FRET

10Scattering is the phenomenon by which particles with a refractive index different from the
medium’s index partially diffuse electromagnetic radiation in all directions. It commonly occurs
when the particle sizes are comparable to the wavelength.

11Typically in the 100 µm range for one-photon confocal microscopy.
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can be used to study the optical subresolution colocalization of a labeled protein
pair of interest. FRET can also serve as an indicator of conformational changes in
a protein: if complementary markers are placed at the extremities of the protein,
then an energy transfer can occur when the protein folds [133]. Fig. 2.11 illustrates
a FRET experiment.

2.5.2 FRAP

Although photobleaching has already been mentioned as a limitation, it can be
exploited to study the intracellular dynamics of proteins. FRAP (fluorescence re-
covery after photobleaching) consists in intentionally bleaching a small region of
a cell using high-intensity light, thereby rendering it non-fluorescent. The region
then regains its fluorescence as fluorophores from the surroundings enter and pass
through it, which yields information about the diffusion and mobility of the labeled
protein [197].

Donor Acceptor

1

Figure 2.10: The principle of FRET between a suitable donor-acceptor
pair: the energy of the excited donor molecule is transferred (without emis-
sion of a photon) to the acceptor after vibrational relaxation (1). For FRET
to occur, the distance between the two molecules must typically be in the
range of 1-10 nm [258].
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(a) (b) (c)

Figure 2.11: Images from a FRET experiment, showing the (normalized)
donor (a) and acceptor (b) channels. From these images, a computer-
generated FRET-efficiency image is obtained (c). In this case, the scientists
were interested in the average FRET efficiency inside a region of interest
corresponding to the cell nucleus. Courtesy of M. C. Rio, A. Baguet, and
P. Kessler, IGBMC, Illkirch, France.

2.5.3 FLIM

All of the techniques discussed up to this point rely on intensity-based measure-
ments. In the presence of autofluorescence, or when multiple fluorophores with
similar emission spectra are used, it can be difficult to discriminate among the
different signals. Intensity-based imaging is also highly dependent on fluorophore
concentration.

In fluorescence lifetime imaging microscopy (FLIM), image contrast is gener-
ated based on the lifetime of fluorophores, which is the average time a fluorophore
remains in the excited electronic state. The key point is that every fluorophore has
a unique lifetime. A common method for measuring fluorescence lifetimes consists
in exciting fluorophores with a picosecond pulsed laser source and recording the
arrival times of the emitted photons with a high speed photodetector.

The lifetime of a fluorophore is sensitive to many environmental factors such
as oxygen concentration, pH, and calcium ion concentration. Thus, FLIM can be
used to obtain information about the local environment of a particular fluorophore.
FLIM can also serve as an experimental indication that FRET occurs, because
FRET induces a change in fluorescence lifetime (see Fig. 2.12).
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Fluorescence lifetime

1500 ps 2500 ps

NO FRETFRET

Figure 2.12: FLIM experiment for confirming the occurence of FRET.
The images show the fluorescence lifetime of the donor over two regions
of interest corresponding to different cell nuclei. In the presence of FRET
(left-hand side), the fluorescence lifetime is significantly reduced, due to the
energy transfer to the acceptor. Courtesy of C. Rochette-Egly, S. Lalevée
and P. Kessler, IGBMC, Illkirch, France.
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Figure 2.13: 3D projections of a nematode worm embryo (C. elegans)
[147]. Courtesy of L. McMahon, J.-L. Vonesch and M. Labouesse, IGBMC,
Illkirch, France.

2.6 Signal and image processing challenges

2.6.1 Data size and dimensionality

Modern research in biology requires quantitative experimental data. As a con-
sequence, microscopes have developed into sophisticated digital image acquisition
workstations that are capable of acquiring very large data sets of high dimension-
ality.

To get a better feeling of what is involved, consider an experiment monitored
with a confocal microscope that requires the periodic (time-lapse) 3-D acquisition
of a sample labeled with two fluorophores. This yields a 5D data set indexed by
the space coordinates x, y and z, the time t, and the wavelength parameter λ.
Assuming that each image has a resolution of 1024 × 1024 and that 32 slices are
acquired per volume every 20 minutes over 24 hours with a 12-bit quantizer, the
whole experiment results in nearly 7 gigabytes of data. If a comparative analysis is
performed, this figure must be multiplied by the total number of samples.

Studies involving comparable or even larger amounts of data are becoming com-
monplace. Even with today’s performance level of computer hardware, the storage,
extraction, manipulation and representation of such data sets remain complex. One
major challenge lies in the design of database systems and compression formats al-
lowing for efficient retrieval and visualization (projections, 3D rendering – see the
example in Fig. 2.13).

But most importantly, signal processing is becoming an indispensable expertise
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for the analysis and understanding of quantitative biological experiments; in fact,
it is increasingly considered part of the experimental protocol itself, as a way to
infer the validity of a biological model.

Without claiming exhaustiveness, we give examples of current image processing
problems in biology among five main categories: image preparation, image restora-
tion, image registration, image segmentation, and quantitative image analysis.

2.6.2 Image preparation

Image calibration

Calibration is an important step both for image analysis and visualization. It can
involve various preprocessing tasks such as histogram equalization, inhomogeneous
illumination compensation, background correction, or image rescaling. While these
tasks may appear relatively simple, some of them can rely on advanced signal
processing.

Image simplification

In some cases, biological structures are too complex to be processed directly and an
image simplification step is required. To preserve the objects of interest, the oper-
ator can choose among the wide range of available tools (morphological operations,
filtering, multiresolution structures, diffusion equations, . . .); application-specific
solutions can also be envisaged.

Feature detection

Biological images often present characteristic elements such as particles and fila-
ments. The detection of these features may require the development of optimized
filters [112, 187], as well as multiresolution methods [168]. Here, a challenging
aspect is the shape variability observed in live-cell imaging.

Experimentalists should at least be aware of the aforementioned preparation
operations; otherwise, they run the risk of a significant loss of information, thereby
leading to questionable results at publication time. Algorithm designers, on the
other hand, should put more efforts into education and the development of user-
friendly imaging software.

2.6.3 Restoration

Restoration encompasses the classical problems of denoising and deconvolution.
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Denoising

Simple methods such as median filtering often need adaptation; for example, a 3-D
stack may exhibit lower SNR levels as deeper portions of the object are imaged, due
to absorption and/or autofluorescence. More generally, restoration methods should
be based on physically realistic noise models (e.g., Poisson statistics) and take into
account various noise sources (see Section 2.4). Advanced algorithms, relying on
wavelet-domain thresholding strategies [27], PDE and variational formulations, or
statistical frameworks, are just starting to be used in the field of bioimaging, and
deserve more exploration.

Deconvolution

This operation requires an adequate characterization of the underlying imaging
system, which can be either theoretical (involving a PSF model) or, frequently,
experimental. In the latter case, the PSF is obtained by imaging subresolution
fluorescent beads, under conditions as close as possible to the actual biological
preparation. By averaging, possibly with simplifying assumptions (e.g., symme-
try), a relatively noise-free PSF can be obtained. For further details concerning
algorithmic deconvolution methods, we refer to [200, 242].

One of the main challenges is the design of computationally tractable methods
that take into account the nonstationarity of the PSF, especially in the axial direc-
tion (see section 2.2.3). A recent attempt is the EM-algorithm proposed by Preza
and Conchello [178]. In their image-formation model, the object is divided into
several layers that are associated with a series of (depth-dependent) PSFs. The
image of each layer is then obtained from classical (stationary) convolutions.

Other inverse problems

Restoration can also be considered in the wider framework of inverse problems.
One example concerns relatively thick objects with surface labeling, observed

under a widefield microscope. Because of the 3-D conical extension of its PSF (Fig.
2.7, top row on the left), such a system has a limited depth of field; that is, only
a small slice of the object around the focal plane appears sharp. To compensate
for this, images at different focal depths can be taken and fused together so as
to obtain a single, entirely sharp image12. A state-of-the-art (so-called extended-
depth-of-field) algorithm is decribed in [82]. Such a method can also be used to
extract 3-D maps of the object’s surface.

12This process should not be confused with deconvolution, which in particular yields a 3D stack
instead of a single image.
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Another problem of interest is related to the detection and localization of sub-
resolution particles [215]. New methods have been developed that take into account
the 3-D nonstationarity of the PSF to achieve precision in the nanometer range [2].

2.6.4 Registration

Registration is a frequently-needed post-acquisition step. Here, researchers can
take advantage of the availability of high-quality registration algorithms that were
initially developed for medical imaging [34].

Mosaicing

Because of the limited field of view of high-magnification objectives, it can be
necessary to acquire multiple images of a sample; for example, in a mosaic scheme.
Despite the high accuracy that sample stages can achieve, perfect alignment is never
possible. Rigid-body registration algorithms can correct this, provided the acquired
images or volumes slightly overlap [214]. Within a given stack, it might also be
necessary to compensate for pixel shifts between successive images. In addition,
refraction indices – and thus focusing depths – are wavelength-dependent, which
can necessitate the realignment of the different fluorescence channels.

Imaging live samples

During time-lapse acquisitions, spatial drifts can occur due to thermal processes;
the sample itself might also be subject to motion. Therefore, even if the parts of
interest lie in a relatively thin slice, they may not be observable in a unique focal
plane over the whole experiment. This implies that either a stack of neighboring
planes must be acquired and the planes of interest must be extracted (or fused); or
a real-time focusing algorithm must be used to control the stage.

More sophisticated elastic registration may be required for compensating the
deformation of living tissues, or for matching specimens of comparable shape [203].

If a periodic biological process is too fast to be imaged with sufficient time-
resolution (such as the repetitive 3-D flow of blood cells in a heart), a registration
approach may also be applied: in [129], images over several periods are recorded
and reassembled so as to obtain a single period at a high frame-rate.

2.6.5 Segmentation

Segmentation is a mandatory step for image analysis. User interaction for the man-
ual delineation of regions of interest is time-consuming and lacks reproducibility.
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The need for automated segmentation methods is therefore important, e.g., for local
intensity measures, object and event counting, as well as tracking.

While simple approaches such as prefiltering and thresholding are available in
commercial software packages, advanced techniques – for instance active contours
[261] – have not yet been much exploited in the context of biological image analysis.

The most accurate segmentation methods are often application-dependent and
typically require specific developments. For example, the tracing of neuronal den-
drites can be improved using graph-optimization techniques [149].

In the context of live microscopy, it also makes good sense to adapt the seg-
mentation methods so that they exploit temporal coherence, e.g., for the labeling
of cells.

2.6.6 Quantitative analysis

Data preprocessing

In multispectral imaging, each pixel consists of (possibly a large number of) in-
tensity measures at different wavelengths (obtained using different filter sets, an
interferometer, or a diffractive system). If several fluorophores are used, their spec-
tra are likely to overlap, and channel-crosstalk must be expected. This gives rise
to unmixing problems [263] that can be solved by taking separate reference im-
ages of each fluorophore (to measure its contribution to each channel) and using,
for example, a singular-value decomposition [222]. Blind separation methods may
also be applicable. As a general observation, the correct normalization of spectral
data is critical for the interpretation of fluorescence images. Quantitative assess-
ments using FRET or ratio imaging (comparing the relative intensities of different
wavelengths) require careful preprocessing based on physical parameters such as
spectrum overlap or fluorophore concentration.

Model fitting

Other advanced fluorescence techniques are based on the fitting of parametric mod-
els: in FLIM, the fluorescence lifetimes are obtained by fitting (possibly multiple)
exponential trends to the photon arrival densities; in FRAP, the diffusion coeffi-
cients characterize fluorescence recovery curves [36]. Generally speaking, quantita-
tive research often relies on the mapping of physical or biochemical models in the
image and/or time domains, especially for dynamic processes.



2.7 Current and future trends 39

Motion assessment and tracking

The diffusion of fluorescent proteins can be characterized by estimating motion
fields. In many instances, it is interesting to track individual objects, which can
also be a challenging task. We refer the reader to other sources that cover the broad
field of movement analysis [150, 262].

Pattern recognition and classification; screening

Screening experiments consist in a systematic, automated study of a large number of
samples (up to several hundreds of thousands), e.g., for the study of gene function
or for drug discovery. This can involve terabytes of data and several weeks of
computerized analysis. Pattern recognition and classification algorithms play a
major role in this analysis. In particular, one must identify how the biological
characteristics of interest translate into measurable image features. Computational
complexity is a strong limiting factor, while the reliability of the methods must be
thoroughly validated [260].

2.7 Current and future trends

In addition to the signal processing tools that have been discussed in the previous
section, both the probes [258] and the instrumentation are being refined constantly.
We therefore close our discussion with a description of current trends and future
directions in the field.

2.7.1 Fluorescent labels

Quantum dots

Among the most recent developments are quantum dots [153], labels composed of a
core nanometer-sized semiconductor crystal and an external protective shell. Their
main advantages with respect to earlier fluorophores are their broader absorption
and narrower emission spectra, resulting in brighter fluorescence. Also, they are
more stable chemically and thus less subject to bleaching. These inorganic struc-
tures can be used for in vivo imaging, although they cannot be expressed by cells
[69].
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Labeling of recombinant proteins

The principle of this technique is to create fusion proteins that are not fluorescent
by themselves, but which express a receptor to which a specific label can be added
at a later time [93]. The label can be chosen from a wide range of fluorophores,
with properties that GFP-type proteins may not be able to provide (such as higher
resistance to photobleaching and stronger fluorescence). The receptor continues to
be expressed in newly synthesized proteins, but only the stained proteins exhibit
fluorescence, which allows for the selective labeling of a protein population at a
given point in time.

Enhanced fluorescent proteins

New fluorescent proteins are being developed that provide increased quantum ef-
ficiency (e.g., enhanced GFP, or eGFP, with a 35-fold increase in brightness with
respect to the original GFP) or whose emission spectra are closer to infra-red wave-
lengths (700 nm and above). These wavelengths are generally less absorbed by
biological samples, hence allowing deeper observation. They are also less masked
by cell autofluorescence occuring in the visible spectrum.

Photocontrolable proteins

Recent research has also been devoted to the design of photoactivatable [173] and
photoswitchable [143, 6] proteins. The former exhibit little fluorescence in their
initial, quiescent state. When exposed to a strong irradiation at a specific wave-
length (usually lower than the fluorescence excitation wavelength), a 100-fold or
higher increase in fluorescence brightness can be observed. For switchable proteins,
strong irradiation changes both the excitation and emission spectrum. For exam-
ple PS-CFP [46] is sensitive to irradiation at 405 nm, which produces a 1500-fold
increase in its green-to-cyan ratio. Both types of labels can be used to activate
and observe proteins in a specific region of a cell, without the interference of newly
synthesized proteins or proteins outside of the selected region. This property is
useful for protein lifetime and tracking as well as cell lineage studies.

2.7.2 Advanced microscopy systems

We conclude this section with some of the more advanced developments in the field
of optics.
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Faster scanning – slit detectors and Nipkow-disks

To cope with the high speed of some biological processes, the traditional confocal
scanning microscope equipped with a point detector is often not sufficient. To
accelerate the scanning process, a whole line can be imaged simultaneously by
replacing the pinholes and the PMT by slit apertures and a linear camera. More
generally, using e.g., a Nipkow-disk system [175], a 2-D illumination pattern can
be shifted accross the sample, allowing time lapse imaging at up to 120 frames
per second. This comes with a significant tradeoff in terms of resolution, due to
crosstalk between the different detection apertures.

Deeper imaging – multiphoton microscopy

In a multiphoton microscope [60], optical sectioning is achieved by properties of
the illumination; as a consequence, there is no need for a detection pinhole in such
a system. Very short laser pulses (in the pico- to femtosecond range) are sent to
the sample in brief intervals (of the order of nanoseconds). The probability that
two photons encounter the same molecule, hence bringing it to its excited state and
making it fluoresce, is significant only in the very central region of the illumination
spot. A key advantage is that the corresponding infrared wavelengths are less
absorbed by biological tissues so that samples can be imaged much deeper than
with traditional confocal systems (at a comparable resolution). Photobleaching and
toxicity are also reduced because the excitation intensity is effectively concentrated
at the focal spot.

Increased axial resolution – multiple objective imaging

Since the numerical aperture has such a fundamental influence on resolution, Hell
et al. proposed to insert the sample between two objectives, so as to send and
collect light from both sides; accordingly, they called the method 4π microscopy
[103]. Using computational methods, an improvement in axial resolution by a factor
of six can be achieved. Such systems are commercially available, but they suffer
from limitations on the sample thickness and sensitivity to differences in the length
of the two optical paths. More recently, these ideas have been applied to widefield
microscopy (I5M, [96]).

Increased resolution – STED microscopy

One of the most advanced microscopy techniques to emerge from the quest for
increased resolution is called STED, which stands for stimulated emission depletion
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[104] (see also Section 2.1.1). The principle is to prevent fluorescent molecules
outside the very central region of the illumination spot from emitting light by
forcing them back to their fundamental state. This is achieved by dividing the
excitation into two brief successive laser pulses, where the second pulse is red-
shifted and doughnut-shaped, having zero intensity at its center. Superimposed
on the focal spot of the initial pulse, it induces stimulated emission, dramatically
reducing the excitation volume, hence augmenting the resolution.

2.7.3 Super-resolution – photoactivated localization-based tech-
niques

Photoactivated localization microscopy (PALM [20]) and stochastic optical recon-
struction microscopy (STORM [15]) are novel techniques based on imaging sparse
subsets of photoactivable, respectively photoswitchable, fluorescent proteins (see
Section 2.7.1). A sparse subset of activated molecules is obtained by illuminating
the sample with a short laser pulse. The sample is then imaged until the molecules
are either bleached or switched off, after which the process is repeated until the
pool of activable proteins in the sample is depleted, or until a sufficient amount
of switchable proteins has been imaged. In a post-processing step, the individual
molecules from each subset image are localized to nanometer-scale accuracy. The
resulting estimated positions and corresponding intensities are then used to render
a composite super-resolved image. Limited only by the number of photons collected
from each fluorophore, resolutions of 10-20 nm have been reached in practice, which
rivals the performance of electron microscopes.

Other developments

Another promising technique to improve the resolution of widefield systems is struc-
tured illumination. Illuminating the object with sinusoidal patterns, combined with
adequate processing, can result in a two-fold or higher [101] improvement of the
microscope’s spatial bandwidth. It also yields optical sectioning properties and the
processing can be done on specific hardware for real-time observation [155].

Another approach proposed by Stelzer et al. (SPIM, [110]) consists in projecting
the light onto the object perpendicularly to the optical axis, in a diffraction-limited
plane; then only fluorescence from molecules within this excitation plane is collected
using a traditional CCD sensor. This system provides true optical sectioning for
widefield systems.
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2.8 Conclusion

Although this panorama is necessarily incomplete, we hope to have convinced the
reader of the invaluable role of fluorescence microscopy in modern biology. It owes
its current popularity to the GFP-like fluorescent proteins that are the key ingredi-
ent for in vivo studies of molecular processes in cells. These are currently opening
up a plethora of experimental possibilities that only begin to be explored.

This colored revolution could clearly not have happened without numerous tech-
nological advances. In particular, progress in optics and instrumentation has been
considerable in recent years; there is now a consistent trend towards non-linear tech-
niques, such as multiphoton and saturated illumination imaging, which, with the
help of computational methods, are contributing to overcoming Abbe’s resolution
barrier.

Signal processing is also at the heart of these developments and is expected to
play an ever-increasing role in the field. It is already an integral part of optics and
is becoming an essential tool for biologists, who rely more and more on imaging
software to quantitate their data.

Therefore, a crucial aspect of the research lies in the successful collaboration
between signal processing engineers and biologists. In modern research institutes,
imaging core facilities are expected to play an important mediating role in this
interaction. Our advice to colleagues that want to be part of this effort is that they
try to understand the physics and, to some extent, the biology in order to design
better and more useful algorithms. We believe that it is truly worth the effort.
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Chapter 3

Deconvolution in
fluorescence microscopy

The goal of this chapter is to give some background information on the problem
of deconvolution in the context of fluorescence microscopy. Most of the material
will be part of a forthcoming article [193] on the “DeconvolutionLab” plugin for
ImageJ. This plugin implements some of the most common methods for deconvolu-
tion microscopy. It was the subject of a Master’s project [192] that was supervised
during this thesis1.

As is usual for inverse problems, we adopt a variational formulation; this allows
for a unified presentation of most existing approaches. Our purpose is to provide
a self-contained description that can serve as a technical reference, in particular
for end-users of the plugin. Alternative presentations of this topic can be found in
review papers [233, 158, 207, 179, 188] or popular textbooks [17, 235].

3.1 Status quo of the field

The combination of three-dimensional (3D) deconvolution with optical-sectioning
fluorescence microscopy was demonstrated more than twenty-five years ago2 in the

1Note that a companion plugin for fitting and generating 3D PSF models was also developed
around the same time in relation with another Master’s project [83].

2Let us also mention the earlier work of Weinstein and Castleman [247], who introduced the so-
called nearest-neighbor deconvolution method. However, according to our classification in Table
1.1, this approach rather belongs to the category of image enhancement.
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visionary work of Agard and Sedat [1]. Following the discovery of novel fluorescent
marker proteins and the rapid development of digital microscopy during the 1990’s
[3], this technique became widely popular in biological imaging. It is now commonly
termed deconvolution microscopy [148]. We refer to [200, 188] for recent reviews of
the subject, as well as [242] for a discussion of practical aspects.

Since the work of Agard and Sedat, several comparative studies of deconvolution
algorithms have been performed in the context of fluorescence microscopy. Initially,
Conchello and Hansen [52] used synthetic data to compare a constrained Van-
Cittert algorithm with maximum-likelihood deconvolution. Van Kempen et al. [227,
230] consider the Richardson-Lucy algorithm, the iterative constrained Tikhonov-
Miller (ICTM) algorithm and Carrington’s algorithm [37]. Several deconvolution
methods are compared within a Bayesian framework in [233, 146]. More theoretical
studies related to the recovery of out-of-band information by maximum (penalized)
likelihood algorithms are also available [50, 100].

Alternative approaches where the denoising and deblurring steps are decoupled
have also been proposed. For example, [107] uses the Anscombe transform and
Wiener filtering for the denoising part; the deblurring part is based on the method
of projections onto convex sets (POCS). [27] uses wavelet-domain denoising before
a maximum-a-posteriori (MAP) deconvolution algorithm.

More recently, the Richardson-Lucy algorithm was combined with wavelet-
domain denoising [185] (note however that this work is not based on a variational
formulation comparable to ours) and total-variation regularization [63].

A number of studies on deconvolution are specifically concerned with confocal
microscopy, e.g., [53, 225, 228, 229]. Applications to two-photon, 4-Pi, 3D FLIM
and STED microscopy are described in [117], [194], [204] and [250] respectively.
Another variation on the topic is deconvolution for extended-depth-of-focus imaging
[51].

The previous works can be distinguished from more generic approaches such as
blind deconvolution [11, 144, 28, 185, 216] or shift-variant deconvolution [145, 178,
198].

The current state-of-the-art in practical deconvolution microscopy can be sum-
marized as follows:

• Most works are based on a Bayesian formulation of the deconvolution prob-
lem. This typically leads to (non-linear) iterative algorithms with a good level
of flexibility (additional constraints such as positivity can be easily incorpo-
rated). However, the acceleration of such methods was rapidly recognized as
an important issue [106]. This has for example motivated the use of conjugate-
gradient algorithms [234, 191].
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Figure 3.1: Image-formation and measurement model.

• Irrespective of the deconvolution method and its underlying paradigm, the
mean squared error (MSE) is the most widespread measure of restoration
quality [227, 230, 233, 228, 100], together with the I-divergence [227, 230, 63].

• Both Poissonian and Gaussian noise models have been considered (see e.g.
[233, 191]). While the former model is better matched for low light intensities,
the latter model is more generic. A Gaussian approximation (with spatially-
varying variance) of the Poisson statistics was proposed in [146]. To our
knowledge a mixture of both models has not been used for the restoration of
fluorescence micrographs so far.

• Generalized Cross Validation (GCV) is the prefered method for parameter
estimation (see e.g. [204, 229, 191]).

3.2 General image-acquisition model

In fluorescence microscopy one aims at measuring χ(r), the spatial distribution of
fluorophores inside a prepared sample. Following upon our discussion in Chapter 2,
we will now describe the image-acquisition chain—which is depicted in Fig. 3.1—in
some more details.

When operating the microscope under design conditions, image formation is
essentially shift-invariant (if one sets magnification aside). It can be modeled by
a D-dimensional convolution3 with an optical point spread function that models
the illumination, the diffraction-limited objective and possibly the pixel geometry
of the sensor [94, 102].

The measurement of the image intensity is affected by several noise sources
(see Chapter 2). Here we propose a relatively flexible statistical model that can

3D = 2 or D = 3 depending on the thickness of the object.
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account for a broad range of imaging situations (from photon-limited to sensor-
limited imaging).

The first component of the model is signal-dependent and models the fluctuation
of the number of photons arriving at a given pixel. This so-called shot noise follows
a Poisson distribution whose mean depends on the incoming light intensity. We
also introduce a parameter γ that represents the gain of the measurement device.
The second component accounts for various other distortions such as a background
signal, read-out noise or quantization noise. It is modeled as a vector of independent
Gaussian random variables of mean µ and covariance matrix σ2I, where I denotes
the identity matrix.

In the sequel, we use a discretized description of the problem to simplify the
presentation. We assume that the characteristic function of the object can be
represented with sufficient accuracy in a shift-invariant space4 spanned by a function
ϕ(r):

χ(r) =
∑
k∈S

x[k]ϕ(r− k).

We further assume periodic boundary conditions, in the sense that ϕ has integer
periodicity along all dimensions. Then the signal of interest is defined by a finite
number of coefficients x[k] indexed by the set S = J0, N1 − 1K× . . .× J0, ND − 1K.

To summarize our model, the measurement is related to the original signal
through

y ∼ γP(Hx) +N (µ, σ2I). (3.1)

Here y and x are vectors in RN , where N = N1 × . . . × ND; they contain the
lexicographically ordered samples of the measurement and of the original signal,
respectively. H is a block-circulant matrix corresponding to the discrete convolution
kernel

(
ϕ ∗ h

)
(n).

Note that simplifications of (3.1) may be possible or required depending on the
application. For example, a purely Poissonian model y ∼ γP(Hx) is obtained when
µ = 0 and σ2 = 0. Setting x = x̃/γ and µ = 0, one obtains the simple Gaussian
model y ∼ N (Hx̃, σ2I) as a limit case when γ → 0.

Our goal is now to estimate x from a realization of y.

4For example, a space of bandlimited functions. We consider unit shifts and a unit sampling
period along all dimensions for simplicity.
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3.3 Variational deconvolution

3.3.1 General formulation

Most deconvolution approaches can be formulated as an optimization problem.
One seeks to construct an estimate x∗ of the original signal that minimizes a cost
functional C(x) over a preassigned set of admissible solutions Q, i.e.,

∀ x ∈ Q, C(x∗) ≤ C(x). (3.2)

In the present discussion, both the constraint set Q and the cost functional C(x)
are assumed to be convex; the latter typically takes the form

C(x) = D(x) + λR(x). (3.3)

This formulation is often obtained in a Bayesian framework (see below). A more
generic interpretation can be stated as follows.

• The data term D(x) enforces a certain level of consistency between the esti-
mate and the measurement.

• The regularization term R(x) is constructed using prior knowledge on the
original signal and typically favors estimates with particular smoothness prop-
erties.

• The regularization parameter λ determines the relative influence of both
terms.

3.3.2 Connection with the Bayesian formalism

The cost functional defined above can be motivated from a statistical standpoint.
Here we briefly establish the connection between the above variational framework
and the Bayesian methodology. A relatively accessible presentation of Bayesian
deconvolution can be found in the review papers [158, 207], which primarily deal
with applications in astronomy.

The basic assumption is that the signal to be estimated is a random variable
with known probability density function p(x); this function is termed the prior. The
Bayesian paradigm consists in estimating x by maximizing the posterior probability
p(x|y), that is, the probability of x given that we have observed y. The standard
manipulation consists in applying Bayes’ rule twice so as to obtain

p(x|y) =
p(x,y)
p(y)

=
p(y|x) p(x)

p(y)
.
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Data term D(x) Noise model
‖y −Hx‖22 Gaussian: y ∼ N (Hx, σ2I)
〈1,Hx〉 − 〈y, log(Hx)〉 Poisson: y ∼ P(Hx)

Table 3.1: Standard choices for the data term and corresponding noise
models (see text for notations).

The function p(y|x) is known as the likelihood and is determined by the choice of
a noise model (see Table 3.1).

Thus, maximizing p(x|y) with respect to x is equivalent to maximizing p(y|x) p(x).
This in turn is equivalent to minimizing

− log (p(y|x) p(x)) = − log (p(y|x))− log (p(x)) .

If we compare the right-hand side with (3.3), the log-likelihood log (p(y|x)) acts as
the data term, while the log-prior log (p(x)) acts as the the regularization term (up
to the negative signs).

Examples of commonly-used prior functions are given in Table 3.2. From a
statistical perspective, there are three main estimation approaches:

• Maximum likelihood (ML): p(x) is assumed to be the uniform distribution
over a (bounded) constraint set Q; thus the solution only depends on the
likelihood function (no regularization).

• Maximum a posteriori (MAP): p(x) is a non-uniform (e.g., Gaussian) probability-
density function.

• Penalized likelihood : − log (p(x)) is replaced by an appropriate semi-norm
that penalizes non-smooth (or non-regular) solutions.

3.4 Mathematical results for nonsmooth convex
optimization

In order to set the framework of the next section, we introduce some tools from
convex analysis. We refer to [231, 18, 4] for a detailed coverage and proofs.
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Regularization term R(x) Notations Statistical interpretation
Constant Maximum likelihood
Tikhonov: ‖Lx‖22 L: “roughness-

measuring” operator
(typically high-pass fil-
ter); ‖ · ‖2: Euclidian
norm

Maximum a posteriori
with a Gaussian sig-
nal prior (LTL: signal
autocorrelation matrix)

Wavelet-domain `1 regu-
larization: ‖W̃Tx‖1

W̃T : wavelet-
decomposition operator
‖ · ‖1: `1 norm

Maximum a posteriori
with a wavelet-domain
Laplacian prior

Total variation regulariza-
tion: ‖x‖TV

‖ · ‖TV: total variation
semi-norm

Penalized likelihood

Table 3.2: Examples of regularization terms and corresponding statistical
approach.

In general, convexity assumptions ensure the existence of minimizers and allow
for their concise characterization. In addition there are standard numerical proce-
dures and convergence results for convex optimization (see e.g. the aforementioned
references and the discussion in Chapter 4).

3.4.1 Existence and unicity of a minimizer

We first state some general conditions under which the problem of minimizing C is
“well-posed”.

Property 1. Let Q be a non-empty closed subset of RN . Assume that C : RN → R
is a convex function such that C(x) → +∞ whenever ‖x‖ → +∞. Then C admits
a minimizer over Q, i.e., there exists a vector x∗ ∈ Q such that (3.2) holds. If in
addition C is strictly convex, then this minimizer is unique.

3.4.2 Projection onto a closed convex set

The previous property allows us to define PQ(x), the projection of x onto a closed
convex set Q.

Definition 1. Let Q be a non-empty closed convex subset of RN . For every x ∈ RN ,
the function x′ 7→ ‖x′ − x‖22 admits a unique minimizer in Q, which is denoted
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PQ(x). Equivalently, PQ(x) is characterized by the property

∀ x′ ∈ Q, 〈PQ(x)− x,PQ(x)− x′〉 ≤ 0. (3.4)

Note that when Q is a sub vector space5 of RN , the above characterization
coincides with the algebraic notion of projection: indeed, in this case, (3.4) is
equivalent to the fact that the “projection error” PQ(x)− x is orthogonal to Q.

3.4.3 The notion of subgradient

Geometrically, a subgradient corresponds to a hyperplane that is “subtangent” to
a convex function at a given point.

Definition 2. For a function C : RN → R, a subgradient at x ∈ RN is a vector
g ∈ RN such that

∀ x′ ∈ RN , C(x′) ≥ C(x) + 〈g,x′ − x〉.

The set of all such vectors is denoted ∂C(x) and is called the subdifferential of C at
x.

The subdifferential generalizes the notion of gradient for a differentiable func-
tion, as shown by the following property.

Property 2. Let C : RN → R be a convex function.

• At any given point x ∈ RN , the subdifferential ∂C(x) is non-empty.

• If C is differentiable at x, then the subdifferential of C at x contains exactly
one element, namely the gradient of C at x: ∂C(x) = {∇C(x)}.

3.4.4 A general optimality criterion

From the definition of a subgradient, one can easily show that x∗ is a minimizer of C
over RN if and only if 0 ∈ ∂C(x∗). More generally, the notion of subgradient allows
us to formulate an optimality criterion for constrained optimization problems.

Property 3. Let C : RN → R be a convex function and let Q be a convex subset
of RN . x∗ is a minimizer of C over Q if and only if

∃ g∗ ∈ ∂C(x∗) | ∀ x ∈ Q, 〈g∗,x− x∗〉 ≥ 0. (3.5)

5In particular it is a closed and convex subset of RN .
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In particular, if Q = RN , this condition is equivalent to

0 ∈ ∂C(x∗). (3.6)

Property 3 gives the basis for deriving the algorithms presented in the next
section. In general, either the optimality criterion can be solved directly, or it is
used for designing a fixed-point iteration. In particular, given a a strictly positive
parameter τ , we can rewrite (3.5) as

∃ g∗ ∈ ∂C(x∗) | ∀ x ∈ Q, 〈x∗ − (x∗ − τg∗),x∗ − x〉 ≤ 0,

In view of (3.4), the optimality criterion can thus be interpreted as follows6: x∗

minimizes C(x) over Q if and only if

∃ g∗ ∈ ∂C(x∗) | x∗ = PQ(x∗ − τg∗). (3.7)

3.5 Standard deconvolution methods

3.5.1 Direct methods

When Q = RN and the functional is differentiable over RN , Property 3 reduces to
the following well-known criterion: x minimizes the cost functional over RN if and
only if its gradient vanishes at x, i.e.,

∇C(x) = 0.

For the cases considered below, this equation can be solved directly.

Inverse filtering

The simplest approach to deconvolution is the least squares method. The idea is
that the “reblurred estimate” Hx should be as close as possible to the measurement
(at least in the noiseless case). This can be enforced using a quadratic data term
alone:

C(x) = ‖y −Hx‖22. (3.8)

The gradient is given (up to a multiplicative constant) by

∇C(x) ∝ HTHx−HTy. (3.9)

6Provided that the convex set Q is closed.
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Note that if H has a non-trivial kernel, then C(x) does not have a unique minimizer;
usually one selects the solution of HTHx = HTy with the smallest Euclidian norm.

Since H is block-circulant, it is diagonalized in the Fourier (DFT) domain, which
is accessible via the FFT algorithm. The numerical computation of the solution
can thus be performed directly. Denoting x̂[ν], ŷ[ν] and ĥ[ν] the DFT coefficients
of x, y and H respectively, this inverse filtering amounts to setting

x̂[ν] =

{
ŷ[ν]/ĥ[ν] if ĥ[ν] 6= 0;
0 otherwise.

In practice, for numerical stability, the condition ĥ[ν] 6= 0 is replaced by |ĥ[ν]| > ε
for some positive ε. Unfortunately even this stabilized inverse filtering may consid-
erably amplify measurement noise, resulting in spurious high-frequency oscillations
(for low-pass H).

Regularized inverse filtering

To avoid this effect the estimate should not be allowed to vary too rapidly. This
is usually achieved by penalizing the energy of the “derivative” of the signal; this
approach is related to Tikhonov-Phillips regularization [217, 176] and to the method
of ridge regression in statistics [105]. The cost functional then takes the form

C(x) = ‖y −Hx‖22 + λ‖Lx‖22, (3.10)

where L is a block-circulant matrix corresponding to the discretization of a differ-
ential (e.g. Laplacian) operator. The gradient satisfies

∇C(x) ∝ (HTH + λLTL)x−HTy.

The solution
x = (HTH + λLTL)−1HTy (3.11)

can again be computed in the DFT domain according to

x̂[ν] =
ĥ[ν]∗ŷ[ν]

|ĥ[ν]|2 + λ|ˆ̀[ν]|2
,

where the DFT coefficients of L are denoted ˆ̀[ν]. This equation also describes
Wiener filtering [248]; the regularization filter ˆ̀[ν] then depends on the relative
power spectral densities of the noise and of the input signal.
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3.5.2 Iterative methods

When the optimization problem cannot be solved directly, the general approach is to
construct a sequence of estimates x(k) (starting from an initial guess x(0)) that con-
verges to a minimizer of C(x). The first two methods presented here can be seen as
(projected) gradient-descent methods, which are both simple and memory-efficient;
this is particularly important in the context of multi-dimensional microscopy, where
the data sets can be extremely large.

At every iteration step, the estimate is corrected in the direction of steepest
decrease of C(x), that is, the direction opposite to its gradient. Additionally, one
can enforce constraints at every iteration [71]. The general update equation is

x(k+1) = PQ{x(k) − τ∇C(x(k))}, (3.12)

where τ is a positive step-size parameter and Q is a closed convex set. For example,
one may use the fact that the signal of interest is known to be positive. Q is then
the set of positive vectors (R+)N and PQ is a “clipping” operator that sets all
negative components to zero.

Note that a fixed point of (3.12) is guaranteed to be a minimizer of C(x) over
Q, according to the characterization given in (3.7). The convergence of iterative
algorithms will be discussed in the next chapter.

Projected Landweber algorithm

For the least squares functional (3.8) whose gradient was given in (3.9), the iteration
(3.12) can be written as

x(k+1) = PQ{x(k) + τHT (y −Hx(k))}.

When no constraint is used (that is, when PQ{x} = x), this algorithm is known
as the Landweber iteration [124]. This procedure will eventually exhibit the same
noise amplification problems as with inverse filtering. However, one may obtain
a satisfactory compromise between deconvolution and noise amplification if the
algorithm is stopped on the way. In other words, the number of iterations can act
as a pseudo regularization parameter [235].

Iterative constrained Tikhonov-Miller algorithm

Similarly, for the Tikhonov-regularized functional (3.10) we obtain

x(k+1) = PQ{x(k) + τ [HTy − (HTH + λLTL)x(k)]}.
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When the projection operator is expressed in the space domain and HTH+λLTL is
a convolution matrix, this algorithm (as well as the projected Landweber algorithm
above) can be efficiently implemented using two FFTs per iteration.

Note that in the fluorescence-microscopy community, the minimization of (3.10)
is often performed using a non-linear conjugate-gradient (CG) algorithm. It has
been argued that this procedure exhibits better convergence properties; however, it
is also more memory-intensive than a simple gradient descent. There are essentially
two approaches that differ in how the constraints are incorporated. The one of Van
Kempen et al. (see e.g. [229]) is built upon a linear CG iteration for the optimality
equation corresponding to (3.10); the constraints are applied in a heuristic manner
at every iteration of the algorithm. The approach of Carrington [37] is based on the
Fletcher-Reeves CG method. It uses a more rigorous dual formulation to implement
the constraints, but it is only applicable when L is the identity operator.

Richardson-Lucy algorithm

Maximum-likelihood estimation with a Poisson noise model leads to the cost func-
tional7

C(x) = 1THx− yT log(Hx).

Here we look for a strictly positive solution and we can thus perform the change
of variable x = exp(z). If we compute the gradient of the cost functional C′(z) =
C (exp(z)) and re-express it using x, we obtain

∇C′(z) = x×
(
HT

[
1− y

Hx

])
.

Here the multiplication × and the division y/Hx are understood pointwise. As-
suming that H is normalized such that HT1 = 1, the constraint that the gradient
should vanish leads to the following fixed-point iteration:

x(k+1) = x(k) ×HT
[ y
Hx(k)

]
. (3.13)

This is the standard Richardson-Lucy algorithm [184, 138]. Its implementation
requires four FFTs per iteration (two per convolution).

An accelerated version of the Richardson-Lucy algorithm is for example used in
[106]. It takes the form

x(k+1) = x(k) + τkx(k) ×
[
HT

( y
Hx(k)

− 1
)]
,

7Our convention is that log(v) and exp(v) stand respectively for the componentwise application
of the logarithm and exponential functions to the vector v.
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where the step sizes τk are optimized using a line search that takes into account
the positivity constraint. When τk = 1 and H is normalized such that HT1 = 1,
one retrieves the standard algorithm.

Richardson-Lucy algorithm with total-variation regularization

The problem of the above variational formulation is the same as for least squares: it
is not regularized and thus iteration (3.13) will eventually lead to significant noise
amplification.

To counterbalance this effect, Conchello and Hansen [54] proposed to use Tikhonov
regularization. More recently, Dey et al. [62, 63] considered total-variation regular-
ization [186], leading to the functional

C(x) = 1THx− yT log(Hx) + λ‖x‖TV.

Depending on the definition of ‖ · ‖TV (see e.g. [235]), this functional may not
be differentiable everywhere. Using the same change of variable and the same
normalization assumption as before, a subgradient of C at x has the form

x×
(
1−HT

[ y
Hx

]
+ λg

)
,

where g is a subgradient of ‖ · ‖TV at x.
For every estimate x(k), the authors consider a specific choice of subgradient

g(k) and apply the update formula

x(k+1) =
1

1 + λg(k)
× x(k) ×HT

[ y
Hx(k)

]
.

They also use a regularization parameter λ that is sufficiently small to maintain
the positivity constraint. Note that according to (3.6) a fixed point of this iteration
is guaranteed to be a minimizer, but the converse is not necessarily true for the
specific choice of subgradient made by the authors.
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Part II

Fast wavelet-based
deconvolution
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Scale is the most important element of beauty.
Esa Piironen, On Architecture.
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Chapter 4

Design strategies for
image-reconstruction
algorithms: a multilevel
tutorial

The main subject of the remainder of this thesis will be the design and optimization
of wavelet-based image-restoration algorithms. There are two common threads in
our work: exploiting the structure of the restoration problem and preserving this
structure accross scales. The combination of these ideas with the properties of
wavelet representations can lead to efficient multilevel procedures.

The purpose of this introductory chapter is to give an overview of the design
principles that we have used, paving the way for Chapter 5 and Chapter 6. Our
work originates from multigrid concepts. Although “multigrid design guides” are
available in various levels of generality [98, 32, 253], one is forced to admit that
there is no systematic way to derive a multigrid algorithm. The term “multigrid”
refers much more to a general methodology—not to a specific algorithm. It is a
framework that can require substantial adaptation to the particular problem under
consideration.

Our main application of interest will be the acceleration of `1-regularized de-
convolution using a blend of wavelet and multigrid concepts. Nevertheless the
principles described here could be (and have been) applied to more general (linear
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or even non-linear, possibly non-convex) inverse problems. Our hope is that this
summary may be useful to other researchers and fellow PhD students making their
first steps in the world of algorithm design.

We emphasize some key aspects that constitute the foundation of our work.
However, we voluntarily take a step back implementation issues, which are ad-
dressed in detail in the next two chapters. In addition to the references mentioned
there, we provide pointers to works in the areas of numerical analysis and image
processing that we found helpful. It is impossible to be exhaustive, though, as the
literature on multilevel methods is overwhelmingly large1. In fact, many of the
principles discussed here date back to the early days of numerical analysis; they
have been “iteratively refined” during two centuries and are often associated with
prestigious names such as Gauss, Jacobi, Seidel, Schwarz or Lions.

4.1 The model problem: image reconstruction us-
ing wavelet-domain `1 regularization

4.1.1 Definition and approximation-theoretic motivation

Our starting point is the definition of a “fine-level problem” using the variational
form considered in Section 3.3.1:

C(x) = D(x) + λR(x). (4.1)

In general, it is obtained from the discretization of a continuous-domain functional
(see below).

Specifically, we will be interested in the minimization of

C(x) = ‖y −Hx‖22 + λ‖WTx‖1. (4.2)

where T denotes transposition and WT is the matrix corresponding to a discrete
wavelet decomposition. For simplicity, we will assume in this chapter that W is
orthonormal, implying that W is the associated reconstruction matrix (such that
WWT = I).

This will be our “model problem” throughout the second part of this thesis: it
will support most of our analysis and derivations. To benefit from the intuition of
Fourier analysis, it is a good idea to think of H as a convolution matrix (which
is diagonalized in the DFT domain), but our intention is to cover more general
image-formation operators (cf. the considerations of Section 6.1.4).

1Often with the frustrating side-effect of a widely redundant terminology.
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As an alternative to the statistical framework mentioned in Chapter 3, we can
motivate the functional (4.2) using an approximation-theoretic standpoint [40, 58].
It is a finite dimensional version of the following continuous-domain problem: given
a set of measurements (y[k])k∈S , minimize the quadratic data discrepancy∑

k∈S

(y[k]− (h ∗ χ)[k])2

under the constraint that the function χ is piecewise smooth.
To assess the smoothness of a function, a relatively flexible (though involved)

tool in approximation theory is the family of Besov spaces and their associated
norms. This family provides three degrees of freedom for measuring the smoothness
of a function: essentially, if f ∈ Lp(Rd) has a finite Besov norm ‖f‖s,p,q, then its
s-th derivative is in Lp(Rd); the parameter q is related to finer properties. An
important result in approximation theory is that the Besov norm of a function
f is equivalent to a suitable norm on the wavelet coefficients of f [152, 61]. In
the particular case where p = q = 1, and for a specific choice of the parameter s
(depending on the dimension d), this norm is simply the `1 norm. Hence the `1
regularization term in (4.2).

Although we will not use it later in our case, it is worth emphasizing that the
continuous-domain formulation of a problem can provide valuable insights for the
design of multilevel algorithms; see e.g. [10].

4.1.2 Derivation of the fine-level thresholded Landweber al-
gorithm

Let us briefly go back to the general cost functional (4.1). Here we will assume that
the data term D is differentiable.

According to the criterion formulated in Section 3.4, x∗ is a minimizer of the
functional (4.2) functional if and only if

0 ∈ ∇D(x) + λ∂R(x), (4.3)

where ∂R denotes the subgradient of R (cf. Section 3.4.3). In particular, for (4.2),
this is equivalent to

−∇D(x) ∈ λ∂R(x)

⇔ x− τ

2
∇D(x) ∈ x +

λτ

2
∂R(x),
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where τ is a non-zero parameter that will be positive in the sequel. Although the
mapping x 7→ x + λτ/2 ∂R(x) is multivalued (set-valued) at points where R(x) is
non-differentiable, it is actually invertible2.

When R(x) = ‖WTx‖1, the inverse (in the orthonormal-wavelet domain) is
known as the soft-thresholding function Tλτ/2, which is defined e.g. in Section 6.1.3.
The gradient of ‖y−Hx‖22 is given by ∇D(x) = −2HT (y−Hx). This establishes
that the minimizers of (4.2) correspond exactly to the fixed points of the mapping

u(x) = WTλτ/2
{
WT

(
x + τHT [y −Hx]

)}
, (4.4)

where τ acts as a step-size parameter whose choice is discussed below. In view
of this characterization, a minimizer is often approximated numerically using the
sequence x(k) defined by some initial estimate x(0) and the update rule

x(k+1) = u(x(k)). (4.5)

Algorithms that are derived using decompositions of the form (4.3) are known under
the general name of operator-splitting algorithms. They have been studied, among
others, by Passty [171], Lions and Mercier [132] as well as Eckstein [70].

The above algorithm can also be derived using an alternative functional inter-
pretation [40, 58]; this is the approach we use in Chapter 5 and Chapter 6. It is
related to the concept of proximal operator [49].

4.1.3 Convergence considerations

We will now review some basic facts related to the convergence of iterative proce-
dures of the form (4.5). More precisely, we are interested in the decay properties of
x∗−x(k), the error with respect to a fixed point x∗ of u. While explicit decay-rate
estimates can only be obtained in particular cases, these examples will motivate
most of our subsequent developments.

We start with the notion of Lipschitz continuity. As an example, one can verify
that the pointwise soft-thresholding operator Tλτ/2 is 1-Lipschitz over RN .

Definition 3. Let L be a positive constant and let Ω be a subset of RN . A mapping
u : RN → RN is said to be L-Lipschitz over Ω if, for every x,x′ ∈ Ω,

‖u(x)− u(x′)‖ ≤ L‖x− x′‖. (4.6)

2This is a general result for so-called maximal monotone operators [70].
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A mapping for which (4.6) holds with L < 1 is a contraction. A fundamental
result for iterations of the form (4.5) is the so-called contraction-mapping principle3

[169, 220].

Property 4. Assume that u maps Ω into itself and that it is L-Lipschitz over Ω,
with L < 1. Then, in Ω, u has a unique fixed point x∗ and the sequence defined by
(4.5) converges to x∗ for any initial estimate x(0) ∈ Ω. Moreover one has the error
estimate

‖x∗ − x(k)‖ ≤ CLk, (4.7)

where C = ‖x(1) − x(0)‖/(1− L).

Algorithms for which such a bound holds are said to converge geometrically or
linearly (because the logarithm of the error decays linearly); the tightest possible
constant L is called the convergence rate. While this quantity only describes the
asymptotic behavior of the error, it is a common measure of convergence speed
[98, 32].

As a simple example, consider the case where λ = 0 in (4.4); one then obtains
the classical Landweber update formula, which is linear. In particular, for any
x,x′ ∈ RN ,

u(x)− u(x′) = (I− τHTH)(x− x′). (4.8)

Via a diagonalization of I− τHTH, this shows that the linear Landweber iteration
is L-Lipschitz over RN , where L = λmax(I − τHTH) is the largest eigenvalue4 of
I− τHTH (in absolute value).

In particular, when λmin(HTH) > 0, a standard analysis shows that the linear
Landweber iteration is a contraction mappig (L < 1) for any value of τ in the
open interval ]0, 2/λmax(HTH)[. Unfortunately this does not leave a lot of freedom
when HTH is poorly conditioned; that is, when the ratio λmin(HTH)/λmax(HTH)
is close to zero. Indeed the eigenvalue 1−τλmin(HTH) of I−τHTH is then always
close to 1, even if one could set τ to the upper bound 2/λmax(HTH). In terms
of the error x∗ − x(k), this means that the components spanned by eigenvectors
corresponding to small eigenvalues of HTH will always decay slowly; indeed, from
(4.8),

x∗ − x(k+1) = (I− τHTH)(x∗ − x(k)).

The general thresholded Landweber algorithm has the same Lipschitz regularity
over RN as the linear Landweber iteration. This essentially follows from the fact

3Also known as the Banach fixed-point theorem.
4Hereafter we use λmin to refer to the smallest eigenvalue; these notations should not be

confused with the regularization parameter λ.
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that the soft-thresholding operation is 1-Lipschitz (and from our assumption that
W is orthonormal).

‖u(x)− u(x′)‖ =
∥∥Tλτ/2{WT

(
x + τHT [y −Hx]

)}
− Tλτ/2

{
WT

(
x′ + τHT [y −Hx′]

)}∥∥
≤
∥∥WT (I− τHTH)(x− x′)

∥∥
=
∥∥(I− τHTH)(x− x′)

∥∥
≤λmax(I− τHTH)

∥∥x− x′
∥∥ (4.9)

However, for many mappings of interest it can be difficult or even impossible
to establish a strict contraction property. To prove convergence, one may then
have to resort to weaker forms of contractions, e.g., iterated contractions [169] or
specific classes of nonexpansive mappings [231]. Another approach is to prove the
contraction property only over a subdomain Ω of RN (see e.g. [99]). However,
obtaining an explicit and tractable characterization of a suitable subdomain can be
difficult. As a result, Lipschitz constants that are derived analytically are often too
conservative because they apply to an overly large domain.

For example, our numerical experiments (see column 1 of Table 6.1) suggest that
the convergence rate of the thresholded Landweber algorithm (for λ > 0) is sys-
tematically better than the convergence rate of the corresponding linear Landweber
algorithm (for λ = 0). Note that we are probably the first to provide a quantitative
experimental demonstration of this property. Our results support the idea that the
estimate (4.9) is usually too pessimistic. The thresholding operation seems to com-
pensate for the poor conditioning of HTH: for higher thresholds, the convergence
becomes faster.

Another illustration can be given when λmin(HTH) = 0. In this case the thresh-
olded Landweber algorithm is at best 1-Lipschitz over RN , but several theoretical
investigations support the fact that it can still converge linearly [43, 99, 30]. Our
numerical experiments tend to confirm this prediction (at least for a sufficiently
large regularization parameter).

4.2 Derivation of a multilevel method

4.2.1 The subspace-correction principle

The previous analysis suggests that certain components of the estimate x(k) are
subject to slower convergence than others (at least in the linear case). Thus we
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would like to design an algorithm that acts more effectively on these components.
This leads almost naturally to the principle of subspace correction, which was in-
troduced by Xu [252] as a general framework for the numerical resolution of linear
systems of equations. This principle was recently transposed by Fornasier [80] to
more general non-linear problems defined in a variational setting, with emphasis on
`1 regularization.

The idea is to concentrate each update on a particular subspace E0 of RN ,
whose choice essentially depends on the nature of the aforementioned components.
In other words, we introduce a new update mapping u0 that performs a correction
only in the subspace E0: for any given estimate x, u0(x) = x+e0 for some e0 ∈ E0.
Some ideas for deriving such a mapping will be discussed in the next subsection.

Potentially, this strategy has two advantages. The clearest advantage, which
was put forward in [80], is dimension reduction: by saving computation time from
components that are “easy” to recover, one can spend more iterations on “hard”
ones. An additional advantage is better conditioning : the efficiency of each indi-
vidual update can be improved by adapting to the components. This is an implicit
though central aspect of our work in Chapter 5 and Chapter 6.

Of course, this strategy must be applied to a collection of subspaces E0, E1, . . . , EJ
that span the entire signal space, i.e.,

RN = E0 + E1 + . . .+ EJ .

In the sequel, we will denote by uj the corresponding update mappings. There are
essentially two ways to combine these mappings. The first one consists in a parallel
update strategy, of the form

uPar(x) = c0u0(x) + c2u2(x) + . . .+ cJuJ(x),

where the coefficients c0, c1, . . . , cJ define a convex linear combination5. The second
one consists in a sequential update strategy, of the form

uSeq(x) =
(
u0 ◦ u1 ◦ . . . ◦ uJ

)
(x),

where ◦ denotes composition. Virtually any iterative update procedure can be
defined using one of these two forms. Alternatively to parallel/sequential, the
terms simultaneous/successive and additive/multiplicative are also widely used6.
This distinction can be traced back to the “historical” concepts of Jacobi and
Gauss-Seidel iterations.

5I.e., they are positive and such that their sum is equal to 1.
6Note that we have already used the word “multiplicative” in another sense for the Richardon-

Lucy iteration.
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While any sequential algorithm has also a parallel counterpart7 (and vice versa),
their convergence properties usually differ. In practice, sequential update methods
are often found to be more efficient than parallel methods. Therefore it is not
surprising that sequential methods have been derived in many different application
fields of numerical analysis, leading to a prolific terminology. Important exam-
ples for the resolution of partial differential equations are the Schwarz alternating
method [196, 131]—a precursor of domain-decomposition methods [41]—and multi-
grid algorithms [98, 32].

Sequential techniques have also played an important role for image restoration,
or more broadly image reconstruction. Historically, many of them were initially
developed for medical imaging applications. Let us mention just a few examples
in the realm of linear reconstruction, to illustrate the above concepts (see also
[38, 127]).

• A so-called coordinate-update strategy uses the one-dimensional subspaces
corresponding to the individual components of the vector x.

• The method of Ordered Subsets (OS [109]) uses subspaces corresponding to
groups of components (block coordinate-update strategy).

• The Algebraic Reconstruction Technique (ART [92], also known as the Kacz-
marz algorithm [115]) uses the subspaces generated by the individual columns
of the “image-formation matrix” H.

• A modification of this technique, called simultaneous algebraic reconstruction
(SART [5]) uses the subspaces spanned by groups of columns.

Note that there are also stochastics variants of these methods where the subspaces
are chosen randomly; this approach is still the subject of investigations (see e.g.
[211] and references therein).

Finally, another well-known sequential subspace-correction method is the one
of alternating projections [254], a particular case of the method of projections onto
convex sets (POCS, [255]). In the context of wavelet-regularized signal restoration,
an early example of a sequential optimization strategy can be found in the work of
Sardy et al. on denoising [190]; drawing a parallel with projective methods, theirs
could be termed an “alternating thresholding” algorithm.

7For example, the parallel version of the algebraic reconstruction technique mentioned below
is called simultaneous iterative reconstruction technique (SIRT [90])—it essentially amounts to a
Landweber iteration.
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4.2.2 The auxiliary-problem principle

There are potentially many ways to construct the update mappings uj introduced
above. Perhaps the most direct approach is to project (4.3)—the characterization
of the solutions to the optimization problem—onto the different subspaces Ej . An-
other approach is to focus on the original cost functional (4.1). We discuss the
latter approach in more details because we will use it in the next two chapters.
Also, it is often prefered by algorithm designers, because it is a relatively intuitive
and flexible framework that leads easily to procedures with certain monotonicity
properties.

From the standpoint of the original functional C, the mapping uj should provide
the largest-possible decrease. In other words, we would like that u(x) = x + ej ,
where ej minimizes the functional e 7→ C(x+e) over Ej . However, this minimization
can rarely be performed exactly in practice. One approach for circumventing this
issue is to approximate C(x + e) by an auxiliary functional Ax

j (e) that is easy to
minimize. If Ax

j (e) has a unique minimizer (typically when it is strictly convex)
this uniquely defines the update mapping

uj(x) = x + arg min
e∈Ej

Ax
j (e).

There are a number of techniques for deriving such functionals. In fact, generic
methods from the field of optimization—such as dual formulations or barrier func-
tions for constrained problems—can be considered part of them. The distinction
between methods is often just a matter of terminology. Here we provide references
for two classes of techniques that have been proposed or used in the context of image
reconstruction. Again, medical imaging had an important role in the application
and diffusion of these methods in image processing.

The first class of methods that we would like to mention is known under the
name of “half-quadratic regularization” [87, 88]. The essential idea is to define the
auxiliary functional via an additional set of variables:

Ax
j (e) = min

e′
F(e, e′).

The functional F is constructed in such a way that it is easily minimized with
respect to e and e′, taken individually. This is typically achieved thanks to a
quadratic coupling term—hence the name “half-quadratic”. The minimization can
then be performed alternatively on both sets of variables. We refer to [245] for an
overview of this method and to [163] for a detailed theoretical investigation.

The second class is refered to as “bound optimization principle”, “surrogate
functional optimization”, or “majorize-minimize strategy” (among other denomi-
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nations). The characteristic property of this class is that the auxiliary functional
is an upper-bound of the original cost functional, with equality at the origin:

∀ ej ∈ Ej , C(x + e) ≤ Ax
j (e) and C(x) = Ax

j (0).

This framework leads to an update mapping uj that has the nice property of mono-
tonically decreasing the original cost functional. It also provides a simple interpre-
tation for many expectation-maximization algorithms. We refer to [125, 111] for
tutorial introductions and to [113] for a recent theoretical treatment in the context
of image processing.

Note that the idea of splitting the cost functional into several auxiliary function-
als has been formalized in numerical analysis quite some time ago—see in particular
[47], which provides a very general analysis of bound-optimization techniques.

4.2.3 The scale-invariance principle

Among all multilevel schemes, those that can be formulated recursively are parti-
curly elegant. They essentially amount to two-level methods, which involve only
two subspaces E1 and E2.

Such schemes are based on the important principle of scale-invariance: for at
least one of the subspaces, say E2, the auxiliary functional Ax

2 should have the
same structure as the original cost functional C. In this case, one can apply the
same type of decomposition recursively on E2. Importantly, this allows for using
the same type of update mapping—and thus a unified “tuning strategy”—at all
levels.

The combination of all principles discussed so far could be summarized as a
“recursive divide-and-conquer strategy”.

Table 4.1 shows the subspace structure of some standard methods for the res-
olution of partial differential equations. Domain decomposition methods typically
involve subspaces that are related to boundary conditions; in general, they are not
recursive in nature. In contrast, multigrid algorithms use a hierarchy of embedded
subspaces corresponding to discretizations of the equation at different resolution
levels; this is an ideal playground for recursivity, allowing for a variety of standard
iteration schemes (see Fig. 6.3).

The resolution of partial differential equations typically involves the inversion
of high-pass operators. Thus the subspaces used in multigrid methods concentrate
on low-frequency components, which are the most difficult to recover in that case.
However, in deconvolution problems, the blurring operators are typically low-pass.
Thanks to their spectral localization properties, wavelet subspaces (which are the
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Method Structure of the subspaces Remarks

Domain decom-
position E1, . . . , EJ

No embedding in
general (possibly
“overlapping”)

Multigrid E0 ⊃ E1 ⊃ . . . ⊃ EJ
Pyramidal embed-
ding (dimension re-
duction)

Hierarchical-
basis/Wavelet-
type multilevel
algorithm

E0 ⊃ . . . ⊃ EJ−1 ⊃ EJ
∪ ∪ ‖
E′0 . . . E′J E′J

Comb-tree embed-
ding in pyramidal
structure

Wavelet-packet
multilevel algo-
rithm

Embedding of subspaces defined by an arbitrary tree

Table 4.1: Comparison of subspace-correction methods.

complements of the traditional coarse-approximation subspaces) are better adapted
to this situation.

This is best understood with the bandlimited Shannon wavelets, for which the
different subspaces are completely decoupled with respect to a convolution operator
(see Fig. 5.4). The convergence rate of the algorithm described in Chapter 5
(over RN ) is provably better8 than the one of the standard thresholded Landweber
algorithm (4.4). Note that thanks to the decoupling property of Shannon wavelets,
the algorithm of Chapter 5 is actually a parallel algorithm.

In the case of other wavelet families, the coupling between subspaces remains
sufficiently weak to allow for similar convergence-rate improvements. This is shown
by the numerical results of Table 6.1. The general multilevel algorithm of Chapter
6 is sequential.

The subspace structure of our multilevel algorithm is comparable to the one
used in the hierarchical-basis method [13]. A possible generalization consists in
using an arbitrary hierarchy of subspaces (see Table 4.1). In fact, such a structure
is used implicitly in multigrid schemes with a locally-adaptive grid resolution. It is
reminiscent of wavelet-packet decompositions.

8At least when HT H is positive definite.
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4.3 Summary

4.3.1 A tentative characterization of multilevel algorithms

As argued at the beginning of the chapter, it is impossible to give a systematic
definition of a multilevel algorithm. In general, however, we can say that the
“multilevel philosophy” is characterized by one or several of the following principles:

• dividing a given problem into several subproblems;

• using a pyramidal (multiresolution) representation;

• relying on a recursive—and thus sequential—formulation/implementation.

But most importantly, it consists in adapting to the structure of the problem at
hand.

4.3.2 A step-by-step design guide

For the algorithm designer, we provide a list of steps that could be followed for
deriving a multilevel image-reconstruction method.

1. Provide a clear mathematical statement of the problem to be solved (in our
case finding a minimizer of a specified cost functional). Think about possible
discretizations/formulations at different resolution levels.

2. Identify a fine-level iterative procedure that solves the problem (in our case
the thresholded Landweber algorithm).

3. Understand its convergence properties theoretically and/or numerically, so as
to be able to fine-tune its parameters. Gain intuition from extreme situations
(in our case linear deconvolution and bandlimited wavelets).

4. Choose a pyramidal subspace decomposition that is adapted to the conver-
gence properties of the fine-level algorithm and that preserves the structure
of the problem at different levels (in our case the wavelet subspaces).

5. Define a performance measure and stick to it (in our case the convergence
rate). Use synthetic experiments for which solutions are known in advance in
order to assess the performance of the multilevel method.



Chapter 5

The case of bandlimited
wavelets

Summary

We present a fast variational deconvolution algorithm that minimizes a quadratic
data term subject to a regularization on the `1-norm of the wavelet coefficients of
the solution.

Previously available methods have essentially consisted in alternating between
a Landweber iteration and a wavelet-domain soft-thresholding operation. While
having the advantage of simplicity, they are known to converge slowly.

By expressing the cost functional in a Shannon wavelet basis, we are able to
decompose the problem into a series of subband-dependent minimizations. In par-
ticular, this allows for larger (subband-dependent) step sizes and threshold levels
than the previous method. This improves the convergence properties of the algo-
rithm significantly.

We demonstrate a speed-up of one order of magnitude in practical situations.
This makes wavelet-regularized deconvolution more widely accessible, even for ap-
plications with a strong limitation on computational complexity. We present promis-
ing results in 3D deconvolution microscopy, where the size of typical data sets does
not permit more than a few tens of iterations.

This chapter is Copyright c© 2008 IEEE. Reprinted, with permission, from [240].
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5.1 Introduction

5.1.1 Motivation

During the past decade, biological imaging has been revolutionized by the widespread
availability of novel fluorescence labeling techniques and the development of ad-
vanced 3D optical microscopy (see Chapter 2). As biological research moves to-
wards molecular scale, the constraints in terms of resolution and light efficiency
are becoming more and more stringent. In this context, scientists are increasingly
relying on computational methods to take full advantage of their instrumentation
[96, 161, 101, 20].

The use of deconvolution to enhance micrographs is commonly referred to as
deconvolution microscopy [148, 242]. The results are the most striking in 3D, as
demonstrated by the pioneering work of Agard and Sedat [1], which had a significant
impact on the field. The main challenge in 3D resides in the size of typical data
sets, which severely restricts the computational complexity of numerical restoration
methods. With the present state of computer hardware, one cannot afford more
than the equivalent of a few tens of FFTs on a complete 3D stack. This explains why
most software packages for deconvolution microscopy are still based on relatively
standard methods, at least when compared to the state-of-the-art in 2D imaging
[12, 188]. For instance, the Tikhonov-Miller and Richardson-Lucy algorithms are
widely used; they require 2 (respectively 4) FFTs per iteration, so that they are
usually stopped after 30 to 40 iterations.

Wavelet regularization is a relatively recent technique in the area of deconvolu-
tion. Several research groups have independently proposed a restoration procedure
that alternates between wavelet-coefficient thresholding and a Landweber update.
Some of the ideas of the method, which we shall call the Thresholded Landwe-
ber (TL) algorithm, can be traced back to the work of Starck et al. [206, 205].
Figueiredo and Nowak presented the first formal derivation of the TL algorithm
using a statistically-based Penalized Likelihood formulation [78]. The algorithm
was then rederived in a deterministic variational framework and generalized to a
more general class of linear operators by Daubechies et al. [58]; note that these
authors also provided a general convergence proof that can be transposed to the
algorithm that we present here. Bect et al. considered a similar wavelet-regularized
cost function, but with an additional Total Variation term [16]. Most recently,
Chaux et al. extended this type of approach to frame-based wavelet regularization
[42].

The TL algorithm offers attractive features for 3D deconvolution microscopy.
First, it belongs to the class of non-linear wavelet-based methods, which have al-
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ready proven to be very efficient for image-restoration applications such as denois-
ing. In a series of 2D deconvolution experiments (see [78]), the TL algorithm was
actually shown to perform best against several other wavelet-based deconvolution
methods. Second, the TL algorithm is simple to implement. Since it is iterative
(unlike other wavelet-based methods, e.g. the ones described in [65, 116, 162]),
additional constraints such as positivity can be easily incorporated. Finally, it re-
quires only two FFTs and two wavelet transforms per iteration. This represents
an intermediate computational complexity compared to the standard algorithms
mentioned before.

The only weak point of the TL algorithm is its slow convergence speed. This is
especially true at high SNR levels, which may require several hundred iterations.
The primary purpose here is to propose a variation of the TL algorithm that min-
imizes the same functional but that is substantially faster computationally. Our
efforts are directed towards making wavelet regularization a tractable alternative
for deconvolving large data sets. In particular, we demonstrate its feasibility on a
3D stack of widefield fluorescence micrographs. To our knowledge, this is the first
practical implementation of wavelet-based 3D deconvolution microscopy, and the
perspectives in this area appear to be quite promising.

5.1.2 Image-formation model

In this chapter, we are concerned with the recovery of a multidimensional signal
from its noisy observation through a convolutive imaging system.

Fig. 5.1 shows a model of the image-acquisiton chain that applies, for example,
to fluorescence microscopy. Generally speaking, we are interested in d-dimensional
signals. The observed image is the d-dimensional convolution of an original image
(the characteristic function of the object of interest) with the impulse response (or
point spread function, PSF) of the imaging system. In practice, we only have access
to a finite number of samples of the image and these measurements are corrupted
by noise.

+

Sampling

PSF

Noise

Original
signal

Measured
signal

Figure 5.1: The image-formation and measurement model.
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In the sequel, to simplify the presentation, we will adopt a purely discrete de-
scription of the image-formation process. We shall assume that

y = Hxorig + b,

where xorig and y are vectors containing uniform samples of the original and mea-
sured signals, respectively; b represents the measurement error. These vectors have
N = N1 ×N2 × . . .×Nd components, where Nk stands for the number of samples
along dimension k. H is a square, (block-) circulant matrix that approximates the
convolution with the PSF in Fig. 5.1.

5.1.3 Deconvolution as a variational problem

The recovery of xorig from y is an ill-posed problem [17]. To obtain an estimate
with reasonable accuracy and robustness to noise, one must often rely on prior
information about the original signal. The estimation of xorig is then formulated
as an optimization problem which incorporates this prior information. The quality
of a given estimate x is typically measured by a cost function of the form

C(x) = D(x) + λR(x). (5.1)

The data term D(x) quantifies the “prediction error” with respect to the mea-
surements. The regularization term R(x) is designed to penalize an estimate that
would not exhibit the expected properties. The regularization parameter λ balances
the contribution of both terms. In practice, the value of λ needs to be adjusted
appropriately; this is either done empirically by trial and error or by using some
data-driven cross-validation method [17, 235]. The problem of deconvolution is then
to find an estimate that minimizes the cost function C(x). This functional can
also interpreted as a (negative) log-likelihood in a Bayesian statistical framework,
and deconvolution can then be seen as a maximum a posteriori (MAP) estimation
problem [17, 78].

In the present work, we will consider cost functions that favor wavelet expansions
with a small number of nonzero coefficients. This is typical of objects that are
piecewise smooth [142]. The property of natural images having a sparse wavelet
expansion is heavily exploited in compression standards such as JPEG2000 [45].
Here, we will concentrate on the case of an orthonormal wavelet decomposition,
which will be characterized by an (orthonormal) decomposition matrix W. In
our notation, the matrix-vector product wx = Wx yields the coefficients of x in
the wavelet basis, and WTWx reconstructs the signal from these coefficients. We



5.2 Preliminaries 79

implicitly include the (coarsest-scale) scaling functions when referring to the wavelet
basis, unless specified otherwise. The cost function is then defined by

D(x) = ‖y −Hx‖22 and R(x) = ‖Wx‖1. (5.2)

Here the data term measures the residual in the image-domain using the (squared)
Euclidian norm ‖ · ‖2. The regularization term is the sum of the absolute values of
the wavelet coefficients, which is denoted with the `1-norm ‖wx‖1. In contrast with
traditional quadratic regularization, the `1-norm leads to a non-linear deconvolution
algorithm. Compared to the `2 norm, it puts less weight on coefficients that are
greater than 1, and more weight on coefficients that are smaller than 1. This tends
to favor signals that are “sparse” solutions with a few large wavelet coefficients.

5.1.4 Organization of the chapter

The remainder of the chapter is organized as follows. In Section 5.2, we present
the basic building blocks of the algorithm and relate them to classical image pro-
cessing tasks. In Section 5.3, we recall the formalism of Daubechies et al. leading
to the existing thresholded Landweber algorithm. In Section 5.4, we derive a faster
algorithm that minimizes the same functional in the case of Shannon wavelets. The
last section is devoted to numerical experiments that illustrate the performance of
the proposed algorithm, on both simulated data and real 3D microscopy data.

5.2 Preliminaries

There are two particular cases of (5.1) and (5.2) that provide the basic building
blocks of the thresholded Landweber algorithm.

5.2.1 The non-regularized case

The first one corresponds to λ = 0. The cost function then reduces to

C(x) = ‖y −Hx‖22. (5.3)

A minimizer of this expression is the classical least squares estimator, which is given
by x = H†y, where1

H† = lim
c→0,c>0

(HTH + cI)−1HT

1In the case of complex vectors/matrices, T will denote Hermitian transposition.
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is the Moore-Penrose pseudoinverse of H. It is the solution with the smallest
(Euclidian) norm. In practice, H†y can be simply computed in the frequency
domain (i.e. in the DFT basis), where H† is diagonalized.

However, this direct method is prone to noise amplification because the matrix
HTH may have small but non-zero eigenvalues. In order to delay this amplification
process, the minimization of (5.3) is often performed iteratively. Starting from
an initial estimate x(0), one constructs a sequence (x(n))n∈N that converges to a
minimizer of C(x). A gradient descent on (5.3) with a fixed step size τ yields the
following update formula:

x(n+1) = x(n) + τHT (y −Hx(n)). (5.4)

This algorithm is usually named after Landweber [124]. For an in-depth investiga-
tion of this very basic procedure—the grandfather of iterative deconvolution—we
refer to [17].

5.2.2 The pure denoising case

The second particular case occurs when H = I. The cost function becomes

C(x) = ‖y − x‖22 + λ‖Wx‖1. (5.5)

This corresponds to a pure denoising problem, where we want to recover the origi-
nal signal from the non-blurred but noisy measurement y (see [40] for a complete
mathematical treatment). When the wavelet basis is orthonormal—as in our case—
the minimization of this expression is straightforward, since the quadratic term can
be written in the wavelet domain (Parseval relation):

C(x) = ‖Wy −Wx‖22 + λ‖Wx‖1 =
N∑
n=1

|wy n − wxn|2 + λ|wxn|, (5.6)

where wy n and wxn are the wavelet coefficients of y and x, respectively. In this form
the cost function is completely decoupled, which implies that its minimization can
be achieved in a coefficient-wise fashion. The solution involves the soft-thresholding
function

Tλ/2(w) = sgn(w) (|w| − λ/2)+ , (5.7)

where (·)+ is the positive-part function:

(t)+ =

{
t if t > 0;
0 otherwise.
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The minimizer of (5.5) is simply given by

x = WTTλ/2{Wy},

where Tλ/2{·} denotes a component-wise application of the soft-thresholding func-
tion. Note that this formalism can be adapted to complex wavelet decompositions
by replacing sgn(w) by exp(i argw) in (5.7). Interestingly, this algorithm was first
proposed empirically for noise reduction in magnetic resonance imaging [246]. It
has become very popular in the field, following the impulsion of Donoho and John-
stone who justified it on solid statistical grounds [67]. Several authors have also
proposed a Bayesian interpretation of the method, see e.g. [159, 201, 8].

5.2.3 General principle of bound optimization algorithms

Except for simplified cases such as those just mentioned, the functional C(x) de-
fined by (5.2) cannot be minimized directly by a coefficient-wise rule. This is
primarily due to the convolution matrix H, which makes the wavelet coefficients of
x interdependent, hence precluding a simple coefficient-wise rule. Instead, one can
use an iterative minimization technique as proposed in [78, 58, 16]. Interestingly,
this involves a judicious combination of the two aforementioned methods. In the
next section, we shall briefly review the derivation of Daubechies et al.; it is based
on a bound optimization approach [111, 125], which essentially consists in replacing
C(x) by a succession of auxiliary functionals that are easy to minimize.

Using the current estimate x(n), the key-idea is to construct an auxiliary func-
tional An(x) with the following properties:

• when x = x(n), An(x) coincides with C(x);

• when x 6= x(n), An(x) upper-bounds C(x).

As illustrated in Fig. 5.2 for N = 1, these properties guarantee that, by minimizing
An(x), we will also decrease C(x). The general update equation is thus

x(n+1) = arg min
x
An(x).

A general discussion of convergence criteria for bound optimization methods would
be outside the scope of this chapter; the reader is referred to [125] and the references
therein. Moreover, as mentioned in the introduction, the paper by Daubechies et al.
contains a convergence proof that can be readily extended to cover both algorithms
presented in this chapter.
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x

C(x)

x(n)

An(x)

x(n+1)

Figure 5.2: The bound-optimization principle: an estimate of the mini-
mizer of the original cost function is constructed by minimizing an auxiliary
functional. The process is repeated iteratively.

5.3 The existing thresholded Landweber algorithm

5.3.1 A bound with decoupled wavelet coefficients

Daubechies et al. [58] proposed to use functionals of the form

An(x) = α‖x(n) − x‖22 + C(x)− ‖Hx(n) −Hx‖22. (5.8)

Here, the (real and positive) scalar α must be chosen strictly larger than the spectral
radius of HTH:

α > ρ(HTH) where ρ(HTH) = max
‖v‖2=1

‖Hv‖22.

Equivalently, since H is a convolution matrix, ρ(HTH) is the largest squared mod-
ulus of the DFT coefficients of H.

Let us discuss this choice in more details. First, the constraint on α ensures
that An(x) is a proper bound for C(x).

Property 5. Assume that α > ρ(HTH) holds in Eq. (5.8). Then An(x) > C(x),
except at x = x(n), where An(x) = C(x).
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Proof. The inequality α > ρ(HTH) ensures that αI − HTH is positive-definite.
This means that, when x 6= x(n), we have

α‖x(n) − x‖22 − ‖Hx(n) −Hx‖22 = (x(n) − x)T (αI−HTH)(x(n) − x) > 0;

whence it follows that An(x) is a strict upper bound of C(x), except at x = x(n)

where the equality is met.

Second, the specific form of (5.8) makes it easy to minimize An(x), based on
the following observation.

Property 6. Definition (5.8) is equivalent to

An(x) = α ‖x(n) + α−1HT (y −Hx(n))− x‖22 + λ‖Wx‖1 + c,

where c is a constant that does not depend on x.

Proof.

An(x) =α‖x(n) − x‖22 + ‖y −Hx‖22 − ‖Hx(n) −Hx‖22 + λ‖Wx‖1
=α‖x(n)‖22 − 2αRe

{
xTx(n)

}
+ α‖x‖22

+ ‖y‖22 − 2 Re
{
xTHTy

}
+ ‖Hx‖22

− ‖Hx(n)‖22 + 2 Re
{
xTHTHx(n)

}
− ‖Hx‖22 + λ‖Wx‖1

=α‖x‖22 − 2αRe
{

xT
(
x(n) + α−1HT (y −Hx(n))

)}
+ λ‖Wx‖1 + c′,

where c′ = α‖x(n)‖22 + ‖y‖22 − ‖Hx(n)‖22 is a constant that does not depend on
x. We complete the proof by adding the constant α‖x(n) + α−1HT (y −Hx(n))‖22
(which does not depend on x) so as to complete the quadratic term.

The above derivation reveals that the term ‖Hx‖22, which hinders the direct
minimization of C(x), is canceled by the negative term in (5.8). As a result, x is
not premultiplied by H anymore in the expression of Property 6. This means that
the wavelet coefficients of x are now completely decoupled and the minimization of
An(x) involves a simple coefficient-wise operation in the wavelet domain.

5.3.2 The resulting algorithm

To make this more apparent, we will denote by z(n) the expression x(n)+α−1HT (y−
Hx(n)); note that this is exactly the update formula of the classical Landweber
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iteration (5.4), with step size τ = α−1. Omitting c and dividing by the (positive)
constant α, the minimization of An(x) thus reduces to the minimization of

‖z(n) − x‖22 + λτ‖Wx‖1.

Now this is almost exactly the pure denoising functional of (5.5), with z(n) as the
noisy signal and λτ as the regularization parameter. We have already seen that
its minimizer is obtained via a simple soft-thresholding operation on the wavelet
coefficients of z(n). In the present case, the threshold level will be λτ/2.

To summarize, the resulting “thresholded Landweber” (TL) algorithm alter-
nates between the following two steps, starting from an initial estimate x(0):

• compute the Landweber iteration z(n) = x(n) + τHT (y −Hx(n)), with step-
size τ ;

• perform the wavelet-domain denoising operation x(n+1) = WTTλτ/2
{
Wz(n)

}
,

with threshold level λτ/2.

5.4 The fast thresholded Landweber algorithm

Using the algorithm described above, Figueiredo and Nowak have reported numer-
ical results that are competitive with state-of-the-art 2D deconvolution methods
[78]. However, the convergence of this algorithm can be rather slow, especially
when one choses a small regularization parameter λ. This is typically the case for
higher signal-to-noise ratios (see the numerical examples in Section 5.5), which still
require regularization, but at a moderate level.

Starting from this section, we will assume that the regularization term of (5.2)
is expressed in the Shannon wavelet basis (see [142], p. 223 or [210], p. 51). This
wavelet family allows for larger (subband-specific) step sizes and threshold levels,
resulting in a significant speed-up.

5.4.1 The Shannon wavelet basis

Besides being orthonormal, the main characteristic of Shannnon wavelets is that
their spectrum is ideal and disjoint across subbands. This proves to be especially
convenient when dealing with convolution operators.

Let us denote by
(
Wj

)
j∈S the different wavelet subspaces2. More precisely, our

convention will be that there are jmax wavelet subspaces, and that j = jmax + 1
2We use the terms subband and subspace interchangeably.
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corresponds to the coarsest-scale scaling function subspace. In other words, the
indexing set is S = {1, . . . , jmax + 1}. Fig. 5.3 illustrates the frequency support of
these subspaces in the 1D case, where jmax corresponds to the number of scales
of the decomposition. For higher dimensions, we use a separable extension of the
Shannon wavelet basis. Note that in our finite-dimensional setting, Hermitian sym-
metry is violated at the mid frequency point, which implies that our basis elements
are complex-valued.

π0

W4W3 W2 W1

Normalized
frequency

Figure 5.3: Frequency support of the Shannon-wavelet subspaces in the
1D case. The figure corresponds to jmax = 3, which means that W4 repre-
sents the scaling function subspace.

We use the (boldface) symbol Wj to denote the decomposition matrix that
yields the coefficients of a signal in subspace Wj . The original signal can be recon-
structed from its wavelet coefficients using the formula

x =
∑
j∈S

WT
j Wj︸ ︷︷ ︸
Pj

x. (5.9)

Note that we can use the transpose of Wj because the Shannon wavelet basis is
orthonormal. In this equation, WT

j Wjxj represents the orthogonal projection of
x on Wj .

The following result states that, for the Shannon wavelet basis, the projection
matrix Pj = WT

j Wj commutes with any convolution matrix.
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Property 7. Let C be a block-circulant matrix. Then, for the Shannon wavelet
basis,

CPj = PjC.

Proof. Let v be an arbitrary vector. Applying (5.9) to CPjv yields

CPjv =
∑
`∈S

P`CPjv.

Now recall that with the Shannon wavelet basis, the subspaces (Wj)j∈S have disjoint
frequency supports. Because C does not modify the frequency support of a signal
(since it is diagonalized in the DFT basis), it must be that CPjv ∈Wj . Therefore,
P`CPjv = 0 for ` 6= j and

CPjv = PjCPjv = PjC

v −
∑

`∈S\{j}

P`v

 .

From this relation, we can reapply the same argument to obtain CPjv = PjCv
for every v. This is equivalent to the commutativity of C and Pj .

5.4.2 Derivation of a subband-adapted bound

Our algorithm is based on the idea of cutting the cost function into subband-specific
terms, thanks to the above commutativity property.

Property 8. When using the Shannon wavelet basis,

C(x) =
∑
j∈S
‖Pjy −HPjx‖22 + λ‖Wjx‖1,

where Pj is the projection operator on the jth subband.

Proof. Using (5.9), we first observe that

y −Hx =
∑
j∈S

Pjy −HPjx.

Property 7 tells us that we can rewrite the components of this sum as Pj(y−Hx),
which shows that they are mutually orthogonal (since the subspaces (Wj)j∈S are
orthogonal). This implies that we can separate the data term as follows:

‖y −Hx‖22 =
∑
j∈S
‖Pjy −HPjx‖22.
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Combining this relation with the fact that ‖Wx‖1 =
∑
j∈S ‖Wjx‖1 yields the

desired result.

The above result allows us to bound the cost function in a subband-specific
manner. The idea is to apply the bound of Daubechies et al. to the individual
terms of the sum in Property 8, leading to the following type of auxiliary functional:

An(x) = C(x) +
∑
j∈S

αj‖Pjx(n) −Pjx‖22 − ‖HPjx(n) −HPjx‖22. (5.10)

The fundamental difference is that we now have subband-dependent constants
(αj)j∈S , which can be chosen significantly smaller than the constant α of the stan-
dard algorithm. More precisely, for the sum in (5.10) to be positive, it is sufficient
that, for every j,

αj > ρj(HTH) where ρj(HTH) = max
‖v‖2=1,v∈Wj

‖Hv‖22.

We point out that the definition of ρ(HTH) (a squared matrix norm) is similar to
that of ρj(HTH). However, in the latter, the maximum is taken over subspace Wj .
Therefore, we necessarily have

ρj(HTH) ≤ ρ(HTH).

Equivalently, since H is a convolution matrix, ρj(HTH) is the largest squared
modulus of the DFT coefficients of H, over the frequency support of subband Wj .
This value can be much smaller than ρ(HTH) (the largest squared modulus over
the whole spectrum). Fig. 5.4 compares choices for α and (αj)j∈S in a simplified
1D situation.

When the previous condition is met, An(x) upper-bounds C(x). Still, An(x) is
easy to minimize (thanks to the commutativity stated in Property 7). This trans-
position of Properties 5 and 6 to our new auxiliary functional can be summarized
as follows:

Property 9. Assume that αj > ρj(HTH) holds for every j ∈ S in definition
(5.10). Then An(x) > C(x), except at x = x(n), where An(x) = C(x). Moreover,
(5.10) is equivalent to

An(x) =
∑
j∈S

αj ‖Pj [x(n) + α−1
j HT (y −Hx(n))]−Pjx‖22 + λ‖Wjx‖1 + cj ,

where the constants (cj)j∈S do not depend on x.
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(b)

Figure 5.4: Comparison of the constants α and (αj)j∈S for a fictitious
1D low-pass convolution kernel. The dashed curve represents the squared
modulus of its Fourier transform.

Proof. The definition of ρj(HTH) implies that

αj‖Pjx(n) −Pjx‖22 − ‖HPjx(n) −HPjx‖22 ≥ 0

for every j ∈ S. When x 6= x(n), there is at least one j for which this inequality is
strict. If x = x(n), the equality is clear. This proves the first part of the property.

Applying Property 6 to every term of the sum in (5.10) yields

An(x) =
∑
j∈S

αj ‖Pjx(n) + α−1
j HT (Pjy −HPjx(n))−Pjx‖22 + λ‖Wjx‖1 + cj .

Since we are using Shannon wavelets, we can use the commutativity of Pj with the
convolution matrices H and HT to derive the second part of the property.

5.4.3 The resulting algorithm

Let us define the constants τj = 1/αj and the intermediate signal

z(n) = x(n) +
∑
j∈S

τjPjHT (y −Hx(n)).

Since the Shannon wavelet basis is orthonormal, we can replace Pj by Wj in the
expression of Property 9. The minimization of An(x) then becomes equivalent to
the minimization of∑

j∈S
αj

(
‖Wjz(n) −Wjx‖22 + λτj‖Wjx‖1

)
.
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Each term of this sum depends on the wavelet coefficients of x in a different subband.
As a consequence, we can minimize them independently. Moreover, the individual
terms have the same form as in (5.6), up to a (positive) multiplicative constant.
Our new auxiliary functionals can thus be minimized using essentially the same al-
gorithm as before—with the same cost per iteration—but with subband-dependent
parameters.

The resulting “fast thresholded Landweber” (FTL) algorithm alternates be-
tween the following two steps:

• Compute the Landweber iteration

z(n) = x(n) +
∑
j∈S

τjPjHT (y −Hx(n))

with subband-dependent step sizes τj .

• Perform the wavelet-domain denoising operation

x(n+1) =
∑
j∈S

WT
j Tλτj/2{Wjz(n)}

with subband-dependent thresholds λτj/2.

5.5 Numerical experiments

5.5.1 Implementation details and computational cost

The FTL algorithm is simple to implement, for it essentially consists in going back
and forth between the frequency domain and the wavelet domain.

In the first step, one must start by computing the Landweber correction term
HT (y−Hx(n)). This is done in the DFT basis, where H is diagonalized. The actual
update should a priori be performed in the wavelet domain, since the step sizes are
subband-dependent. However, in the particular case of a Shannon wavelet basis,
it can be carried out in the frequency domain: it is equivalent to multiplying each
frequency component of the correction term by τj , where j refers to the wavelet
subband that contains the considered frequency.

As described above, the second step just requires the application of a wavelet
transform to z(n), followed by a soft-thresholding and an inverse wavelet transform
of the result. However, in practice—for both algorithms presented in this chapter—
we use the random-shift method described in [78]. The main motivation is to reduce
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unpleasent artifacts that are common side-effects of thresholding operations in non-
redundant wavelet bases. Still, we would like to do so without having to resort to a
fully shift-invariant (undecimated) transform. The compromise consists—for every
iteration—in applying a random (circular) shift to the intermediate estimate z(n),
before performing its wavelet decomposition. After the thresholding and the inverse
transform, the new estimate is shifted back to the original position. By doing this,
the effect of thresholding is “averaged out” over multiple shifts during the iteration
process. Note that a shift in the image domain corresponds to a simple modulation
in the frequency domain. This means that the random-shift method can be used
at no significant additional cost.

The computational cost is therefore essentially the same as for the classical
thresholded Landweber algorithm, which also requires two (one direct and one in-
verse) wavelet transforms per iteration. We use a frequency-domain implementation
of the wavelet transform [25]. Thus, every iteration essentially amounts to com-
puting two FFTs, which is no more than the standard algorithms mentioned in the
introduction.

One last remark relating to the scaling-function subspace: to simplify the pre-
sentation, we have not distinguished it from the wavelet subspaces so far. However,
the scaling-function coefficients are usually not included in the regularization term,
which means that they are not thresholded in practice.

5.5.2 Evaluation protocol

To compare the performance of the thresholded Landweber (TL) and the fast
thresholded Landweber (FTL) algorithms, we performed several experiments on
synthetic and real data. The literal way of assessing the convergence speedup of
our algorithm would be to compare the intermediate estimates to the true minimizer
of the cost function. Generally, however, this true minimizer is not available and its
determination would involve an overwhelming amount of computations. Therefore,
following the common practice in the field, we will use the quadratic error between
the intermediate estimates and the original image (gold-standard). This is justified
from at least two standpoints.

1. The user standpoint: ultimately, what counts in practice is the difference
between the deconvolution result and the original signal.

2. The theoretical standpoint: the true minimizer can be shown to be “close”
to the original signal in the following sense. When the noise level and the
regularization parameter tend to zero, the minimizer of the cost function
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tends to the original signal (see the paper by Daubechies et al. [58] for a
rigorous formulation and proof).

For each experiment, we used the same regularization parameter for the TL and
FTL algorithms. For the phantom experiments, this value was optimized to yield
the result closest to the original signal after a large number of FTL iterations (so
as to approach the true minimizer reasonably well). In the real data cases, it was
adjusted empirically for best visual appearance.

5.5.3 Visual comparison in 2D: results for a limited number
of iterations

In the first experiment, we took a 512 × 512 image of a neuron cell acquired on
a confocal microscope as our (ground-truth) original image. We then simulated
an optical defocusing blur produced by a widefield microscope. We used a stan-
dard diffraction-limited PSF model [94, 236], which is represented in Fig. 5.5.3 (b).
Gaussian white noise was added to the result; the variance σ2 was set such that
the blurred signal-to-noise ratio (BSNR) was equal to 40 dB. The BSNR is used to
quantify the noise level with respect to the original signal strength, while taking
into account the attenuation introduced by the simulated imaging device. It is
defined as

BSNR = 10 log10

(
‖Hxorig‖22 −N mean(Hxorig)2

Nσ2

)
.

Here, N is the total number of pixels per image and mean(Hxorig) stands for the
average gray level of the blurred original image.

Fig. 5.5.3 shows the original image (a) and the simulated measurement (c).
Estimates at different stages of the TL and FTL iterations are displayed in Fig.
5.6. For both algorithms, we used the same initial estimate (the measured image y),
the same number of decomposition levels (jmax = 5) and the same regularization
parameter. It is seen that the images obtained after 10 or 30 iterations of the
TL algorithm are less sharp than the one obtained with 10 iterations of the FTL
algorithm. This is especially true for the details inside the object which exhibit
better contrast than in the latter. It is only after a larger number of iterations (100)
that the output of the TL algorithm gets closer to the FTL result with 10 iterations,
at least from a visual standpoint. We did not include the results of the FTL
algorithm with more than 10 iterations, since the differences are not perceptible
visually because the algorithm has already essentially reached convergence.
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(a) Original (b) PSF

(c) Measured

Figure 5.5: (a) The original confocal image (courtesy of Bertrand Vileno,
LNNME, EPFL) and (c) the simulated widefield image of Section 5.5.3.
The square root of the PSF is shown in (b), with a 16× zoom factor com-
pared to (a) and (c).
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(a) Original (b) Measured (c) FTL, 10 iterations

(d) TL, 10 iterations (e) TL, 30 iterations (f) TL, 100 iterations

Figure 5.6: Deconvolution results for the setup of Fig. 5: comparison on
a 128× 128 region of interest.
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Figure 5.7: SER gain as a function of the iteration number for the exper-
iment of Section 5.5.3.

5.5.4 Quantitative comparison in 2D: number of iterations
to reach a given level of SER gain

The above results strongly suggest that the FTL algorithm requires fewer iterations
than the TL algorithm to reach a given level of restoration quality. Fig. 5.7 gives a
quantitative insight: it shows the evolution of the signal-to-error ratio (SER) as a
function of the iteration number. For an estimate x, the SER is defined as

SER(x) = 10 log10

(
‖xorig‖22
‖x− xorig‖22

)
.

For each estimate x(n), we compare this figure to the SER of the measured signal,
leading to the SER gain:

SERG(x(n)) = SER(x(n))− SER(y).

One can observe that the FTL algorithm requires less than 10 iterations to reach
an improvement of 8 dB. This is roughly thirty times less than the TL algorithm,
which takes about 300 iterations to reach the same level.

We performed a series of more extensive experiments on 4 standard test-images
(Cameraman, MRI, House, Bird). We convolved these images with a 9× 9 uniform
blur kernel and added white Gaussian noise to the results in order to replicate
the experimental setup of Figueiredo and Nowak. We considered different noise
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levels (BSNR = 10, 20, 30, 40, 50 dB) and we averaged the SER gains over 30 noise
realizations. For each test case, we used the same value of λ and the same initial
estimate for both algorithms. The value of λ was optimized to yield the best
possible SER gain after 300 iterations of the FTL algorithm. The initial estimate
was obtained using the same Wiener-type filter as Figueiredo and Nowak [78]:

x(0) = (HTH + 10−3σ2I)−1HTy.

The results are summarized in Table 5.1. For each image, we indicate the SER
gain of the FTL algorithm after 10 and 30 iterations. We also give the number of
iterations of the TL algorithm required to reach the same SER improvement. The
corresponding acceleration factors (number of TL iterations, divided by number of
FTL iterations) are listed in the 5th and 8th column. The acceleration factors vary
between 1.5 to 4.7 for low BSNR levels (10-20 dB) and 32.3 to 191.5 for high BSNR
levels (40-50 dB).

Note that the accelerated algorithm that has been derived here is specific to
Shannon wavelets and is not directly transposable to other types of basis functions.
Nevertheless, the results obtained for the Cameraman image are comparable to
those reported by Figueiredo and Nowak in terms of restoration quality3 , even
though these authors used different wavelets than ours. In fact, they observed that
the performance of their algorithm was only very mildly dependent on the choice
of a particular type of wavelet. Still, the present results suggest that there should
be ways of accelerating the convergence with other types of wavelets as well, which
calls for further investigation.

5.5.5 Visual comparison in 3D: experiment on fluorescence
microscopy data

For the last experiment, we used 3D image-stacks of a biological sample. The sam-
ple contained fibroblast cells stained with a DiO dye from Invitrogen Corporation
(Carlsbad, USA). This dye is predominantly retained in the cell membrane. In ad-
dition, fluorescent microbeads were introduced into the sample medium. The dye
and the microbeads were chosen to have approximately the same peak excitation
and emission wavelengths; a 505-530 nm bandpass filter was used to delimit the
detection spectrum.

The sample was observed on a Zeiss LSM 510 confocal microscope with a 63×,
1.4 NA oil-immersion objective. We first acquired a stack of images with the pinhole

3Table I of [78] indicates a gain of 6.33 dB at 40 dB BSNR, while our experiments yielded 6.03
and 6.61 dB after 10 and 30 iterations of the FTL algorithm respectively.
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BSNR
SERG
FTL

10 iter.

Number
of

TL iter.

Accel.
factor

SERG
FTL

30 iter.

Number
of

TL iter.

Accel.
factor

C
am

er
am

an 10 2.90 36 3.6 2.94 61 2.0
20 2.62 39 3.9 2.74 87 2.9
30 4.31 121 12.1 4.43 172 5.7
40 6.03 541 54.1 6.61 972 32.4
50 7.80 1876 187.6 8.38 > 2000 > 66.7

M
R

I

10 3.68 40 4.0 3.87 99 3.3
20 4.53 47 4.7 4.81 91 3.0
30 6.79 167 16.7 6.98 211 7.0
40 7.94 724 72.4 9.55 1344 44.8
50 9.53 1915 191.5 10.70 > 2000 > 66.7

H
ou

se

10 3.73 22 2.2 3.82 58 1.9
20 3.81 27 2.7 3.99 49 1.6
30 6.25 170 17.0 6.39 199 6.6
40 7.30 559 55.9 9.07 969 32.3
50 7.49 1616 161.6 8.90 > 2000 > 66.7

B
ir

d

10 4.65 20 2.0 4.70 45 1.5
20 3.67 34 3.4 3.81 51 1.7
30 5.76 180 18.0 5.93 216 7.2
40 5.75 555 55.5 8.24 1004 33.5
50 5.40 1562 156.2 7.12 > 2000 > 66.7

Table 5.1: Number of iterations required to reach a given level of SER
gain (SERG).

completely open. In this configuration, the confocal effect is not used and the
system becomes essentially equivalent to a widefield microscope. This results in
images with out-of-focus blur due to the poor localization of the widefield PSF
along the z-dimension. The second set of images was acquired with the pinhole
radius set to 1 Airy unit. In this configuration, much of the out-of-focus light is
rejected by the system, resulting in significantly sharper images. We then used the
confocal data set as a reference for comparing the performance of the TL and FTL
algorithms on the 3D widefield data set.

Maximum intensity projections (along the z axis) of both data sets are shown
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(a) Widefield image (b) Confocal reference

(c) TL, 10 iterations (d) FTL, 10 iterations

Figure 5.8: Maximum intensity projections of 384×288×16 image stacks.
(a, b) Widefield and confocal image of the same object. (c, d) Results of
the deconvolution algorithms applied to the widefield image.

in Fig. 5.8. Below are the results of 10 iterations of the TL and FTL algorithms
on the widefield stack; this corresponds to roughly 1 minute and 30 seconds of
computation time on a 2.66 GHz Intel Xeon workstation. We used a 3D version
of the diffraction-limited model mentioned above (with parameters corresponding
to manufacturer specification: NA = 1.4, ni = 1.518) to generate the PSF and we
took the measured widefield image as the initial estimate.

The TL algorithm cannot produce a visible deconvolution effect within 10 iter-
ations; its output is very similar to the original widefield data. On the other hand,
the FTL algorithm rapidly produces an estimate that is significantly sharper. In
particular, the thickness of the cell membranes is comparable to the confocal image.
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Also, the fluorescent microbeads are brighter than in the widefield image. The
results were shown to biologists who were positively impressed.

5.6 Conclusion

We have presented a fast algorithm for wavelet-regularized variational deconvolu-
tion. It is based on the use of a Shannon wavelet basis, which allows for a subband-
adapted minimization strategy. As a result, the update introduced by each step of
the FTL algorithm is much more efficient than with the standard TL algorithm.
For BSNR levels above 30 dB, we have obtained acceleration factors of one order of
magnitude or better. This corresponds to relatively standard acquisition conditions
for widefield deconvolution microscopy, at least when considering fixed specimens4.
Thanks to this substantial speed increase, we have demonstrated the feasibility of
3D wavelet-based deconvolution microscopy on a widefield fluorescence image stack.

A direct extension of the proposed algorithm is to consider subband-dependent
regularization parameters [58] and/or other sparsity-enforcing penalizations (that
is, other thresholding functions, see [78]). The principle of the method could also
be applied to other types of operators that are block-diagonal in the basis that is
used for regularization. The possibilities of this type of procedure are numerous and
our current experimentations suggest that there is room for improvement, which
calls for further investigations and more extensive comparative studies.

4Current cooled CCD cameras are capable of much wider dynamic ranges of 12 or even 16 bits
per pixel (1 bit ≈ 6 dB).



Chapter 6

A general multilevel
algorithm

Summary

We present a multi-level extension of the popular “thresholded Landweber” algo-
rithm for wavelet-regularized image restoration that yields an order of magnitude
speed improvement over the standard fixed-scale implementation. The method is
generic and targeted towards large-scale linear inverse problems, such as 3D decon-
volution microscopy.

The algorithm is derived within the framework of bound optimization. The key
idea is to successively update the coefficients in the various wavelet channels us-
ing fixed, subband-adapted iteration parameters (step sizes and threshold levels).
The optimization problem is solved efficiently via a proper chaining of basic itera-
tion modules. The higher-level description of the algorithm is similar to that of a
multigrid solver for PDEs, but there is one fundamental difference: the latter iter-
ates though a sequence of multiresolution versions of the original problem, while,
in our case, we cycle through the wavelet subspaces corresponding to the differ-
ence between successive approximations. This strategy is motivated by the special
structure of the problem and the preconditioning properties of the wavelet repre-
sentation. We establish that the solution of the restoration problem corresponds
to a fixed point of our multilevel optimizer. We also provide experimental evidence

This chapter is Copyright c© 2009 IEEE. Reprinted, with permission, from [241].
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that the improvement in convergence rate is essentially determined by the (uncon-
strained) linear part of the algorithm, irrespective of the type of wavelet. Finally, we
illustrate the technique with some image deconvolution examples, including some
real 3D fluorescence microscopy data.

6.1 Introduction

6.1.1 Motivation and originality of the present work

Inverse problems arise in various imaging applications such as biomicroscopy [236,
188], medical imaging [136, 21] or astronomy [158, 207]. An increasingly impor-
tant issue for reconstruction and restoration tasks is the mass of data that is now
routinely produced in these fields. The instrumentation typically allows for high-
dimensional and multimodal imaging, fostering the evolution of experimental prac-
tices towards more quantitative and systematic investigations. This trend will ar-
guably persist over the forthcoming years, and, as a result, computation time will
remain a serious bottleneck for restoration methods, despite the progress of com-
puter hardware. In this context, advanced (non-linear) restoration methods that
were developed for traditional 2D imaging cannot be applied directly; larger-scale
problems require more efficient algorithmic implementations.

The concept of “sparsity” has drawn considerable interest recently, leading to a
new and successful paradigm for the regularization of inverse problems. The main
idea is to constrain the restored image to have only a few non-zero coefficients in a
suitable transform domain. Based on this principle, a simple and elegant iterative
algorithm—which we shall call the “thresholded Landweber” (TL) algorithm—was
independently derived by several research groups [78, 58, 16]. The method has the
advantage of being very general. However, it is known to converge slowly when
applied to ill-conditioned inverse problems (see [135, 23] and Chapter 5), which
restrains its suitability for large data sets.

In the present work, we construct a multilevel version of the TL algorithm that
is significantly faster; this allows us to apply the method for the restoration of real
3D multichannel fluorescence micrographs. To do so, we specifically consider the
case where the sparsity constraint is enforced in the wavelet domain, which was
shown to yield state-of-the-art results for 2D image restoration (see [78]). From
a numerical standpoint, the advantage of using wavelet representations is twofold.
First, their tree structure naturally leads to efficient computational schemes in the
spirit of Mallat’s Fast Wavelet Transform [141]. Second, the spectral localization
properties of wavelets make them suitable for preconditioning, that is, for partly
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compensating the poor conditioning of the inverse problem.
The structure and the convergence speed of our multilevel algorithm make it

comparable to multigrid schemes [97, 32]. These schemes belong to the most effi-
cient known methods for the numerical resolution of partial differential equations;
they are typically one order of magnitude faster than standard iterative methods.
In fact, the connection between wavelet and multigrid theory was recognized early
on [126, 35, 56, 31]. Surprisingly, though, the potential of wavelet-based multilevel
methods for image restoration has hardly been exploited so far. An exception is
the paper by Wang et al. [244], which is however restricted to linear restoration
and based on a relatively empirical reformulation of the image-formation model in
the wavelet domain.

Our approach is based on a non-quadratic variational formulation (leading
to a non-linear restoration method) and on the principle of bound optimization
[125, 111]. This principle also underlies the derivation of [58] and is known under
several alternative denominations, such as optimization transfer, surrogate func-
tional optimization or majorize-minimize (MM) strategy.

Our method can be related to the family of “block-alternating MM algorithms”
[113]. In the context of statistical signal processing, one of the earliest representa-
tives of this family is the “Space-Alternating Generalized EM” (SAGE) algorithm
of Fessler and Hero [76]. More recently, a bound-optimization approach was also
used by Oh et al. to derive a multigrid inversion method for non-linear problems
[167]. While the works [113, 76, 167] do not involve wavelets, the latter can be
related to the so-called lazy wavelet transform [142], which itself corresponds to the
anterior concept of hierarchical basis in the finite element and multigrid literature
[256, 13]. Similarly, our work can be related to generalizations of the hierarchical-
basis method [35, 232].

To achieve our goal, we construct a family of bounds that allow us to divide
the original variational problem into a collection of smaller problems, correspond-
ing to the different scales of the wavelet decomposition. The bounds can be made
particularly tight for specific subbands. This leads to subband-dependent iteration
parameters (step sizes and threshold levels), which are the key to faster convergence.
The bound optimization framework provides a rationale for choosing these param-
eters in a consistent manner. At the same time, this framework is simple to deploy
and guarantees that the underlying cost functional is monotonically decreased.

6.1.2 Image-formation model

We will be concerned with the recovery of signals that are distorted by a linear
measurement device and noise. Throughout the chapter, we will use a discrete
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description where the measured signal is given by the algebraic relation

y = Hxorig + b.

Here, the vector xorig ∈ RN holds lexicographically ordered samples of the original
D-dimensional signal (N = N1 × N2 × . . . × ND is the product of the number
of samples along each dimension). H is a transform matrix modeling the image-
formation device and b represents the noise component.

The estimation of the original signal xorig from the measurement y is an ill-
posed inverse problem [17]. Most approaches for overcoming this ill-posedness can
be described in a variational framework, where one looks for an estimate that
minimizes a predefined cost functional. This functional is typically the sum of a
data term and a regularization term. Without going into the details of a Bayesian
interpretation [158, 78], the former term enforces a certain level of consistency
between the estimate and the measured signal (with respect to the image-formation
model). The latter term prevents overfitting—and thus instability—by favoring
estimates that are close to some desirable class of solutions (according to some
regularity measure).

6.1.3 Regularized inversion using a wavelet-domain sparsity
constraint

The discovery that natural images can be well approximated using only a few large
wavelet coefficients can be traced back to the seminal work of Mallat [141] and is,
for example, exploited in the JPEG2000 compression format [45]. Following several
recent works (see below), we will use a regularization term that promotes esti-
mates with a sparse wavelet expansion; the data term will be a standard quadratic
criterion.

In the sequel, we assume that the reader is familiar with the filter-bank imple-
mentation of the wavelet transform [142]. We will denote by w the vector that
contains the coefficients of an estimate x in a preassigned wavelet basis; we shall
refer to this basis as the synthesis wavelet basis. Introducing the synthesis matrix
W, whose columns are the elements of this basis, we can write that

x = Ww.

Later in this chapter, we will also use the analysis matrix W̃, whose columns are
the elements of the dual wavelet basis. The perfect-reconstruction condition can be
expressed as WW̃T = I, where T denotes transposition (or Hermitian transposition
in the case of a complex wavelet transform). Note that the present formulation also
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includes the case of overcomplete wavelet representations (W and W̃ are then
non-square matrices).

With these notations, we consider that a solution to the inverse problem is given
by x = Ww, where w minimizes the functional

C(w) = ‖y −HWw‖22 + λ‖w‖1. (6.1)

Here, ‖w‖1 represents the `1-norm of the wavelet coefficients, that is, the sum
of their absolute values. Compared to the standard Euclidian norm (denoted by
‖ · ‖2), the `1-norm puts more weight on small coefficients, and less weight on large
coefficients. Thus, depending on the magnitude of the regularization parameter
λ, it favors estimates whose energy is mostly concentrated in a few large wavelet
coefficients. Note that in general the coarsest-scale scaling-function coefficients are
not included in the `1 regularization term (see Section 6.3.3 for more details).

An algorithm for the minimization of (6.1) has been derived in [78, 58, 16], as
well as in the earlier works [157, 166]. A similar procedure is also described in [205,
206]. The beauty of the method resides in its simplicity: it essentially consists in
alternating between a Landweber iteration [124] and a wavelet-domain thresholding
operation [246]—hence the name “thresholded Landweber” (TL) algorithm. When
H is adequately normalized and W is orthonormal (implying that W̃T = WT ),
the TL algorithm can be described by the recursive update rule1

x←WTλ/2
{

WT
(
x + HT (y −Hx)

)}
, (6.2)

starting from some arbitrary initial estimate x. Here, Tθ{·} stands for a pointwise
application of the well-known soft-thresholding function [68], which can be defined
for w ∈ C as

Tθ(w) = sgn(w) max(|w| − θ, 0) where sgn(w) =

{
0 if w = 0;
w
|w| otherwise.

The presence of Tλ/2 in (6.2) guarantees that a certain fraction of wavelet coefficients
will be set to zero, depending on the magnitude of the regularization parameter λ.

1To keep the notations simple, we do not introduce a specific index to distinguish between the
individual estimates. Instead we use the assignment operator “←” whenever a quantity (such as
the estimate) is updated. The algorithmic signification of this operator is that the expression on
the right-hand side is evaluated and the result is stored in the left-hand side variable.
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6.1.4 Recent relevant work and objectives

The present work represents a substantial extension of the algorithm presented in
Chapter 5, which was specific to convolutive image-formation operators and to a
sparsity constraint in the (bandlimited) Shannon wavelet basis [142]. Here, the
goal is to derive a comparably fast algorithm for an arbitrary wavelet basis, with-
out making the assumption that the image-formation operator leaves the different
subbands uncoupled. The approach described in the present chapter differs from
the previous one in that it is based on a sequential update of the wavelet sub-
bands, instead of a parallel update. This requires a more sophisticated multilevel
algorithm.

Similarly to what is done in some presentations of the multigrid methodology—
where a “model problem” is often used to convey the intuition [32]—we will mo-
tivate and illustrate our approach in the context of deconvolution. In this case,
H can be thought of as a (block-)circulant matrix corresponding to a given con-
volution kernel; our multilevel method is then particularly efficient, thanks to the
shift-invariant structure of the wavelet subspaces. However, its principle can be
applied to more general inverse problems. The most direct extension concerns
inverse problems for which HTH can be approximated by a convolution matrix—
specifically tomographic image-reconstruction, where H corresponds to a discretized
Radon transform. The subclass of inverse problems involving a unitary image-
formation operator (such that HTH = I)—e.g., denoising, reconstruction from
K-space (frequency-domain) samples or digital holography microscopy [130]—may
also benefit from the method. In the present work, we have tried to provide a
general and modular pseudo-code description of the multilevel TL algorithm that
is readily transposable to machine implementation.

Several works have already extended the standard TL algorithm (which was
originally formulated only for orthonormal bases) to more general decompositions,
including overcomplete wavelet representations [135, 42]. Nevertheless, the principle
and the convergence properties of the algorithm were not fundamentally changed
in these settings (although [42] is based on a quite different proximal thresholding
interpretation).

Faster methods for the minimization of (6.1) have only been proposed very
recently. We are aware of two-step methods [22, 23, 77], line-search methods [72, 73,
79], coordinate-descent methods ([84] and also [72, 73]) and a domain-decomposition
method [80]. The latter is based on a well-established concept from the finite-
element literature, so that it is arguably the closest to our approach. However
it is not specific to wavelets and relies entirely on dimension-reduction effects for
decreasing the computational complexity.
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The above methods differ with respect to the number and the determination of
their step sizes. Among the fixed-step-size strategies, the domain-decomposition ap-
proach [80] uses the same step size for all subspaces, whereas the coordinate-descent
methods described in [72, 73, 84] use step sizes that are adapted to each atom indi-
vidually. The methods of Bioucas-Dias, Figueiredo and Nowak [22, 23, 77] have the
advantage of simplicity, because they use only two iteration parameters that are
also determined a priori (however these parameters may require some hand tuning
based on the outcome of a small number of preliminary iterations). The principle
of the line-search methods [72, 73, 79] is that the step sizes are adjusted depending
on the context, which involves additional computations at every iteration. Our al-
gorithm is somewhere in-between all these approaches: the step sizes are adjusted
at the level of individual wavelet subbands, they can be precomputed for a given
image-formation operator and wavelet family, and they remain fixed during the
entire algorithm.

In summary, to the best of our knowledge, a wavelet-based multilevel method
comparable to ours—which combines cyclic updates of the different resolution lev-
els with the preconditioning effect of subband-specific iteration parameters—has
not been proposed so far. Therefore, we have chosen to focus on the derivation
and the experimental validation of our algorithm. A theoretical study of its conver-
gence properties and a comparison with the aforementioned techniques is a research
subject in its own right that will certainly be investigated in the future.

The remainder of the chapter is organized as follows. In Section 6.2, we revisit
the derivation of the TL algorithm (6.2) which was presented in [58], introducing
additional degrees of freedom into the bound optimization framework. This leads
to our multilevel algorithm, described in Section 6.3. Section 6.4 is dedicated to
numerical experiments.

6.2 Divide—The thresholded Landweber algorithm,
revisited

6.2.1 Notations

In this section, we will primarily be interested in the subspace structure of the
wavelet representation. The tree-structure of the wavelet transform—that is, the
embedding of the underlying scaling-function subspaces—will become important for
the algorithmic considerations of the next section. To account for both aspects, we
introduce the following notations, which are illustrated in Fig. 6.1. Throughout this
chapter, we shall use the terms “scale”, “resolution level”, “decomposition level”
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and “level” interchangeably.

• J : number of resolution levels of the wavelet representation (j: scale index).

• Mj : number of wavelet subbands at scale j, excluding the scaling-function
subband (m: subband index).

• s = (j,m): general subband index. Our convention will be that (j, 0) corre-
sponds to the scaling-function subband at scale j; however, for the sake of
conciseness, we will often simply write j instead of (j, 0). The context will
indicate whether we are referring to the scaling-function subband or to the
decomposition level.

• Sj = {(j,m),m = 1, . . . ,Mj}: indexing set for all wavelet subbands at a scale
j ≤ J − 1. At the coarsest level, we include the scaling-function subband:
SJ = {(j,m),m = 0, . . . ,MJ}.

• S: indexing set for all subbands produced by a J-scale decomposition (in-
cluding the coarsest-scale scaling-function subband):

S =
J⋃
j=1

Sj .

• ws: wavelet or scaling-function coefficients of the current estimate corre-
sponding to subband s. w is the concatenation of ws for every s ∈ S. Note
that w0 is an alias for x.

• Gj,m: matrix corresponding to the reconstruction part (upsampling and fil-
tering using the synthesis filters) of the mth channel of the filter bank at scale
j (maps the wavelet subband (j,m) into the scaling-function subband at scale
j − 1).

• Ws: “restriction” of the synthesis matrix W to subband s, such that

Ww =
∑
s∈S

Wsws. (6.3)

More precisely, this is a cascade of upsampling and filtering operations defined
recursively by {

W1,m = G1,m;
Wj,m = Wj−1 ×Gj,m for j ≥ 2.

(6.4)
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Level

w3 w3,1 w3,2 w3,3

0

1

2

3

w2,3w2 w2,1 w2,2

w0 = x

w1,2 w1,3w1 w1,1

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕⊕ ⊕⊕

W3,3 G2,3

G3,3

W2,3 G1,3 =W1,3

S1

S2

S3

Figure 6.1: Complementary notations reflecting the tree structure (no-
tations associated with continuous lines) and the subspace structure (no-
tations associated with dashed lines) of the wavelet representation. Here
the number of decomposition levels is J = 3. The number of subbands
is Mj = 3 at every scale j, which is typical for a 2D separable wavelet
representation.

6.2.2 Estimation of the cost functional using subband-dependent
bounds

Our algorithm is based on the availability of a wavelet-domain estimation of H that
takes the following form: we assume that there are constants (αs)s∈S such that

‖HWw‖22 ≤
∑
s∈S

αs‖ws‖22. (6.5)

We shall assume for now that this inequality holds for an arbitrary vector of wavelet
coefficients w, and we shall revisit the derivation of the bound-optimization algo-
rithm of Daubechies et al. [58]. Rather than directly considering the original cost
functional C(w), the idea is to iteratively construct a series of auxiliary functionals
that are easy to minimize.
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Given an estimate of the minimizer of C(w), say wold, we define

A(w) =
∑
s∈S

(
αs‖wold

s −ws‖22
)

+ C(w)− ‖HW(wold −w)‖22. (6.6)

This functional has three important characteristics:

1. When w = wold, A(w) takes the same value as C(w).

2. For all other values of w, A(w) is an upper-bound of C(w), by virtue of (6.5).

3. A(w) admits a minimizer with a closed-form expression.

The first two properties imply that, if we find a new estimate wnew that minimizes
(or at least decreases) A(w), we also decrease C(w). We simply have to observe
that

C(wnew) ≤ A(wnew) ≤ A(wold) = C(wold).

The third property allows us to actually construct such a new estimate. It originates
from the negative (rightmost) term in (6.6), which cancels out the coupling of the
wavelet coefficients in C(w). As a result, the auxiliary functional can be rewritten
as

A(w) = c+
∑
s∈S

αs

(
‖wold

s + α−1
s WT

s HT (y −HWwold)︸ ︷︷ ︸
rs

−ws‖22 + λα−1
s ‖ws‖1

)
,

(6.7)
where the constant c does not depend on w. This expression reveals that the
auxiliary functional is essentially a weighted sum of “subfunctionals” that depend
on distinct subbands. Furthermore, the wavelet coefficients appear to be completely
decoupled in each subfunctional. This means that once we have computed rs =
WT

s HT (y −HWwold) for every subband s, we can minimize each subfunctional
using solely pointwise operations.

This minimization procedure can be related to two standard image-restoration
methods. First, the computation of wold

s +α−1
s rs may be seen as a wavelet-domain

Landweber iteration [124, 17]: the wavelet decomposition of the “reblurred residual”
HT (y −HWwold) serves as a correction-term, which is applied with a (subband-
dependent) step size α−1

s . Let us point out, however, that the decomposition of the
residual must be performed using the synthesis basis. Second, each subfunctional
can be interpreted as a denoising functional where wold

s + α−1
s rs represents the

wavelet coefficients of a signal to be denoised and λα−1
s is a regularization parameter

(again subband-dependent). The minimizer of such a functional is unique and is
obtained by soft-thresholding the coefficients of the noisy signal, with a threshold
level equal to half the regularization parameter [40].
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6.2.3 Relation with the standard thresholded Landweber al-
gorithm

Iterating the previous minimization scheme produces a sequence of estimates that
are guaranteed to monotonically decrease the cost functional. The procedure can
be summarized by the following two-step update rule:{

(a) For every s ∈ S, rs ←WT
s HT (y −HWw);

(b) For every s ∈ S,ws ← Tλα−1
s /2{ws + α−1

s rs}.
(6.8)

Note that the threshold levels must be adjusted proportionally to the inverse of the
bound constants.

In particular, when the bounds are the same for all subbands (αs = α for
every s), one obtains the standard “thresholded Landweber” (TL) algorithm. This
algorithm uses the same step size (α−1) and the same threshold level (λα−1/2) for
all subbands. It is relatively easy to obtain an admissible value for α when W is
an orthonormal matrix. We can then write that, for an arbitrary vector of wavelet
coefficients w,

‖HWw‖22 ≤ ρ(HTH)‖Ww‖22 = ρ(HTH)‖w‖22.

Here, ρ(HTH) denotes the spectral radius of HTH; when H is a convolution matrix,
this is simply the maximum over the squared modulus of its frequency response.
Thus, for (6.5) to hold, it is sufficient to choose αs = ρ(HTH) for every s. Note
that (6.2), which corresponds to ρ(HTH) = 1, is a space-domain reformulation
of the TL algorithm that is made possible by using an orthonormal basis. This
description is quite natural, since eventually we are interested in x = Ww.

However, we have already mentioned that the TL algorithm converges slowly,
especially when the image-formation matrix H is ill-conditioned. This can be ex-
plained intuitively by the fact that using the same bound α for all subbands can
only give a very limited account of the spectral characteristics of H. The corre-
sponding auxiliary functionals will thus be relatively poor approximations of the
original cost functional, and many intermediate minimization steps will be required
before getting a reasonable estimate of the minimizer.

6.2.4 The single-level thresholded Landweber algorithm

Our motivation for introducing subband-dependent bounds is to design auxiliary
functionals that better reflect the behavior of the underlying cost functional by
exploiting the spectral localization properties of the wavelet basis. Specifically,
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we would like to use an estimate (6.5) that is tighter—i.e., that involves smaller
constants αs—than the aforementioned bound for the standard TL algorithm.

In the sequel, ρs2 s1 will denote the largest singular value of the matrix WT
s2H

THWs1 .
In particular, ρs s = ρ(WT

s HTHWs) is the spectral radius of WT
s HTHWs; when

H is a convolution matrix, this is the upper Riesz bound of the filtered version of
the wavelet that spans subspace s. Note that ρs s can be significantly smaller than
ρ(HTH). As an intuitive example, one could imagine the case where H corresponds
to a low-pass filter and s is a high-frequency wavelet subband.

The quantity ρs s is important because it represents a lower limit for αs. Indeed,
for a vector w with a single non-zero wavelet subband, say ws, (6.5) reduces to
‖HWsws‖22 ≤ αs ‖ws‖22. For this inequality to hold for every ws, we must choose
αs ≥ ρ(WT

s HTHWs).
A particular case arises when the subspaces spanned by the matrices HWs are

mutually orthogonal. We can then use exactly the value αs = ρs s, since

‖HWw‖22 =
∑
s∈S
‖HWsws‖22 ≤

∑
s∈S

ρs s ‖ws‖22.

Chapter 5 was based on the fact that the bandlimited Shannon wavelet basis ex-
hibits this decorrelation property with respect to convolution operators. In such a
situation we can directly apply algorithm (6.8).

When considering arbitrary wavelet families and image-formation operators, we
must a priori bound numerous cross-subband correlation terms, since in general

‖HWw‖22 =
∑
s1∈S

∑
s2∈S
〈HWs2ws2 ,HWs1ws1〉. (6.9)

This would require constants αs that are significantly larger than ρs s. However,
we can make the following observation: if we impose that αs = ρs s, inequality
(6.5) remains valid for all vectors w that have at most one non-zero subband. This
means that (6.6) would define a valid upper-bound of the cost functional under the
constraint that w and wold differ by only one subband, that is, under the constraint
that we update only one subband at a time.

In practice, owing to the structure of the wavelet representation, it is algorithmi-
cally more efficient to be able to update all subbands at a given scale simultaneously.
We thus propose to replace (6.8) by{

(a) For every s ∈ Sj , rs ←WT
s HT (y −HWw);

(b) For every s ∈ Sj ,ws ← Tλα−1
s /2{ws + α−1

s rs}.
(6.10)
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This choice only requires taking into account correlations between a small number
of subbands (those located at the same scale), so that the resulting constants αs
are still close to ρs s. More precisely, the following property provides a valid upper-
bound under the constraint that we update only a single scale.

Property 10. If we set

αs =
∑
s0∈Sj

ρs0 s (6.11)

for every s, then inequality (6.5) holds for an arbitrary vector of wavelet coefficients
w satisfying the following constraint: there is a scale j such that for all subbands
s /∈ Sj, ws = 0.

Proof. Equality (6.9) reduces to

‖HWw‖22 =
∑
s1∈Sj

∑
s2∈Sj

〈HWs2ws2 ,HWs1ws1〉.

Combining this with the fact that, for every ws1 , ws2 ,

|〈HWs2ws2 ,HWs1ws1〉| ≤ ρs2 s1 ‖ws2‖2 ‖ws1‖2, (6.12)

we obtain

‖HWw‖22 ≤
∑
s1∈Sj

∑
s2∈Sj

ρs2 s1 (‖ws2‖22 + ‖ws1‖22)/2 =
∑
s∈S

αs‖ws‖22.

Appendix 6.6.1 describes an algorithm for computing the constants ρs0 s in the
convolutive case; for more general operators one may use the power method [91].
Let us emphasize that, under the condition of Property 10, every application of
(6.10) is guaranteed to decrease the auxiliary functional (and thus the original cost
functional), despite the fact that only a subset of subbands is updated. This follows
from (6.7), which shows that the minimization of the auxiliary functional can always
be divided into a collection of subband-specific—hence independent—minimization
problems. Of course, by letting j vary at every iteration, we can successively update
the subbands at all scales. The next section describes an efficient method for doing
this.
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Figure 6.2: Principle of the coarse-to-fine thresholded Landweber (CFTL)
algorithm for a two-level decomposition.

6.3 Conquer—The multilevel thresholded Landwe-
ber algorithm

The general idea behind our multilevel scheme is to interlace the computation of
the residual and the minimization procedure. To give the reader the intuition of
this principle, we focus on the description of a simplified strategy that consists in
applying (6.10) successively from the coarsest-scale to the finest-scale subbands.

6.3.1 A coarse-to-fine update strategy

Let r = WTHT (y−HWw) be the residual corresponding to the current estimate.
Assume that w is modified at scale j by applying procedure (6.10). In general,
this will imply a modification of the residual in all subbands (due to the matrix
WTHTHW, which couples the subbands). If the next iteration is performed at
scale j−1, it is however not necessary to recompute the entire residual; instead, one
can simply update the subbands s ∈ Sj−1. Denoting by (es)s∈Sj the modifications
that have been applied to the estimate, the corresponding correction that must be
applied to the residual in a subband s0 ∈ Sj−1 is

cs0 = −WT
s0H

TH
∑
s∈Sj

Wses = −WT
s0H

THWj−1

∑
s∈Sj

Gses.
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The above equality stems from the cascade implementation of the wavelet transform—
see (6.4). Thus, an updated version of the residual at scale j − 1 is obtained as
follows:

1. transfer all modifications to the scaling-function subband at the next finer
scale j − 1;

2. apply the “correction matrices” Cs = WT
s HTHWj−1 for every s ∈ Sj−1;

3. subtract the results from the respective subbands.

This principle is illustrated in Fig. 6.2; its recursive application leads to the
“coarse-to-fine thresholded Landweber” (CFTL) algorithm. A pseudo-code descrip-
tion is given below. Note that all modifications—including those from subbands
located at coarser scales than the current scale j—are progressively transfered to
finer scales. The CFTL algorithm depends on the “single-level thresholded Landwe-
ber” (SLTL) procedure, which essentially corresponds to the updating rule (6.10).
The only difference is that the modifications that are applied to the estimate are
stored in intermediate variables so as to be able to update the residual. For sim-
plicity, the variables ws, es and rs are considered to be global (for every subband
s) in all pseudo-code descriptions given in this chapter.

We emphasize that the correction steps 2) and 3) above are the only additional
operations compared to the standard TL algorithm. These steps should require
little computational effort at coarse levels, thanks to the pyramidal structure of
(decimated) wavelet representations. In other words, they can be implemented
efficiently if the computational complexity of evaluating HTH (the forward image-
formation model followed by the corresponding “back-projection”) scales well with
this data-size reduction.

A particular case arises when HTH is a convolution matrix. The shift-invariant
structure of wavelet subspaces then implies that the correction steps essentially
reduce to filtering operations. Here we refer to Appendix 6.6.1, which also gives a
recursive method for precomputing the correction filters: the procedure is akin to
a wavelet decomposition of the convolution kernel corresponding to HTH and is
easily implementable in the frequency domain (see also [25]). The correction steps
can be implemented with a linear cost provided that we store the DFTs of the
individual wavelet subbands; the actual wavelet coefficients are only needed for the
thresholding operations and can be computed efficiently using the FFT algorithm.
In terms of computational work, one iteration of our algorithm is therefore equiv-
alent to two FFTs per subband, which amounts to two FFTs at the signal level
(level 0). The overall complexity of a full coarse-to-fine run is thus on the same
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Algorithm 1 SLTL(j)
For every s ∈ Sj :

• es ← ws

• ws ← Tλα−1
s /2

{
ws + α−1

s rs
}

• es ← ws − es

order as one run of the standard TL algorithm, which also requires two FFTs per
iteration in the convolutive case.

With a slight anticipation of the next subsection, we conclude this part by noting
that multigrid methodologies sometimes advocate the approximate resolution of
coarse-level problems [32]. In the particular situations where the wavelet subbands
are weakly coupled by the image-formation operator, we have indeed observed that
the CFTL algorithm converges even if the correction steps are not applied; that is, if
the residual is only updated at the beginning of the iteration loop. This amounts to
applying (6.8) using fairly optimistic bound constants—without guarantee that the
cost functional is monotonically decreased—and calls for further investigation. This
approach may turn out to be useful when dealing with complex image-formation
models that can not be evaluated easily at coarse levels.

6.3.2 A general multilevel scheme

With the previous algorithm in mind, one can conceive of more general multilevel
strategies for updating the different scales in a more flexible manner. In Appendix
6.6.2, we provide a pseudo-code description of a method that is strongly inspired
by the multigrid paradigm. However, there is one fundamental difference: tradi-
tional multigrid schemes typically cycle through nested subspaces corresponding
to increasingly coarse discretizations of the original inverse problem [253]. In the
present context, we successively update the wavelet subbands at every scale; that is,
we reinterpret the different scales of the wavelet transform as a multilevel represen-
tation of the inverse problem. The corresponding subspaces are not nested—they
contain the oscillating components corresponding to the difference between succes-
sive coarse-level approximations. Incidentally, early attempts to apply the multigrid
paradigm to image-restoration problems remained relatively unsuccessful because
they were concentrating on slowly oscillating components [259, 170].

We have tried to specify the “multilevel thresholded Landweber” (MLTL) al-
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Algorithm 2 CFTL

• Initialization:

– Choose some initial estimate x

– Compute its wavelet decomposition: w← W̃Tx

• Repeat K times:

– Compute the residual: for every s ∈ S, rs ←WT
s HT (y −Hx)

– Update the subbands from coarse to fine levels, i.e., for j = J, J − 1, J −
2, . . . , 1:

∗ Update the subbands at the current level: SLTL(j)
∗ Transfer the modifications to the next finer level: ej−1 ←∑

s∈Sj∪{j}Gses
∗ If j ≥ 2, correct the residual for the wavelet subbands at the next

finer level:
for every s ∈ Sj−1, rs ← rs −Csej−1

– Set x← x + e0

• Return x

gorithm in a modular way that is relatively close to machine implementation. Its
main building block, UpdateLevel(j), depends on three parameters so as to be able
to mimic typical multigrid schemes (see Fig. 6.3). The parameters are thus named
η1, η2 and µ, following the conventions of the multigrid literature [98, 32]. In the
particular case η1 = 0, η2 = 1 and µ = 1, one retrieves the coarse-to-fine update
described in the preceding subsection (Fig. 6.3a). However, we should note that the
MLTL algorithm is numerically (slightly) more stable, because the current estimate
is explicitely reconstructed from its wavelet coefficients at every iteration.

The different modules of Appendix 6.6.2 can be summarized as follows:

• UpdateResidual(j): updates the residual for the subbands at scale j (if
needed). Uses the correction principle of Fig. 6.2 if the wavelet subbands
have not been modified so far. Otherwise the update is performed by tem-
porarily moving up to the next finer scaling-function subband.

• UpdateLevel(j): recursive procedure which
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Figure 6.3: Examples of multigrid-like updating schemes made possible
by the general MLTL algorithm. Each dot corresponds to an application
of (6.10) at the corresponding level.

– updates the subbands at coarser scales by calling itself µ times;

– updates the subbands at scale j by calling SLTL(j) (the number of up-
dates before and after a recursive call are fixed by η1 and η2 respectively).

Note that the procedure must compute the current residual for the scaling-
function subband at scale j before calling itself. This is either done by ap-
plying the correction principle of Fig. 6.2 in the opposite direction (from the
wavelet subbands to the scaling-function subband), or by going to the next
finer scale using UpdateResidual(j).

• MLTL: main routine that performs initialization tasks followed by several
iterations of the update procedure. One may devise even more general—e.g.
“full multigrid” [97]—schemes by adapting this routine.

6.3.3 A fixed-point property

A comprehensive study of the convergence properties of the MLTL algorithm is
well beyond the scope of the present work. In particular, obtaining tight theoretical
convergence-rate estimates is a difficult problem even for linear subspace-correction
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methods [253]. In the next section, we thus propose a numerical study of the conver-
gence rate of the MLTL algorithm, based on the following concise characterization
of the minimizer(s) of the cost functional (6.1). We provide a proof in Appendix
6.6.3 for completeness (see also [58] and the general results in [49, 42]).

Property 11. w∗ is a minimizer of C(w) if and only if it is a fixed point of the
standard TL algorithm, that is, if and only if there is an arbitrary step size τ > 0
such that w∗ = Tλτ/2{w∗+ τWTHT (y−HWw∗)}. Furthermore the minimizer is
unique if WTHTHW is positive definite.

A similar property can be obtained for the MLTL algorithm. This ensures
that we obtain a minimizer of the cost functional whenever the MLTL algorithm
converges, which was always the case in our numerical experiments (see Section
6.4). In the sequel, [v]n stands for the n-th component of a vector v.

Property 12. w∗ is a minimizer of C(w) if and only if it is a fixed point of the
MLTL algorithm; that is, if and only if it is not modified by a sequence of successive
applications of (6.10) at different scales, such that every subband is updated at least
once.

Proof. • Necessary part: w∗ is assumed to be a minimizer of C(w).
The characterization of Property 11 is equivalent to the following statement:
there is a τ > 0 such that, for every component n of w∗,{

either [w∗]n = 0 and |[τWTHT (y −HWw∗)]n| ≤ λτ
2 ;

or [w∗]n 6= 0 and [τWTHT (y −HWw∗)]n = λτ
2 sgn([w∗]n).

(6.13)

Multiplying by a suitable constant shows that the step size τ > 0 can actually
be chosen arbitrarily. In particular, if n corresponds to a wavelet coefficient
of subband s, (6.13) also holds for τ = τs. Using this argument for all wavelet
coefficients shows that w∗ is a fixed point of (6.10) at any scale j.

• Sufficient part: w∗ is assumed to be invariant under a sequence of successive
applications of (6.10), such that every scale is visited at least once.
We first observe that, for a given scale j, (6.10) computes the minimizer of
the auxiliary functional considered as a function of (ws)s∈Sj only. Because
this minimizer is unique, the result of applying (6.10) is either to leave the
estimate unchanged, or to strictly decrease the auxiliary functional—and thus
the original cost functional by construction.

The fixed-point assumption excludes the latter case. Therefore it must be
that w∗ is invariant under each individual application of (6.10). Let n be an
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arbitrary component of w∗, e.g. corresponding to a subband s ∈ Sj . Since
we assume that (6.10) was applied at scale j at least once, (6.13) holds with
τ = τs; in fact, it holds for an arbitrary τ > 0. Using this argument for all
wavelet coefficients, one retrieves the characterization of Property 11.

Before proceeding to the experimental part of this work, we mention two straight-
forward extensions of the MLTL algorithm. First, it is clear that the algorithm (and
the above results) can be extended to a cost functional with subband-specific regu-
larization parameters λs. In particular, the coarsest-scale saling-function subband
wJ is not thresholded in practice, i.e., λJ = 0. Second, one can also replace the
`1-regularization in (6.1) by another coefficient-wise penalization in the wavelet-
domain. This will essentially amount to changing the thresholding function; as
long as the regularization term is convex, the same bound-optimization framework
can be deployed.

6.4 Numerical experiments

In the experiments presented below, we use an `1 norm for the regularization term.
Unless specified otherwise, we use the same regularization parameter for all wavelet
subbands; the scaling-function subband is never penalized.

6.4.1 Asymptotic convergence (1D experiments)

To evaluate the convergence behavior of the MLTL algorithm, we designed an ex-
periment where the true minimizer of the cost functional is used as a gold standard.
Each test case was constructed as follows. The standard “bumps” signal (Fig. 6.4a)
is convolved with an N -periodic low-pass kernel defined by h[n] ∝ exp (−|n|/2) for
n = −N/2, . . . , N/2 − 1; the corresponding convolution matrix H is normalized
such that ρ(HTH) = 1. White Gaussian noise is added to the result, so as to
simulate a measurement y. The standard TL algorithm (with a step size τ = 1)
is then initialized with this measurement and run for 50000 iterations in order to
obtain our reference solution w∗. Since WTHTHW is positive-definite for the con-
volution kernel defined above (the smallest DFT coefficient of HTH being 0.06),
Property 11 implies that this minimizer is unique. Figures 6.4b and 6.4c show an
example of the measurement y and of the corresponding minimizer x∗. Fig. 6.4d
shows the locations of the non-zero wavelet coefficients of the solution (we use a
3-level wavelet decomposition and the upper plot represents the finest-resolution
subband).
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Figure 6.4: Experiment with a known minimizer (Symlet8, λ = 0.005).
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We then used this reference to compare the asymptotic behavior of the TL
and MLTL algorithms. To this end, we performed a series of experiments where
the algorithms are applied to the minimization of (6.1) and initialized with the
measurement y. Although the asymptotic convergence rates that are presented
here may not be directly relevant to practical situations, they give a quantitative
indication of the acceleration potential of the MLTL algorithm. Our asymptotic
study required several thousand iterations of the TL and MLTL algorithms in
various configurations, which is why we resorted to a small-scale problem (D = 1
and N = 256). The MLTL algorithm was used with the parameters µ = 1, η1 = 0
and η2 = 1 (coarse-to-fine strategy). The computational cost of one complete
MLTL iteration is then essentially the same as the cost of one TL iteration (each
subband is updated once per iteration). This allows for a direct comparison of both
algorithms in terms of number of iterations.

The decay of the cost functional towards its minimal value C(w∗) is represented
in Fig. 6.4e. This decay is only limited by the numerical precision of the computer
environment (we used Matlab on a 64-bit Intel Xeon workstation). To reach this
limit with the MLTL algorithm, the number of iterations is divided by more than
10 compared to the TL algorithm. We also display the distance between the esti-
mate and the minimizer (Fig. 6.4f); here the “signal-to-error-ratio gain” is defined
as SERG = 20 log10(‖W̃Ty − w∗‖2/‖w − w∗‖2). As expected, both algorithms
converge to the minimizer, but the MLTL algorithm is again faster by more than
one order of magnitude for reaching the level of numerical precision.

To obtain a more quantitative insight, we repeated the experiment in several
test cases and computed the slope of the SERG curves between 100 and 250 dB.
This measurement gives an estimate of the asymptotic convergence rate, in dB
per iteration. The results are summarized in Table 6.1, for various orthonormal
wavelet bases and different values of the regularization parameter, corresponding
to different noise levels (from top to bottom, the values of λ correspond to BSNR
noise levels of 60, 50, 40, 30, 20, 10 dB respectively—see Chapter 5 for the definition
of BSNR).

For validation purposes, we computed a theoretical convergence-rate estimate in
the case where λ = 0. With this particular choice, both algorithms reduce to linear
(least squares) restoration procedures: since the thresholding step disappears, the
TL algorithm reduces to the standard Landweber iteration and the MLTL algo-
rithm corresponds to a wavelet-based multilevel implementation of the Landweber
iteration. For this type of linear iterations, the asymptotic convergence rate can
be estimated using the spectral radius of the so-called iteration matrix (see e.g.
[98]). This spectral radius can be obtained directly for the TL algorithm because
we consider orthonormal wavelet bases (the computation is essentially the same as
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λ Cv. rates Algo. Haar Daub2 CubicSpline Sym8 Shannon

0 Theoretical TL 0.031 0.031 0.031 0.031 0.031
MLTL 0.376 0.761 1.302 1.301 1.301

0 Measured TL 0.032 0.032 0.032 0.032 0.032
MLTL 0.383 0.769 1.321 1.321 1.321

0.00025 Measured TL 0.033 0.032 0.032 0.032 0.032
MLTL 0.393 0.803 1.324 1.331 1.335

0.002 Measured TL 0.032 0.033 0.032 0.032 0.033
MLTL 0.408 0.818 1.336 1.326 1.379

0.01 Measured TL 0.039 0.038 0.035 0.033 0.038
MLTL 0.570 1.178 1.347 1.368 1.486

0.05 Measured TL 0.035 0.058 0.051 0.055 0.051
MLTL 0.433 1.317 1.559 1.512 1.595

0.25 Measured TL 0.132 0.173 0.154 0.184 0.165
MLTL 1.054 1.570 1.837 2.013 1.978

Table 6.1: Convergence rates (in dB per iteration) for different values of
the regularization parameter and various orthonormal wavelet bases.

in Section 6.2.3). For the MLTL algorithm, the small dimension of the problem
allows us to explicitly construct the iteration matrix in order to evaluate its spectral
radius. The resulting theoretical convergence-rate estimates (expressed in dB per
iteration for comparison purposes) are reported in the first row of Table 6.1.

The theoretical and the measured values are in good agreement for λ = 0,
suggesting that our experimental method for measuring the asymptotic convergence
rate is reliable. The results for λ 6= 0 corroborate the former observation (see [78]
and Chapter 5) that the TL algorithm tends to converge faster for higher values
of λ. This can be explained by the fact that the variational problem is more
constrained, thus compensating for the unfavorable conditioning of the convolution
kernel. Nevertheless, the convergence rates of the MLTL algorithm are consistently
one order of magnitude larger than those of the TL algorithm. The figures suggest
that the strongest acceleration is generally obtained for higher-order wavelets, which
can be related to their improved frequency selectivity. The Shannon wavelet basis
provides perfect frequency selectivity, a property that was exploited in Chapter 5.
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Figure 6.5: Computation time comparison (in seconds).

6.4.2 Computation time (2D experiments)

In our second series of experiments, we evaluated the performance of the MLTL
algorithm in terms of computation time. This type of assessment is most relevant in
practical situations, but it depends on computer hardware parameters. Therefore
we always provide a comparison with the standard TL algorithm.

We first simulated the effect of a defocusing blur on a 512×512 test image (Fig.
6.5a). We used a standard diffraction-limited point spread function (PSF) model for
widefield fluorescence microscopy [236]. The result was then corrupted by additive
white Gaussian noise with a BSNR of 40 dB (Fig. 6.5b). We restored this simulated
measurement using the TL and MLTL algorithms. Both were initialized with the
measurement. We used a separable orthonormalized cubic spline wavelet basis
with four decomposition levels. The regularization parameter λ = 0.2 was the
same for both algorithms; it was adjusted using multiple trials, so as to give the
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Wavelet
basis

MLTL
SERG
after 1 sec.

TL computation
time to reach
same SERG

MLTL
SERG
after 4 sec.

TL computation
time to reach
same SERG

Haar 7.13 dB 31.7 sec. 7.53 dB 41.6 sec.
9/7 6.96 dB 31.6 sec. 7.30 dB 46.0 sec.
Shannon 6.50 dB 29.5 sec. 6.74 dB 41.3 sec.

Table 6.2: Computation time required to reach a given level of restoration
quality, for the second experiment of Section 6.4.2.

best restoration quality after the MLTL algorithm had converged. Figures 6.5d and
6.5e show the evolution of the restoration quality measure SERG = 20 log10(‖y −
xorig‖2/‖x − xorig‖2), where xorig stands for the original signal and x = Ww is
the estimate. One can observe that the coarse-to-fine MLTL algorithm requires
1 second of computations to reach an improvement of 8 dB (result shown in Fig.
6.5c). The TL algorithm needs approximately 10 seconds to reach the same figure.
We found that the performance of the MLTL algorithm can be further improved by
using µ = 2, i.e., with a modified W-cycle iteration. This makes sense since natural
images tend to have mostly low-frequency content; thus, iterating on coarse-scale
subbands brings the largest improvement in the beginning, unless the algorithm is
initialized with a very accurate estimate.

We used a similar protocol for the second part of our 2D experiments, where
we replicated the standard test case used by Figueiredo and Nowak in [78] (Cam-
eraman image convolved with a 9× 9 uniform blur; additive white Gaussian noise
with a BSNR of 40 dB; initialization with a Wiener-type estimate). In particu-
lar, we introduced a random shift of the estimate at the beginning of every TL
and MLTL iteration; the authors found that this method gave optimal results with
non-translation-invariant wavelet transforms. We present results for three wavelet
bases, including biorthogonal 9/7 wavelets. We always used 3 decomposition levels
and the same regularization parameter λ = 0.04. The second and fourth columns
of Table 6.2 show the restoration quality of the MLTL algorithm after 1 and 4
seconds, respectively. The third and fifth columns give the minimum TL computa-
tion time that is required to reach the same restoration quality. Again, the MLTL
algorithm provides an acceleration of roughly one order of magnitude. Our results
confirm the superiority of the Haar basis among separable wavelet bases for 2D
image restoration; this fact is already known from denoising applications [24]. In
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(a) Original widefield stack (input data) (b) Deconvolution result after 15 TL iterations

(c) Deconvolution result after 15 MLTL itera-
tions

(d) Confocal reference stack

Figure 6.6: 3D deconvolution results (maximum-intensity projections of
512×352×96 image stacks).

general, the ability to use other wavelet bases than the Shannon wavelet basis leads
to substantial improvements over our previous work (Chapter 5). In summary, the
MLTL algorithm can yield state-of-the-art results (similar to those obtained in [78])
in a substantially shorter time than the TL algorithm.

6.4.3 Application to real fluorescence-microscopy data (3D
experiments)

To conclude this experimental part, we applied the MLTL algorithm to real 3D
fluorescence microscopy data. Similarly to our experiment in Chapter 5, we ac-
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quired two image-stacks of the same sample (a C. Elegans embryo), one of them
serving as a visual reference to assess the restoration quality. For the present work
we acquired a much larger, two-channel data set.

Both data sets were acquired on a confocal microscope, which has the ability to
reject out-of-focus light using a small aperture in front of the detector. This creates
a relatively sharp but noisy image (Fig. 6.6d). When the aperture is opened the
signal intensity is improved, but the measurement gets blurred by the contributions
of defocused objects. This results in hazy images that are characteristic for widefield
microscopes (Fig. 6.6a).

We applied the MLTL algorithm to the widefield-type stack, with three decom-
position levels. To account for the anisotropic sampling scheme of the microscope,
we used an orthonormalized linear spline wavelet for the X-Y dimensions, and a a
Haar wavelet for the Z dimension. We kept the random-shift method of [78] and we
used scale-dependent regularization parameters that were adjusted with the confo-
cal stack as a visual reference. The channels were processed independently, using
computer-generated PSFs based on a three-dimensional version of the diffraction-
limited model used in the previous subsection. The parameters of this model were
adjusted according to manufacturer-provided specifications of the objective, the
immersion oil and the fluorescent dyes (NA, refractive index, emission wavelength).

The result is shown in Fig. 6.6c: the restored image-stack provides significantly
better contrast than the original widefield image, especially for the filaments (green
channel). The chromosomes and their centromeres (blue channel) appear almost
as sharp as in the confocal image.

For completeness, we have included the result of the TL algorithm after the
same number of iterations (Fig. 6.6b). It is seen that the resulting image-stack
is still very hazy; the TL algorithm fails to produce a visible deconvolution effect
within the assigned budget of iterations. The computation time was on the order
of 5 minutes for both algorithms.

6.5 Discussion and conclusion

We have presented a wavelet-based multilevel image-restoration algorithm inspired
from multigrid techniques. The method is one order of magnitude faster than the
standard algorithm for sparsity-constrained restoration, whose results belong to the
state-of-the-art in the field of image processing.

The MLTL algorithm allows for typical multigrid iteration schemes such as V-
cycles and W-cycles. However, it differs from textbook multigrid schemes, which
iterate on nested subspaces corresponding to different “resolution levels” of the in-
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verse problem. Our algorithm, by contrast, iterates on the wavelet subbands, which
are the complements of the standard multigrid spaces. Yet our algorithm takes ad-
vantage of the underlying multiresolution structure, which greatly contributes to
the efficiency of the method. The other key point is the preconditioning effect of
wavelets.

We have provided theoretical convergence rates for the linear parts of the TL and
MLTL algorithms, giving a quantitative insight into the convergence acceleration
of the latter. Our experimental results show that one can achieve the same kind of
acceleration in the general non-linear case (with thresholding).

Our method is directly applicable to separable wavelet bases in arbitrary di-
mensions. We obtained promising results in the context of 3D fluorescence mi-
croscopy using such bases, extending the work of Chapter 5. Nevertheless we
have tried to provide a sufficiently general description that should require little
adaptation for more “exotic” wavelet representations, e.g. with quincunx subsam-
pling schemes [223], or non-stationary refinement filters [118, 237]. The algorithm
is readily implementable using our modular specification and standard wavelet-
decomposition/reconstruction building blocks.

We are currently investigating the benefits of the MLTL algorithm for redun-
dant wavelet representations. We have not specifically explored this possibility here
because we were primarily interested in high-dimensional inverse problems that
do typically not allow for redundant decompositions. We have already obtained
promising results for medical applications (specifically fMRI signal restoration and
tomographic image reconstruction) which will be the subject of forthcoming re-
ports.

6.6 Appendix

6.6.1 A method for precomputing the bound constants and
the correction filters

To keep the presentation simple, we will consider the one-dimensional (D = 1)
situation where HTH is a (positive) circulant matrix. Its eigenvalues (DFT coef-
ficients) are real and positive and can thus be denoted |ĥ[ν]|2, ν = 0, . . . , N − 1.
Furthermore, we will consider a wavelet decomposition with a dyadic subsampling
scheme. The method presented below can easily be extended to higher dimensions
and more general wavelet representations.

To compute the bound constants defined in (6.11), one must essentially estimate
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the inner products of (6.12). These can be rewritten in the frequency domain as

〈HWs2ws2 ,HWs1ws1〉 =
1
N

N−1∑
ν=0

|ĥ[ν]|2 ψ̂∗s2 [ν] ŵ∗s2 [ν] ψ̂s1 [ν] ŵs1 [ν],

where we use the following conventions.

• ŵs[ν] denotes the DFT of the wavelet coefficients corresponding to a subband
s at a given level j. Since we assume a dyadic subsampling scheme, ŵs[ν] can
be seen as an Nj-periodic sequence, with Nj = N/2j .

• ψ̂s[ν] denotes the DFT of the wavelet or scaling function that spans the sub-
space associated with subband s. Note that if we define ψ̂0[ν] = 1, the discrete
version of the standard scaling relation [142] can be stated as

ψ̂s[ν] = ĝs[ν]ψ̂j−1[ν] for s ∈ Sj ∪ {j}, (6.14)

where ĝs[ν] is the Nj-periodic filter corresponding to Gs (see below).

Our multilevel method only requires the explicit value of the constants ρs2 s1 when
s2 and s1 are subbands located at the same level, that is, when s2, s1 ∈ Sj ∪ {j}
for some j. In this case ŵs2 [ν] and ŵs1 [ν] have the same period Nj . We can thus
write that

〈HWs2ws2 ,HWs1ws1〉 =
1
Nj

Nj−1∑
ν=0

ŵ∗s2 [ν] ŵs1 [ν]ĉs2 s1 [ν],

where

ĉs2 s1 [ν] =
1
2j

2j−1∑
k=0

|ĥ[ν + kNj ]|2 ψ̂∗s2 [ν + kNj ] ψ̂s1 [ν + kNj ]. (6.15)

Inequality (6.12) is then obtained by defining ρs2 s1 = maxν |ĉs2 s1 [ν]|.
When HTH is a circulant matrix and s ∈ Sj∪{j}, the matrix Cs = WT

s HTHWj

is also circulant and its DFT coefficients are precisely given by ĉs j [ν], for ν =
0, . . . , Nj . This property allows for an efficient frequency-domain implementation
of the residual correction steps in the CFTL and MLTL algorithms.

To prove the property, we introduce the general notation Cs2 s1 = WT
s2H

THWs1

for arbitrary subbands s2, s1. We also define C0 0 = HTH. We can then proceed
by recurrence. For j = 0, C0 0 is circulant and its DFT coefficients are given by
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(6.15) with s2 = s1 = 0. For j ≥ 1, we assume that Cj−1 j−1 is a circulant ma-
trix whose DFT coefficients are ĉj−1 j−1[ν]. The cascade structure of the wavelet
representation (6.4) implies that, for s2, s1 ∈ Sj ∪ {j},

Cs2 s1 = GT
s2Cj−1 j−1Gs1 .

For a given subband s, the algorithmic interpretation of Gs is 1) dyadic upsampling,
followed by 2) filtering with ĝs[ν]. Its transpose GT

s stands for 1) filtering with
ĝs[ν]∗, followed by 2) dyadic downsampling. Therefore, Cs2 s1 is also a circulant
matrix with DFT coefficients

1
2

1∑
k=0

ĝs2 [ν + kNj ]∗ ĉj−1 j−1[ν + kNj ] ĝs1 [ν + kNj ] = ĉs2 s1 [ν]. (6.16)

The equality stems from definition (6.15) for ĉj−1 j−1[ν], and from the scaling rela-
tion (6.14); this completes the proof by recurrence.

Note that relation (6.16) provides a way to recursively compute the filters
ĉs2 s1 [ν] and the corresponding constants ρs2 s1 (with s2, s1 ∈ Sj ∪ {j}).

6.6.2 Pseudo-code description of the general MLTL algo-
rithm

As in the previous subsection, we use the notation Cs2 s1 = WT
s2H

THWs1 . The
general MLTL algorithm uses both the matrices Cj s and Cs j , for s ∈ Sj ∪ {j}.
It is useful to observe that Cj s = CT

s j : in the convolutive case, this implies that
ĉj s[ν] = ĉs j [ν]∗.

Algorithm 3 UpdateResidual(j)
• If es 6= 0 for some s ∈ Sj :

– rj−1 ← rj−1 −Cj−1

∑
s∈Sj

Gses

– For every s ∈ Sj ∪ {j}, rs ← GT
s rj−1

• Otherwise, if ej 6= 0: for every s ∈ Sj , rs ← rs −Cs jej
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Algorithm 4 UpdateLevel(j)
• Initialization:

– For every s ∈ Sj ∪ {j}, es ← 0

– For every s ∈ Sj ∪ {j}, rs ← GT
s rj−1

• Repeat µ times:

– Repeat η1 times:

∗ UpdateResidual(j)

∗ SLTL(j)

– If j < J :

∗ If es 6= 0 for some s ∈ Sj :

· If ej 6= 0, UpdateResidual(j)

· Otherwise, rj ← rj −
∑

s∈Sj
Cj ses

∗ ej ← wj

∗ UpdateLevel(j + 1)

∗ ej ← wj − ej

– Repeat η2 times:

∗ UpdateResidual(j)

∗ SLTL(j)

• wj−1 ←
∑

s∈Sj∪{j}Gsws

Algorithm 5 MLTL
• Initialization:

– Choose some initial estimate x and set w0 ← x

– Compute its wavelet decomposition (keeping the coarse approximations):
for j = 1, . . . , J , for every s ∈ Sj ∪ {j}, ws = G̃T

s wj−1

• Repeat K times:

– r0 ← HT (y −Hw0)

– UpdateLevel(1)

• Set x← w0 and return x
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6.6.3 Proof of Property 11

A short computation reveals that

C(w)−C(w∗) = ‖HW(w−w∗)‖22−2Re〈WTHT (y−HWw∗),w−w∗〉+λ‖w‖1−λ‖w∗‖1,
(6.17)

where w and w∗ are arbitrary vectors of wavelet coefficients.

• Necessary part: we assume that C(w) ≥ C(w∗) for every w.

– Suppose that |[WTHT (y −HWw∗)]n| > λ/2 for some n. Given a real
and strictly positive constant ε, we define the vector w by

[w]n′ =

{
[w∗]n′ + ε sgn [WTHT (y −HWw∗)]n if n′ = n;
[w∗]n′ otherwise.

In view of (6.17), ε can always be chosen such that C(w) < C(w∗), a
contradiction. Therefore it must be that |[WTHT (y−HWw∗)]n| ≤ λ/2
for every n.

– Choosing ε ∈]0, 1] and inserting w = (1 − ε)w∗ into (6.17) gives the
necessary condition

ε2‖HWw∗‖22 + 2εRe〈WTHT (y −HWw∗),w∗〉 − ελ‖w∗‖1 ≥ 0.

If it were true that 2Re〈WTHT (y − HWw∗),w∗〉 − λ‖w∗‖1 < 0, we
could find a sufficiently small ε such that this necessary condition is vio-
lated. Thus it must be that 2Re〈WTHT (y−HWw∗),w∗〉−λ‖w∗‖1 ≥
0. Since |[WTHT (y − HWw∗)]n| ≤ λ/2 for every n, it follows that
[WTHT (y −HWw∗)]n = λ/2 sgn [w∗]n whenever [w∗]n 6= 0.

The combination of both results is equivalent to the fixed-point property.

• Sufficient part: w∗ is assumed to be a fixed point of the TL algorithm.
We use the same equivalence:

– Since [WTHT (y − HWw∗)]n = λ/2 sgn [w∗]n whenever [w∗]n 6= 0,
we know that 2Re〈WTHT (y −HWw∗),w∗〉 − λ‖w∗‖1 = 0 and (6.17)
reduces to

C(w)−C(w∗) = ‖HW(w−w∗)‖22−2Re〈WTHT (y−HWw∗),w〉+λ‖w‖1.
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– Since |[WTHT (y −HWw∗)]n| ≤ λ/2 for every n, it follows that

C(w)− C(w∗) ≥ ‖HW(w −w∗)‖22 ≥ 0.

This also shows the unicity of the minimizer when WTHTHW is posi-
tive definite.
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Chapter 7

An introduction to
risk-estimation techniques
under quadratic loss

In the previous chapters, our starting point was always the variational definition of
a restoration method. We will now change perspective and focus on the functional
specification of a given restoration algorithm. In general, the restoration result
depends on the measured image y and on a parameter θ (or several parameters, in
which case θ is vector-valued). For example, θ could represent the regularization
parameter, the number of iterations and/or the step size. Thus, we shall think of
the restoration algorithm as a function fθ(y).

In this part, we will be concerned with the problem of selecting a “good” pa-
rameter θ. This is a recurring and important issue in image restoration. Our
assumption is that the original image x is deterministic; only the measurement y
is viewed as a random variable, which models the uncertainty introduced by the
measurement process. In this sense, we take a step back from standard Bayesian
approaches that assume a probabilistic model on the original image.

Nevertheless, in the deterministic framework of approximation theory, the meth-
ods presented in Part I—in particular wavelet-domain regularization (see Chapter
(II))—can still be justified. In this sense, we use approximation theory and estima-
tion theory as complementary tools. Interestingly, both theories can be formalized
using the same “calculus” (functional analysis and in particular Fourier theory),
which lets them appear similar in many ways.

137
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7.1 Probabilistic framework and statistical con-
cepts

7.1.1 Remarks on measure and distribution theory

The classical foundation of probability is measure theory in its abstract set-theoretic
formulation [213]. A probability density function (PDF) is then viewed as a mea-
sure, that is, a countably additive function over some σ-algebra.

Alternatively (under additional topological assumptions), measure theory can
also be developed in the framework of functional analysis [26, 219]. This is made
possible by the Riesz representation theorem, which establishes a correspondence
between finite measures1 and continuous linear functionals over the space C00 of
compactly-supported continuous functions.

In the sequel we will use the latter functional-analytic approach, since our dis-
cussion will be based on an operator formalism. In particular we will think of a
PDF as a distribution, in the sense of generalized function. Note that the restric-
tion of a measure to the space C∞0 of compactly-supported infinitely-differentiable
functions defines a distribution [195]. Since C∞0 is dense in C00 , two measures are
equal if and only if they coincide on C∞0 .

Similarly, a tempered measure2 defines a distribution over the Schwartz space
S of infinitely-differentiable functions with rapid decay [95]. Since S contains C∞0 ,
a tempered measure is entirely characterized by its values on S.

Based on these considerations, we introduce the following definition.

Definition 4. A distribution p ∈ S ′ is a probability distribution if it is a positive
measure such that 1 is p-integrable and

∫
1dp = 1.

From now on, we will systematically identify the random vector y ∈ RN with
its probability distribution p ∈ S ′(RN ). The expectation operator is then defined
as an integral with respect to the measure p. For a p-integrable function f (not
necessarily in S), we shall extend the bracket notation as follows:

〈p, f〉 =
∫
fdp = E[f(y)].

The probability distribution of y depends on the original image x. We will use px
instead of p to make this dependence apparent.

1A measure µ is finite if |µ(K)| < +∞ whenever K is compact. In the sequel, we use the word
measure to refer to a finite measure.

2A measure µ is tempered if the function y 7→ (1 + ‖y‖22)−p is µ-integrable for some p > 0.
With respect to Definition 4, note that if 1 is µ-integrable then µ is tempered.
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7.1.2 Parametric estimation under quadratic loss

The problem of parameter adjustment depends on the choice of a performance mea-
sure. In this work, we adopt the mean squared error (MSE) which is arguably the
most widespread measure of restoration quality in image processing. The popular-
ity of the MSE can be explained by its good mathematical properties, which greatly
facilitate its manipulation and its optimization in comparison with other quality
measures.

In statistics, the measure of restoration quality is called loss function. For the
MSE, the definition is

`θ(y) =
1
N
‖x− fθ(y)‖22.

Ideally, we would like to adjust the parameter θ such that the loss function is
minimized. With the exception of synthetic experiments, however, the exact value
of the loss function is not available, since it requires the knowledge of the original
image x. For this reason, the loss function is termed an oracle quantity. Similarly,
an adjustment of θ based on the knowledge of x can be qualified as an oracle
adjustment.

A common approach in estimation theory is thus to replace the loss function by
its statistical expectation, which is also known as the risk :

rθ = E[`θ(y)].

This can be justified (at least in simple cases) by the law of large numbers: for
large-sample data, the loss function is close to its statistical average. While the risk
is not directly accessible either, one can usually construct a statistical estimate of
this quantity using a realization of y (again based on the law of large numbers).
Therefore, minimizing this risk estimate should provide a good approximation to
an oracle adjustment.

The risk can be decomposed as follows:

rθ =
1
N

(
E[‖x‖22]− 2E[xT fθ(y)] + E[‖fθ(y)‖22]

)
.

Note that the first term E[‖x‖22] does not depend on θ and is thus irrelevant for
optimizing this parameter. The last term E[‖fθ(y)‖22] can be estimated empirically
from the data by computing ‖fθ(y)‖22. Only the cross-term E[xT fθ(y)] is problem-
atic because it depends on the unknown x. In the remainder, we will thus focus on
the estimation of this cross-term. To simplify the presentation, we omit the index
θ.
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7.2 Operator formulation of risk estimation

7.2.1 The scalar case

We will first consider the case where x, y and f(y) are scalar-valued. We will dis-
tinguish this case from the vector-valued case by the use of non-boldface notations.

We define the linear operator Lx by Lx{f}(y) = xf(y). We can then write that

E[xf(y)] = E[Lx{f}(y)]. (7.1)

In many situations it turns out that it is possible to replace Lx in (7.1) by a linear
operator L that does not depend on x. In this case we have the equality

E[xf(y)] = E[L{f}(y)]. (7.2)

This means that L{f}(y) can serve as an empirical estimate of the cross-term that
is only based on the measured data y.

Let us re-express property (7.2) using the probability distribution px, in the
case where f is a test function: we would like to find a continuous linear operator
L : S → S such that, for every ϕ ∈ S,

〈px, x ϕ〉 = 〈px, L{ϕ}〉. (7.3)

Introducing the notation L∗ for the dual operator of L, (7.3) is equivalent to

〈L∗{px}, ϕ〉 = 〈x px, ϕ〉

for every test function ϕ. As first pointed out by Raphan and Simoncelli [182], this
amounts to the eigenfunction equation

L∗{px} = x px.

In other words, px must be an “eigendistribution” of L∗ corresponding to the eigen-
value x.

The above approach raises interesting mathematical questions—in particular:

• when does such an operator L exist?

• if it exists, can it be extended—along with equality (7.3)—to functions ϕ /∈ S?

The answer to these questions is specific to each family of probability distributions
px. A comprehensive study would go beyond the scope of this introduction, but we
can make the following general observation (which is a standard result from linear
algebra).
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Property 13. Assume that L∗{px} = x px for every x; then the probability distri-
butions px are linearly independent.

Property 13 provides a necessary condition for the existence of an operator L.
In particular, it requires the mapping x 7→ px to be injective. This result can be
interpreted as follows: if the measurement process involves a “loss of information”
about x, an estimation of the form (7.3) is not possible.

7.2.2 Some scalar examples

We will now illustrate the above approach with a few examples. A more compre-
hensive list including pointers to the statistics literature can be found in [128, 182].

Gaussian distribution: y ∼ N (x, σ2)

px(y) = g(y − x) where g(y) =
1√
2πσ

e−
y2

2σ2 .

We will use the following property of a Gaussian:

y g(y) = −σ2D{g}(y) (7.4)

where D denotes the derivative operator. It follows that

x px(y) = y px(y)− (y − x) px(y) = y px(y) + σ2D{px}(y) = L∗{px}(y).

Therefore:
L{ϕ}(y) = y ϕ(y)− σ2D{ϕ}(y).

This result is at the core of Stein’s Unbiased Risk Estimate (SURE) [209].

Poisson distribution: y ∼ P(x)

px = e−x
∑
k∈N

xk

k!
δ(· − k).

We can observe that

e−x
∑
k∈N

xk+1

k!
δ(· − k) = e−x

∑
k∈N∗

xk

(k − 1)!
δ(·+ 1− k)

= e−x
∑
k∈N

k
xk

k!
δ(·+ 1− k). (7.5)
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Therefore x px = (·+ 1) px(·+ 1) = L∗{px} and

L{ϕ}(y) = y ϕ(y − 1).

This result can for example be found in [108].

Gaussian distribution with signal-dependent variance: y ∼ N (x, x)

px(y) =
1√
2πx

e−
(y−x)2

2x , where x > 0.

Adapting (7.4) to this case yields (y − x) px(y) = −D{x px}(y) and thus

y px(y) = (I −D){x px}(y) = (I −D) ◦ L∗{px}(y).

Note that (I−D) is a shift-invariant operator that is invertible in S ′; the convolution
kernel corresponding to its inverse is specified in the Fourier domain by 1/(1− jω).
Taking into account the duality, we can conclude that

L{ϕ}(y) = y
(
h ∗ ϕ

)
(y),

where h(y) = u(−y)ey.
While we will not use it later, this result is interesting from several stand-

points. First it could reveal useful in applications where the previous Poissonian
model is approximated by a Gaussian. Second, it illustrates the role of Fourier
analysis for deriving the operator L; obviously, Fourier analysis is relevant when-
ever L has a shift-invariant “part”. This has already been observed in the case
of additive (signal-independent) noise [182]. Here the noise statistics are signal-
dependent but Fourier analysis is still useful. Third, it shows a practical limitation
of risk-estimation techniques: while it seems that risk estimates can be derived
for a wide range of conceivable noise models, they are not always computationally
tractable. For example, the above result implies that one must be able to com-
pute the convolution of the restoration function with the kernel h. This is not
always straightforward, unless the restoration function is designed to facilitate this
computation.

Poisson+Gaussian mixture: y ∼ γP(x) +N (µ, σ2)

This example is of particular interest to us, as it is closely related to the general
image-acquisiton model (3.1) introduced in Chapter 3. The probability distribution
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of the sum of two independent random variables is the convolution of their probabil-
ity distributions. Here we have the convolution of a (rescaled) Poisson distribution
with a Gaussian:

px = e−x
∑
k∈N

xk

k!
g(· − µ− γk).

A computation similar to (7.5) leads to

(· − µ+ γ) px(·+ γ)− γ x px = e−x
∑
k∈N

(· − µ+ γ − γk)
xk

k!
g(· − µ+ γ − γk)

= −e−x
∑
k∈N

xk

k!
σ2D{g}(· − µ+ γ − γk).

Thus we have the equality

γ x px = (· − µ+ γ) px(·+ γ) + σ2D{px}(·+ γ) = γ L∗{px}

and we can conclude that

L{ϕ}(y) =
1
γ

(
(y − µ)ϕ(y − γ)− σ2D{ϕ}(y − γ)

)
.

7.2.3 Extension to the vectorial case

In general, the parameter to be estimated is vector-valued (hence we return to the
initial boldface notations). The cross-term can be written as

E[xT f(y)] =
N∑
n=1

E[xnfn(y)],

where n indexes the components of the vectors. Thus, the multivariate case can be
treated by determining N linear operators Ln that satisfy eigenfunction equations
of the form (7.3); the only difference is that the probability distributions px are
now indexed by the vector x. Due to these structural similarities, the necessary
conditon of Property 13 extends to the vectorial case as well (i.e., the probability
distributions px are linearly independent if such operators exist).

The previous examples can be generalized as follows.

White Gaussian noise: y ∼ N (x, σ2I)

E[xT f(y)] = E[yT f(y)− σ2 div{f}(y)]. (7.6)
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Independent Poisson counts: y ∼ P(x)

E[xT f(y)] = E[yTg(y)] where gn(y) = fn(y − en). (7.7)

Poisson+Gaussian mixture: y ∼ γP(x) +N (µ, σ2I)

E[xT f(y)] =
1
γ

E[(y−µ)Tg(y)−σ2 div{g}(y)] where gn(y) = fn(y−γen). (7.8)

7.3 Discussion

The estimate (7.8) for the mixture model includes the estimates (7.6) and (7.7)
for the Gaussian and Poissonian models as particular cases3. Nevertheless, these
examples will be useful to discuss some practical issues.

7.3.1 Algorithmic aspects

As mentioned previously, the application of an estimate such as (7.8) can pose
computational problems. The primary difficulty lies in the definition of g, which
follows from the Poissonian part of the model. This definition implies that the N
components of the restoration function f must be evaluated with different arguments
(the vectors y − γen). Depending on the definition of f , this task may not be
computationally tractable. Another difficulty lies in the evaluation of the divergence
term—which is related to the Gaussian part of the model.

A simplification occurs when f is a linear function, i.e., when there is a matrix
F such that f(y) = Fy. In this case, g(y) = Fy − γF1 and the divergence of g is
the trace of F. Therefore, (7.8) reduces to

E[xTFy] =
1
γ

E[(y − µ)T (Fy − γF1)− σ2 Tr{F}]. (7.9)

In particular, the inner product (y − µ)TF1 can be precomputed.
We have successfully applied (7.9) to linear deconvolution in [181] (not repro-

duced here). To our knowledge, [181] represents the first treatment (at least in
the context of fluorescence microscopy) of a Poisson+Gaussian mixture model in
image restoration that is not based on an approximation of the noise distribution.
Previous approaches have typically relied on Gaussian approximations—see e.g.
[160, 146, 59].

3See our remark at the end of Section 3.2.
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Another simple case arises when f is a pointwise non-linearity, that is, when
fn(y) only depends on yn. The function g then reduces to g(y) = f(y − γ1) and
the divergence term only involves the derivatives of univariate functions.

When f is a general non-linear function, even the estimate (7.6) corresponding
to a purely Gaussian model is not straightforward to evaluate. So far, the most
generic approaches rely on randomized estimates. This includes Ramani et al.’s
Monte-Carlo SURE [180] as well as the recursive risk-estimation method that we
describe in Chapter 9.

Another promising approach is to make deterministic approximations on the
restoration function [139].

7.3.2 Reliability

Besides the aforementioned computational aspects, the reliability of the proposed
risk estimates is an important issue. In this subsection, we focus on the estimate
(7.6) for the white Gaussian noise model. We study its accuracy in terms of the
expected quadratic estimation error. In the formulas below, we use the identity
div{f} = Tr{Jf}, where Jf stands for the Jacobian matrix4 of f .

Property 14. Assume that y ∼ N (x, σ2I) and that the components of f are twice
continuously differentiable. Then,

E
[(

(y − x)T f(y)− σ2Tr
{
Jf (y)

})2] = E
[
σ2‖f(y)‖2 + σ4Tr

{
Jf (y)2

}]
. (7.10)

Proof. Introducing the notation b = y−x, we can decompose the average squared
error into

E
[(

bT f(y)
)2]− 2σ2E

[
bT f(y) Tr Jf (y)

]
+ σ4E

[(
Tr Jf (y)

)2]
.

4The entry of Jf (y) at row k and column n is the derivative of fn with respect to its k-th
argument, evaluated at y.
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Let us expand the first term:

E
[∑
k,n

bkbnfk(y)fn(y)
]

=σ2E
[∑

k

fk(y)2
]

+ σ2E
[∑
k,n

bn∂kfk(y)fn(y) + bnfk(y)∂kfn(y)
]

=σ2E
[
‖f(y)‖2

]
+ σ4E

[∑
k,n

∂n∂kfk(y)fn(y) + ∂kfk(y)∂nfn(y)

+ ∂nfk(y)∂kfn(y) + fk(y)∂n∂kfn(y)
]

(∗) =σ2E
[
‖f(y)‖2

]
+ 2σ4E

[∑
k,n

∂n∂kfk(y)fn(y)
]

+ σ4E
[(

Tr
{
Jf (y)

})2]+ σ4E
[∑
k,n

∂nfk(y)∂kfn(y)
]

=σ2E
[
‖f(y)‖2

]
+ 2σ2E

[
bT f(y) Tr

{
Jf (y)

}]
− σ4E

[(
Tr
{
Jf (y)

})2]+ σ4E
[
Tr
{
Jf (y)2

}]
.

Note that equality (∗) holds because the functions fn are assumed to be C2 (which
allows for changing the order of the partial derivatives). After inserting this last
expression in the first one, four terms cancel out and one obtains the desired result.

The above result potentially allows for computing an estimate of the estimation
error from the measured data (since the expression inside the right-hand expecta-
tion of (7.10) only depends on y).

7.3.3 Extension to ill-conditioned linear inverse problems

In this subsection, we assume that y depends on Hx rather than x, where H is an
invertible but potentially ill-conditioned matrix. To make the presentation more
concrete, we focus on the standard model

y ∼ N (Hx, σ2I).
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The estimate (7.6) can then be extended as follows:

E[xT f(y)] = E[(Hx)TH−T f(y)] = E[yTH−T f(y)− σ2 div{H−T f}(y)].

In the favorable situation where the restoration function is an algorithm of the form
f(y) = HTg(y), this reduces to

E[xT f(y)] = E[yTg(y)− σ2 div{g}(y)].

This is for example the case for linear deconvolution solutions such as (3.11), if one
exploits the commutativity property of convolution matrices.

Similarly, the equivalent of the expected quadratic estimation error given in
(7.10) is now

σ2E
[
‖H−T f(y)‖2

]
+ σ4E

[
‖Tr
{
H−TJf (y)2

}]
. (7.11)

In practice the restoration algorithm very often depends on HTy rather than di-
rectly on y (this applies for example to Wiener filtering or to the thresholded
Landweber algorithm with a Wiener-type initialization). This means that f takes
the functional form f(y) = g(HTy), which implies that

H−TJf (y) = H−THTJg(HTy) = Jg(HTy).

Therefore, the second term in (7.11) can be considered as “stable”. However, the
form of the first term shows that the statistical error can be large if H is ill-
conditioned.

The extreme case is when H is not invertible, which means that the mapping
x 7→ px is not injective. As observed in Section 7.2, this does not allow for an
estimation of the form (7.2). This is why we propose to introduce a small bias when
considering ill-posed inverse problems. Preliminary results with this approach are
presented in Chapter 9.

7.4 Summary

The present chapter provides a concise and yet self-contained introduction to risk-
estimation techniques. It also led to the following extensions and insights, which
have motivated the work presented in the next two chapters.

• The generalization of the Gaussian and Poissonian risk estimates to the mix-
ture model is novel and particularly relevant to image restoration in fluores-
cence microscopy. The algorithm described in Chapter 8 was initially de-
velopped for the Poisson-only model, but it can be extended to the mixture
model at virtually the same computational cost.
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• While other works on risk estimation have been recently published [182, 75],
there have been few comments on the reliability of SURE-like techniques. We
have proposed preliminary insights. In particular, we have found that it is
illusory to aim at an unbiased risk estimate for ill-posed linear inverse prob-
lems (which involve a loss of information about the original image). Another
way to state this is the following: the more the image-formation model is ill-
conditioned, the more the variance of the estimate increases. Therefore, one
must aim at a good bias-variance tradeoff. Chapter 9 presents preliminary
results in this direction.

• From the algorithmic standpoint there are also tradeoffs, because the “risk-
estimation operators” are not always computationally tractable. Of particular
interest to us is the Poisson+Gaussian mixture, which is tractable for linear
algorithms. For non-linear algorithms, adaptations are required. A relatively
standard approach is to approximate the mixture by a Gaussian model with
known, space-varying variance; this gave promising results with the method
of Chapter 9 applied to the thresholded Landweber algorithm (which will be
the subject of a future report). Another option is to design the algorithm such
that the operator is easily applicable; this is the approach we have chosen in
Chapter 8.



Chapter 8

A Haar-based algorithm for
denoising shot-noise-limited
images

Summary

We extend the SURE-LET denoising methodology to image restoration in the pres-
ence of Poisson noise. Our approach is based on 1) the minimization of a rigorous
estimate of the denoising MSE (or “risk”) for Poisson noise (PURE) comparable
to Stein’s estimate (SURE), 2) a linear parametrization of the denoising process
(LET) and 3) a fundamental property of the maximally decimated unnormalized
Haar wavelet transform with respect to Poisson statistics.

The minimization of the MSE estimate is performed independently in each Haar-
wavelet subband for computational efficiency, but this is equivalent to performing a
global image-domain minimization. This is an important difference with standard
Poisson noise-removal methods and in particular those that rely on a non-linear
preprocessing of the data to stabilize the variance. A further advantage of our
method is the concept of linear expansion of thresholds (LET), which allows for a
fast and direct computation of the optimal parameters.

The chapter includes a series of numerical experiments performed on standard
grayscale images. We show that our non-redundant wavelet method compares favor-

This chapter is based on [238].

149



150 Haar-based denoising of shot-noise-limited images

ably with standard variance-stabilizing schemes, even when the latter are applied
in a translation-invariant setting (cycle-spinning). Our algorithm also achieves a
quality similar to a state-of-the-art multiscale method that was specially developed
for Poisson data. Considering that the computational complexity of our method is
orders of magnitude lower, it is actually a very competitive alternative.

The proposed approach is particularly promising in the context of low signal
intensities and/or large data sets. This is illustrated experimentally with the de-
noising of low-count fluorescence micrographs of a biological sample.

8.1 Introduction

8.1.1 Motivation

“Additive white Gaussian noise” is a ubiquitous model in the context of statistical
image restoration. In many applications, however, the current trend towards quan-
titative imaging calls for less generic models that better account for the physical
acquisition process. The need for such models is particularly stringent in biomi-
croscopy, where live samples are often observed at very low light levels, due to
acquisition-time and phototoxicity constraints (see Chapter 2). In this regime, the
performance of the imaging device is typically shot-noise limited, which is strongly
signal-dependent. For this reason, opting for a non-additive, non-Gaussian model
can yield significant improvements in restoration quality in such applications.

Yet, Gaussian priors are particularly attractive in a Bayesian framework, where
they easily lead to a closed-form solution. In comparison, alternative noise models
appear to be less tractable and typically require expectation-maximization schemes
for computing the solution (see e.g. [226] for the Poisson case); a significant body of
research is concerned with the acceleration of such methods (see [151] and references
therein). When using non-Bayesian approaches (typically, when we do not want to
make statistical hypotheses on the images to denoise), however, the advantage of a
Gaussian model is not as clearcut.

8.1.2 The PURE-LET approach

Blu and Luisier have recently proposed a novel non-Bayesian methodology to pro-
cess noisy images based on the knowledge of the noise corruption only [24]: the
SURE-LET strategy. The present work extends its validity to an instance of non-
additive, non-Gaussian noise processes: the Poisson noise. We first derive a statis-
tical estimate of the Mean Square Error (MSE), or “risk”, between the (unknown)
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noiseless image and the processed noisy image, under the Poisson noise hypoth-
esis: the Poisson Unbiased Risk Estimate (PURE). We then minimize this MSE
estimate over a collection of “acceptable” denoising processes to find the best one,
in the sense of the Signal-to-Noise Ratio (SNR), which is a widespread measure of
restoration quality [19]. To our knowledge, this is actually the first reported use of
an (unbiased) MSE estimate in the Poisson-noise case for image processing.

The efficiency of our method stems from the concept of Linear Expansion of
Thresholds (LET, see [24]): the “acceptable” denoising processes are expressed as
a linear combination of elementary denoising processes, from which only the weights
are unknown. It is these weights that are then computed by minimizing the PURE,
through the resolution of a simple linear system of equations. This approach is
further powered by the use of a simple (unnormalized) Haar wavelet transform.

For each subband, our restoration functions involve several parameters, which
provides more flexibility than standard single-parameter thresholding functions.
Importantly, the thresholds are adapted to local estimates of the (signal-dependent)
noise variance. These estimates are derived from the corresponding low-pass coeffi-
cients at the same scale; the latter are also used to incorporate interscale relation-
ships into the denoising functions. The resulting procedure can be easily integrated
into the wavelet decomposition, which is non-redundant. The MSE estimate is opti-
mized independently for each subband by exploiting the orthogonality of the Haar
wavelet basis.

As a result, our algorithm has low computational complexity and modest mem-
ory requirements. These are valuable features for denoising large data sets, such
as those typically produced in astronomy or in fluorescence microscopy. Impor-
tantly, this computational efficiency is not traded for quality. On the contrary, the
algorithm yields improved results compared to traditional Gaussian-inspired ap-
proaches, and it performs competitively with a state-of-the-art multiscale method
that was specially developed for Poisson data.

8.1.3 Related work

The first wavelet-based techniques that were specifically designed for Poisson in-
tensity estimation appeared in the fields of Astrophysics [119] and Seismology [33].

Several subsequent works were based on the fact that Poisson statistics are
preserved across scales in the low-pass channels of an unnormalized Haar wavelet
transform. This fundamental property was for example used by Timmermann and
Nowak [218] to construct a multiscale Bayesian model of the signal; an extension
for estimating all parameters of the model using the expectation-maximization al-
gorithm was derived in [137]. A similar model was proposed independently by
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Kolaczyk [120] using the concept of recursive dyadic partition. A generalization to
three families of distributions (Gaussian, Poisson and multinomial) was described
in [123], along with an asymptotic minimax analysis.

The aforementioned property was also used within a user-calibrated hypothesis-
testing approach in [122]. The idea of using hypothesis testing to handle Poisson
statistics was initially adapted from the Gaussian case by Kolaczyk [121], who
proposed to use (pairs of) level-dependent thresholds. A complementary study of
the theoretical asymptotic properties of wavelet estimators was presented in [172].

Notice that the Bayesian framework has also been used in conjunction with more
involved multiscale transformations than the Haar transform. For example, Sardy
et al. [189] considered a general `1-penalized-likelihood framework for arbitrary
wavelet bases and noise models, including the Poisson case. More recently, Willett
and Nowak have proposed a platelet-based penalized-likelihood estimator that was
shown to be very efficient for denoising piecewise-smooth images [249].

A widespread alternative to the direct handling of Poisson statistics is to apply
variance-stabilizing transforms (VSTs)—with the underlying idea of exploiting the
broad class of denoising methods that are based on a Gaussian noise model [64].
Since the seminal work of Anscombe [7], more involved VSTs have been proposed,
such as the Haar-Fisz transform [85]. Such approaches belong to the state-of-the-art
for 1D wavelet-based Poisson noise removal [19, 85]. They have been combined with
various other methodologies, e.g. Bayesian multiscale likelihood models that can
be applied to arbitrary wavelet transforms [114]. Very recently, a hybrid approach
that combines VSTs, hypothesis testing, `1-penalized reconstruction and advanced
redundant multiscale representations has been proposed by Zhang et al. [257].

With the exception of cross-validation methods [165, 9, 189], however, the po-
tential of purely data-driven techniques seems to have remained under-exploited for
the wavelet-based restoration of images corrupted by Poisson noise.

8.1.4 Organization of the chapter

This chapter is organized as follows. In Section 8.2, we derive an unbiased risk
estimate for a broad class of Poisson denoising algorithms formulated in the Haar-
wavelet domain. In Section 8.3, we specify several such algorithms based on our
previous work and experimental insights. In Section 8.4, we compare our ap-
proach to typical variance-stabilizing methods, as well as a recent algorithm specif-
ically designed for Poisson statistics. Finally we present results obtained with real
fluorescence-microscopy data in Section 8.5.
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8.2 Theory

Recall that m is a Poisson random variable of intensity µ ∈ R+ if and only if

P (m = k) = e−µ
µk

k!
(8.1)

for every k ∈ N; we use the standard notation m ∼ P(µ). Throughout this chapter,
for a given vector v ∈ RN , we use the notation vn to refer to its n-th component,
where n ∈ {1, . . . , N}. m will denote a vector of N independent Poisson random
variables mn of underlying intensities µn, i.e., mn ∼ P(µn). A realization of m
can be thought of as a noisy measurement of the intensity signal µ. Note that
in contrast with Bayesian approaches, µ is considered to be deterministic in the
present work. Based on the measurement m, our goal is to find an estimate µ̂ that
is the closest possible to the original signal in the minimum mean squared error
(MSE) sense; that is, we want to minimize

MSE =
1
N
‖µ̂− µ‖2 =

1
N

N∑
n=1

(µ̂n − µn)2.

8.2.1 Some useful properties of the Poisson distribution

The Poisson distribution enjoys the following useful properties.

Property 15. The sum of independent Poisson random variables is also a Poisson
random variable, whose intensity is the sum of the original intensities.

For example, m1 +m2 ∼ P(µ1 + µ2).

Property 16. If m ∼ P(µ) and θ: R→ R is a real function such that E [|θ(m)|] <
∞, then

E [µθ(m)] = E [mθ(m− 1)] ,

where E [·] stands for the mathematical expectation operator.
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Proof:

E [µθ(m)] =
∑
k∈N

µθ(k)
µk

k!
e−µ

=
∑

k∈N\{0}

θ(k − 1)
µk

(k − 1)!
e−µ

=
∑
k∈N

kθ(k − 1)
µk

k!
e−µ

= E [mθ(m− 1)] .

Note that Property 16 is the Poisson equivalent of Stein’s lemma for Gaussian
statistics [209]; similar results can be found e.g. in [108, 221]. As a straightforward
application of this property, we note that we have

µ2 = E [m(m− 1)] .

Finally we state a result dating back to [212] that will be useful for the experi-
mental part of this work (Section 8.5).

Property 17 (binomial selection). Let m ∼ B(`, η) be a binomial random variable,
where η ∈ [0, 1] represents the probability of success. If the number of trials ` ∈ N
is random and follows a Poisson distribution with mean λ, then m is itself Poisson
distributed with mean µ = ηλ.

Proof. We show that m follows the Poisson distribution defined in (8.1):

P (m = k) =
∑
n∈N

P (m = k|` = n) P (` = n)

=
∑
n≥k

n!
(n− k)! k!

ηk(1− η)n−k e−λ
λn

n!
.

Performing the change of index n′ = n− k yields

P (m = k) =
∑
n′∈N

1
n′! k!

ηk(1− η)n
′
e−λλn

′+k

= e−ηλ
(ηλ)k

k!

∑
n′∈N

1
n′!

(1− η)n
′
e−(1−η)λλn

′

︸ ︷︷ ︸
=1

.
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dj

sj

sj−1 ↑ 2

↑ 2

Ga(z)

Ha(z) Hs(z)
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↓ 2

↓ 2
θj

δ̂
j

σ̂j−1

Same scheme
applied

recursively σ̂j

Figure 8.1: Filter bank implementation of the unnormalized discrete Haar
wavelet transform and principle of the class of denoising algorithms de-
scribed by (8.2). The scheme is applied recursively on the low-pass channel
output.

8.2.2 The unnormalized Haar discrete wavelet transform

The unnormalized Haar discrete wavelet transform (DWT) can be seen as a stan-
dard two-channel filterbank (see Fig. 8.1). The analysis pair of lowpass/highpass
filters is given in the z-transform domain by{

Ha(z) = 1 + z−1;
Ga(z) = 1− z−1.

The corresponding synthesis pair is{
Hs(z) = 1

2Ha(z−1);
Gs(z) = 1

2Ga(z−1).

In this work, the unnormalized Haar scaling coefficients of the measurement m
at scales j = 1, . . . , J are denoted by sj ∈ RNj , where Nj = N/2j , and dj ∈ RNj
stands for the associated wavelet coefficients (we assume that the signal dimension is
divisible by 2J). Setting s0 = m, these coefficients are obtained from the following
sums and differences:{

sjn = sj−1
2n + sj−1

2n−1,

djn = sj−1
2n − s

j−1
2n−1,

for j = 1, . . . , J.

The original sequence m = s0 is simply recovered by computing{
sj−1
2n = (sjn + djn)/2,
sj−1
2n−1 = (sjn − djn)/2,

for j = J, . . . , 1.
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Similarly, we denote by σσσj and δδδj the scaling and wavelet coefficients of the original
signal µ at a given scale j. Note that, by linearity of the wavelet transform, we
have E

[
djn
]

= δjn and E
[
sjn
]

= σjn.
The key properties of the unnormalized Haar DWT are the following.

1. It is an orthogonal transform. In particular, we can split the MSE into
subband-specific error terms:

MSE =
2−J

N

∥∥∥σ̂σσJ − σσσJ∥∥∥2

+
J∑
j=1

2−j

N

∥∥∥δ̂δδj − δδδj∥∥∥2

.

This implies that we can minimize the MSE for each subband independently,
while ensuring a global signal-domain MSE minimization.

2. At a given scale j, the scaling coefficients of an input vector of indepen-
dent Poisson random variables are also independent Poisson random variables,
thanks to Property 15 of the Poisson distribution.

8.2.3 PURE: a Haar-wavelet-domain Poisson unbiased risk
estimate

In principle, the estimate δ̂δδ
j

may be constructed using all available subbands of the
measurement µ; in practice, however, standard thresholding techniques only use
the corresponding wavelet subband of the measurement, dj . In the sequel, we will
consider denoising algorithms where δ̂δδ

j
also depends on the scaling coefficients at

the same scale sj . This means that we have the following functional relationship:

δ̂δδ
j

= θθθj(dj , sj). (8.2)

As usual, the lowpass residual is not processed, i.e., σ̂σσJ = sJ . Our algorithmic
framework is illustrated in Fig. 8.1.

The above choice is advantageous from a computational standpoint because
such a restoration procedure can be implemented in parallel with the wavelet de-
composition, which yields the scaling coefficients sj as a by-product. Furthermore,
this framework comprises advanced denoising schemes that exploit interscale de-
pendencies via the scaling coefficients sj (see Section 8.3.2). Finally, it allows us
to minimize MSEj = ‖θθθj(dj , sj) − δδδj‖2/Nj independently for each wavelet sub-
band. We will thus focus on a fixed scale and drop the superscript j to simplify the
notations.
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The MSE is a very popular measure of restoration quality in phantom experi-
ments, where the ground-truth signal is known. However, it is not accessible in real
situations where the original noise-free signal is unknown. Our approach is thus to
construct a statistical estimate of this quantity that solely depends on the measure-
ment. This type of estimator is very accurate in the context of image processing,
because it can rely on a large number of samples. In the sequel, we borrow the
term risk from the statistics literature, to refer to the expectation of the MSE.

In the Gaussian case, the scaling coefficients sj are statistically independent
of the wavelet coefficients dj (in an orthogonal wavelet domain). This is in
contrast with the Poisson case, for which dj and sj are statistically dependent and
even correlated. This makes the derivation of a bivariate (i.e. involving both dj

and sj) SURE-like MSE estimate less obvious. In the following theorem, we give
an expression of an unbiased estimate of the MSE in a given subband j of the
unnormalized Haar DWT defined in Section 8.2.2. This result serves as a data-
dependent quantitative measure to be minimized for Poisson intensity estimation.
The family of vectors (en)n=1,...,Nj denotes the canonical basis of RNj , i.e. all
components of en are zero, except for the n-th component, which is equal to one.

Theorem 1. Let θθθ(d, s) = θθθj(dj , sj) be an estimate of the noise-free wavelet coef-
ficients δδδ = δδδj. Define θθθ+(d, s) and θθθ−(d, s) by{

θ+n (d, s) = θn(d + en, s− en),
θ−n (d, s) = θn(d− en, s− en). (8.3)

Then the random variable

εj =
1
Nj

(
‖θθθ(d, s)‖2+‖d‖2−1T s−dT

(
θθθ−(d, s)+θθθ+(d, s)

)
−sT

(
θθθ−(d, s)−θθθ+(d, s)

))
(8.4)

is an unbiased estimate of the MSE for the subband under consideration, i.e.,
E [εj ] = E [MSEj ].

Proof. The proof relies centrally on the fact that, within a given scale, the scaling
coefficients are independent Poisson random variables. We consider the case where
j = 1, so that we can use m = sj−1 and µ = σσσj−1 to avoid superscripts.

We first develop the squared error between δδδ and its estimate θθθ(d, s), using the
fact that δδδ is a deterministic quantity:

E
[
‖θθθ(d, s)− δδδ‖2

]
= E

[
‖θθθ(d, s)‖2

]
+ ‖δδδ‖2︸︷︷︸

(I)

−2 E
[
δδδTθθθ(d, s)

]︸ ︷︷ ︸
(II)

. (8.5)

Now, we can evaluate the two expressions (I,II) that involve the unknown data δδδ.
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(I) ‖δδδ‖2 =
Nj∑
n=1

(δn)2:

We notice that

(δn)2 = E [µ2n(m2n −m2n−1)] + E [µ2n−1(m2n−1 −m2n)] .

By applying Property 2 for θ(m) = m−m2n−1 and for θ(m) = m−m2n, by
using the fact that m2n and m2n−1 are statistically independent, we get

(δn)2 = E
[
(m2n −m2n−1)2 − (m2n +m2n−1)

]
= E

[
(dn)2 − sn

]
.

Therefore ‖δδδ‖2 = E
[
‖d‖2 − 1T s

]
.

(II) E
[
δδδTθθθ(d, s)

]
=

Nj∑
n=1

E [δnθn(d, s)]:

We can successively write

E [δnθn(d, s)] = E [µ2nθn(d, s)]− E [µ2n−1θn(d, s)]
Prop. 16

= E [m2nθn(d− en, s− en)]− E [m2n−1θn(d + en, s− en)]

= E

[
m2n −m2n−1

2
(
θ−n (d, s) + θ+n (d, s)

)]
+

E

[
m2n +m2n−1

2
(
θ−n (d, s)− θ+n (d, s)

)]
=

1
2
E
[
dn
(
θ−n (d, s) + θ+n (d, s)

)]
+

1
2
E
[
sn
(
θ−n (d, s)− θ+n (d, s)

)]
.

Thus 2E
[
δδδTθθθ(d, s)

]
= E

[
dT (θθθ−(d, s) + θθθ+(d, s))

]
+E
[
sT (θθθ−(d, s)− θθθ+(d, s))

]
.

Putting these results back into (8.5) gives the desired equality. For j ≥ 2, the proof
is based on the same idea.

We will refer to (8.4) as the Poisson unbiased risk estimate (PURE). This es-
timate involves finite differences of the restoration function (instead of derivatives
in the Gaussian case). It can be used to evaluate the restoration quality of any
algorithm of the form (8.2) in terms of MSE. In the next section, we will consider
algorithms that depend on a set of parameters, and we will minimize the PURE in
order to obtain their optimal values.
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8.2.4 Extension to multidimensional signal denoising

While the above result (8.4) is stated in a one-dimensional setting, it can easily
be extended to arbitrary dimensions when using the separable Haar DWT. Indeed,
Theorem 1 essentially relies on the fact that the wavelet coefficients are differences
of Poisson random variables. In higher dimensions, it suffices to observe that the
wavelet coefficients are differences of sums of scaling coefficients; these sums are
still Poisson distributed, according to Property 15.

8.3 PURE-based wavelet thresholding

In this section we will define a series of thresholding functions for Poisson denoising.
In general, thresholding operations can be expected to work well on signals that are
piecewise smooth. Such signals have good energy compaction in the wavelet domain,
i.e., they have only a few large wavelet coefficients. These significant coefficients
can be efficiently distinguished from noise-only coefficients using an appropriate
threshold level.

8.3.1 PUREshrink

As a benchmark for illustrating our approach, we propose a wavelet-domain estima-
tor which consists in applying the popular soft-threshold with a PURE-optimized
threshold. Our PUREshrink estimator can be viewed as the transposition of
Donoho and Johnstone’s Gaussian SUREshrink [66] to Poisson noise removal. An
important difference is that the method described in [66] forces the threshold T to
be smaller than the universal threshold (otherwise it is set to the value of the uni-
versal threshold); this is known to be suboptimal for image-denoising applications
[140]. Our threshold optimization totally relies on the minimization of the PURE
(without restrictions).

Contrary to the Gaussian case, where the noise is stationary and completely
described by its variance1, for Poisson data, the amount of noise directly depends
on the intensity we want to estimate. Thus, for deciding on the amount of shrinkage,
we use a threshold T that is proportional to the square root of the scaling coefficient
at the same location and scale. This quantity is an estimate of the local noise
standard deviation, so that it is a good reference for assessing the significance of
a wavelet coefficient. Indeed, each wavelet coefficient of the unnormalized Haar
transform follows a Skellam distribution[202], whose variance is equal to the sum of

1The noise is usually assumed to be zero-mean.
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the two underlying Poisson intensities, i.e. approximately the corresponding scaling
coefficient. Note that in the Haar-Fisz transform [85], the scaling coefficients are
also considered as an estimate of the local noise variance and thus used to stabilize
it. The PUREshrink estimator is therefore defined as

θPUREshrink
n (d, s; a) = sign(dn) max(|dn| − a

√
|sn|, 0), (8.6)

where, for each wavelet subband, the parameter a is set to the value that minimizes
the PURE (8.4) with θθθ(d, s) = θθθPUREshrink(d, s; a).

8.3.2 PURE-LET

Following our recently devised SURE-LET strategy[24], we propose to consider a
wavelet estimator that is formulated as a linear expansion of thresholds (LET), i.e.

θθθLET(d, s; a) =
K∑
k=1

akθθθk(d, s).

Thanks to this linear parameterization, the unbiased estimate of the MSE in (8.4)
is quadratic with respect to the parameters a ∈ RK . Therefore, its minimization
boils down to the resolution of a linear system of equations with small dimension
K:

a = M−1c, (8.7)

where for 1 ≤ k, ` ≤ K,{
ck = [dT (θθθ−k (d, s) + θθθ+k (d, s)) + sT (θθθ−k (d, s)− θθθ+k (d, s))]/2
Mk,` = θθθk(d, s)Tθθθ`(d, s) (8.8)

The definition of θθθ+k (d, s) and θθθ−k (d, s) is similar to (8.3).

Basic thresholding function

Similarly to [140], we propose a linearly-parameterized thresholding function with
K = 2 parameters (a1 and a2), whose n-th component is defined by

θLET0
n (d, s; [a1 a2]T ) =

(
a1 + a2 exp

(
− d2

n

2T 2

))
dn. (8.9)

As in the PUREshrink estimator, the threshold T is directly linked to the local noise
variance, estimated from the magnitude of the corresponding scaling coefficient |sn|.
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However, thanks to the degrees of freedom provided by the two linear parameters
a1 and a2, the value of this threshold does not need to be optimized. By running
several simulations, we found that T 2 = 6|sn| constituted a good choice, inducing
no significant loss compared to a subband-optimized threshold. Our experiments
(see Fig. 8.3) show that the above thresholding function is already more efficient
(approx. +0.25 dB) than the previously presented PUREshrink (8.6).

Interscale sign dependencies

The integration of interscale dependencies has already been shown to bring a sub-
stantial improvement in the context of additive Gaussian white noise removal [140].
Therefore, we propose here an analogous interscale wavelet thresholding, but for
Poisson intensity estimation. The idea is to exploit the scaling coefficients s to
“predict” and reinforce the significant wavelet coefficients of d at the same scale.
Indeed, the scaling coefficients offer improved SNR because they arise from Pois-
son random variables with summed intensities. Thanks to the use of Haar filters,
there is no group delay between the lowpass Ha and highpass Ga analysis filters.
An interscale predictor d̃ of d can thus be obtained simply by applying the anti-
symmetric filter G(z) = z−1 − z to the scaling coefficients s. This filter G is the
shortest filter that ensures a perfect feature alignement, while transforming the
lowpass subband into an approximate highpass subband, as illustrated in the 2D
example of Fig. 8.2.

Lowpass: s Interscale predictor: d̃ Highpass subband: d

— G(z) — -Used to estimate

Figure 8.2: The interscale predictor of subband HLj (resp. LHj , resp.
HHj) is obtained by horizontally (resp. vertically, resp. horizontally and
vertically) filtering the same-scale lowpass subband LLj with the filter
G(z) = z−1 − z.

By taking a closer look at Fig. 8.2, it can be observed that the signs of the inter-
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scale predictor coefficients are consistent with those of the corresponding highpass
subband. This suggests adding a term proportional to this interscale predictor into
the simple thresholding function (8.9), leading to

θLET1
n (d, s; [a1 a2 a3]T ) = θLET0

n (d, s; [a1 a2]T ) + a3 (sn−1 − sn+1)︸ ︷︷ ︸
d̃n

. (8.10)

This simple strategy brings significant improvements (approx. +0.5 dB). This was
confirmed by multiple experiments on standard grayscale images; some of these
simulations are reported in Fig. 8.3.

Interscale amplitude-sign dependencies

Further improvements can be obtained by grouping together wavelet coefficients
of similar magnitudes. This grouping is based on the magnitude of a smoothed
version p of the previously defined interscale predictor d̃ to increase the robust-
ness toward noise. The smoothed version of the interscale predictor is simply
obtained by applying a normalized Gaussian kernel on the absolute value of d̃,
i.e., pn =

∑
k |d̃k|fn−k, where fk = e−k

2/2/
√

2π. The proposed interscale wavelet
thresholding is thus finally defined as

θLET2
n (d, s; a,b) = exp

(
− p2

n

12|sn|

)
θLET1
n (d, s; a)

+
(

1− exp
(
− p2

n

12|sn|

))
θLET1
n (d, s; b). (8.11)

In Fig. 8.3 and 8.4, it is seen that this latter interscale wavelet estimator clearly gives
the best results, both quantitatively and visually, among all estimators presented
here. Note that the PURE-based adjustment of the parameters a and b gives a
SNR gain that is very close to the optimum (which is obtained from an oracle
adjustment of these parameters using the knowledge of the original image).

8.4 Results on simulated data

We now propose to compare our PURE-based approach with the following multi-
scale methods in simulated experiments:

• A standard procedure, which consists of three steps:
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Figure 8.3: PSNR improvements brought by the PURE-LET strategy
over PUREshrink (Formula (8.6): “◦” markers), for two standard grayscale
images. Formula (8.9): “�” markers. Formula (8.10): “4” markers. For-
mula (8.11): “�” markers). Oracle results for Formula (8.11) are shown
with “∗” markers.

1. Apply a variance-stabilizing transformation (VST) on the Poisson-distributed
data. In the experiments, we have tried the Anscombe[7] and the Haar-
Fisz[85] transforms.

2. Use any available denoiser designed for additive Gaussian white noise
removal: we have chosen Donoho and Johnstone’s (subband-dependent)
SUREshrink [66].

3. Apply the corresponding inverse variance-stabilizing transformation to
the denoised data to finally get an estimation of the underlying Poisson
intensities.

This type of approach has the advantage of giving relatively good results at
low computational cost; moreover it is easily reproducible .

• A more involved algorithm: we have retained Willett and Nowak’s Platelet
approach2[249], which stands among the state-of-the-art algorithms for Pois-
son intensity estimation [257].

2Matlab code downloadable at: http://www.ee.duke.edu/∼willett/Research/platelets.html
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(A) (B)

(C) (D)

(E) (F)

Figure 8.4: Visual quality of the various estimators presented in Section
8.3. (A) Part of the original Al image ( Imax = 40). (B) Noisy realization
of it: PSNR = 18.83 dB. (C) Denoised by PUREshrink (8.6): PSNR =
27.61 dB. (D) Denoised by PURE-LET0 (8.9): PSNR = 27.81 dB. (E)
Denoised by PURE-LET1 (8.10): PSNR = 29.12 dB. (F) Denoised by
PURE-LET2 (8.11): PSNR = 29.69 dB.
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For all wavelet-based methods presented in this section, we use the same number
of decomposition levels, i.e. 4 (resp. 5) for 256×256 (resp. 512×512) images. The
input peak signal-to-noise ratios (PSNR3) are adjusted by rescaling the original
test images4, from a maximum intensity of 120 to a minimum of 1.

Table 8.1 summarizes the PSNRs obtained by the various algorithms, both in
a non-redundant and in a redundant framework (using cycle spinning [48]). It can
be observed that the PURE-based approach clearly outperforms (around +1.5 dB,
on average) the standard VST-based wavelet denoisier applied in an orthonormal
wavelet basis. Note that the retained basis (Daubechies’ symlets with eight van-
ishing moments[57]) is smoother—and thus more suitable for image-restoration
tasks—than the basic Haar wavelets that we use. Our solution also gives signifi-
cantly better PSNRs (∼ 0.5− 1 dB) than the non-redundant version of the Platelet
approach. In most cases, the proposed algorithm gives even better results (between
0.5− 1.5 dB, on average) than the VST-based thresholding applied in a redundant
cycle-spinning framework, and results similar to two cyclic shifts of Platelets.

Table 8.2 gives more insights concerning the tradeoff between the degree of re-
dundancy and the computation time of the various algorithms. The Platelet proce-
dure achieves the best PSNRs when considering a high number (25) of cyclic shifts.
However, these results are obtained at a prohibitive computational cost. Cyclic
shifts of our PURE-based approach also brings some gains (around 1 dB), despite
the fact that an independent “shift-wise” PURE minimization is sub-optimal (as
shown in [24, 183] for the Gaussian case). There is probably room for improvement
by deriving a rigorous unbiased estimate of the MSE for redundant processing of
Poisson data; but this is outside the scope of the present work.

As shown in Fig. 8.5, our interscale PURE-LET algorithm removes most of
the Poisson noise, without over-smoothing the underlying intensities. Moreover,
from a computational point of view, it takes only ∼ 0.5s to denoise a 512 × 512
image with the current Matlab implementation of our algorithm; this corresponds
to the optimization of 90 parameters. Under the same conditions, the execution
of the cycle-spinning SUREshrink (25 cyclic shifts) combined with the Haar-Fisz
variance-stabilizing transform requires ∼ 5.5s, while a single shift of the Platelets
lasts 150s, on average.

We also compared the proposed PURE-LET algorithm with our previously
described interscale SURE-LET strategy, specifically devised for Gaussian noise
statistics[140]. For a fair comparison, we used an adapted implementation of the

3Defined as: PSNR = 10 log10

I2max

MSE
, where Imax is the maximum intensity of the noise-free

image.
4Available at: http://bigwww.epfl.ch/luisier/Test-Images.zip
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(A) (B)

(C) (D)

(E)

Figure 8.5: (A) Part of the original Moon image (Imax = 15), by courtesy
of the following website: http://www.galaxyimages.com. (B) Degraded
Moon: PSNR = 17.24 dB. (C) Denoised with Haar-Fisz + SUREshrink
(25 cyclic shifts of OWT sym8 ): PSNR = 24.15 dB in 5.7 s. (D) Denoised
with Platelet (2 cyclic shifts): PSNR = 24.70 dB in 218 s. (E) Denoised
with our interscale PURE-LET (OWT Haar): PSNR = 25.44 dB in 0.65
s.
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Table 8.1: Comparison of Multiscale Poisson Noise Removal Algorithms
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Table 8.2: Cycle-spinning: PSNR improvement and computation time
Cameraman at 17.25 dB

Algorithms
Non-redundant 2 cyclic shifts 25 cyclic shifts

PSNR [ dB] Time [s] PSNR [ dB] Time [s] PSNR [ dB] Time [s]

Haar-Fisz + SUREshrink 24.01 0.06 24.49 0.11 24.83 1.3

Interscale PURE-LET 26.09 0.19 26.45 0.37 26.75 4.6

Platelet 25.01 44.5 25.83 89 27.17 1112

MIT at 18.98 dB

Algorithms
Non-redundant 2 cyclic shifts 25 cyclic shifts

PSNR [ dB] Time [s] PSNR [ dB] Time [s] PSNR [ dB] Time [s]

Haar-Fisz + SUREshrink 23.47 0.06 24.10 0.11 24.64 1.3

Interscale PURE-LET 25.48 0.19 26.02 0.37 26.43 4.6

Platelet 24.10 36 25.33 72 26.80 891

Note: Output PSNRs and computation times have been averaged over ten noise realizations, except for the Platelet approach.

SURE-LET algorithm that involved the same number of parameters as the present
PURE-LET method. We also considered the same wavelet transformation, i.e.
OWT Haar, for both techniques. As can be seen in Fig. 8.6, applying the SURE-
LET strategy in the VST-domain is less efficient for small intensities (over 0.5 dB
loss for intensities lower than 10). This can be attributed to the rigorous min-
imization of an estimate of the actual MSE that is performed by the proposed
PURE-LET algorithm.

8.5 Application to real biological data

In this last section, we describe the application of our denoising algorithm to real
fluorescence-microscopy images of biological samples. The images were acquired
on a Leica TCS SP5 confocal microscope at the Imaging Center of the IGBMC
(Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France).
This microscope is equipped with a water-cooled scan-head and low-noise PMTs5

(Hamamatsu R 9624).

5PMT stands for photomultiplier tube.
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Figure 8.6: PSNR improvements brought by the direct handling of Pois-
son statistics (PURE-LET (OWT Haar): “◦” markers) over VST + SURE-
LET schemes (Anscombe + SURE-LET (OWT Haar): “4” markers;
Haar-Fisz + SURE-LET (OWT Haar): “�” markers).

8.5.1 Brief description of the acquisition process

The measurement process is the same for every scan position (pixel); it is illustrated
in Fig. 8.7 and can be summarized as follows (see e.g. [174] for a more detailed
description). The number of photons arriving at the PMT during the integration
time follows a Poisson distribution of mean λ determined by the source intensity.
Each photon may traverse the protection window, penetrate the photocathode and
be converted to an electron with a certain probability η; this probability is known
as the quantum efficiency of the PMT and is on the order of 30% for the best
models. The conversion process can be seen as a binomial selection [212, 14] and
according to Prop. 17, the number of electrons at the output of the photocathode
(= photoelectrons) follows a Poisson distribution of mean µ = ηλ. The number of
photoelectrons represents a shot-noise-corrupted measurement m of the intensity
signal µ in our framework.

The electrons are then multiplied (via several amplification stages) and con-
verted to an electric current that is integrated and quantized. The recorded signal
is essentially proportional to the number of photoelectrons; although the amplifi-
cation factor may fluctuate in practice, recent work [251] suggests that the newest
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Figure 8.7: Schematic representation of a photomultiplier tube (PMT).

PMTs with high first-stage gain have the ability to discriminate between multi-
photoelectron events, at least for low count numbers. Under this assumption the
measurement process is purely shot-noise limited and one can estimate the number
of photoelectrons by adequately renormalizing the data.

8.5.2 Data preprocessing and verification of the statistical
model

Our normalization procedure is based on the characteristic property of a Poisson
random variable that its mean is equal to its variance. Thus, by dividing the data
by the amplification factor (gain), we should approximately retrieve this behavior.

To validate our approach, we acquired a set of 100 images of the same object
(a C. elegans embryo) under low illumination intensity. We could thus compute
estimates of the mean and variance for every pixel. The amplification factor (gain)
was determined by fitting a linear function to these mean-variance measurements.
After dividing by the gain (and subtracting a constant corresponding to the offset of
the detector), the frequency distribution of the pixel values was found to be in good
agreement with Poisson statistics. Fig. 8.8 shows the histogram of the normalized
pixel values for those pixels whose mean was equal to a given value µ (±5%).

In practice one cannot use multiple realizations of the same image to obtain the
amplification gain. We found that estimates of the local mean and variance based
on spatial averaging can yield a good estimate of the gain. This approach has been
used for the results presented in the next subsection.
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Figure 8.8: Comparison of the Poisson distribution with the histogram of
the normalized data for µ = 5, 10, 15.

8.5.3 Denoising of color fluorescence micrographs

Fig. 8.9 (A) shows the 2D confocal image of a C. elegans embryo labeled with three
fluorescent dyes. We reproduced very noisy experimental conditions by reducing
the laser power and using short exposure times. The three color channels were
processed separately.

The result of the SUREShrink algorithm with a Haar-Fisz transform and 25
cyclic shifts is shown in Fig. 8.9 (C)). The result of our algorithm is sharper and
shows less artifacts (Fig. 8.9 (D)). Besides, it is less noisy than the image shown in
Fig. 8.9 (B), which corresponds (virtually) to a four times longer exposure time.

8.6 Conclusion

The above results suggest that our PURE-based approach is a promising alterna-
tive for denoising Poisson-corrupted images. Although our PURE-LET method is
based on a maximally decimated Haar wavelet transform, it yields results that are
comparable or superior to standard translation-invariant approaches. At the same
time, our algorithm has substantially lower computational complexity and smaller
memory requirements than the latter.

These are appealing features for applications in dynamic fluorescence microscopy,
where biologists must often acquire large time-lapse image series under very low
light conditions. Our method potentially allows for a reduction in exposure time
and/or laser intensity, which are critical parameters when imaging fast-moving live
samples.

We are currently working on an extension of the algorithm so as to allow for
arbitrary (redundant) wavelet decompositions. It would also be interesting to test
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(A) (B)

(C) (D)

Figure 8.9: (A) Input image for the denoising algorithms. (B) Reference
image: average of four images of the same sample. (C) Denoising result
with Haar-Fisz + SUREshrink (25 cyclic shifts of OWT sym8 ). (D) De-
noising result with our interscale PURE-LET (OWT Haar).



8.6 Conclusion 173

our method on a confocal microscope equipped with a photon-counting module,
instead of a standard device measuring the output current.
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Chapter 9

Recursive risk estimation
and its application to
wavelet-regularized
deconvolution

Summary

We propose a recursive data-driven risk-estimation method for non-linear iterative
deconvolution. Our two main contributions are 1) a solution-domain risk-estimation
approach that is applicable to non-linear restoration algorithms for ill-conditioned
inverse problems; and 2) a risk estimate for a state-of-the-art iterative procedure,
the thresholded Landweber iteration, which enforces a wavelet-domain sparsity con-
straint. Our method can be used to estimate the SNR improvement at every step
of the algorithm; e.g., for stopping the iteration after the highest value is reached.
It can also be applied to estimate the optimal threshold level for a given number
of iterations.

This chapter is Copyright c© 2008 IEEE. Reprinted, with permission, from [239].

175



176 Recursive risk estimation for wavelet-based deconvolution

9.1 Introduction

Deconvolution software plays an increasingly important role in various imaging
applications, such as optical microscopy, medical imaging, astronomy, or satellite
imaging. While there are many different deconvolution algorithms available [17,
235], virtually all of them depend on a set of parameters that must be properly
adjusted to obtain satisfying results. Depending on the type of algorithm, one may
have to tune various parameters such as regularization factor, step size, number of
iterations, etc. Many end-users do not feel comfortable with this task, unless they
have a good practical experience of the algorithm. As a result, they often resort
to a subjective choice based on purely qualitative visual criteria. This reduces the
reproducibility of the results and hinders comparison between data sets.

Consequently, the problem of parameter adjustment is of considerable impor-
tance for deconvolution-software manufacturers. There are various methods for
automating this task based on quantitative criteria, such as the discrepancy prin-
ciple, the L-curve method, the CL method or generalized cross-validation (see for
example Chapter 7 of [235]). However, the underlying performance criteria are ex-
pressed in the measurement domain, which gives only a partial account of the actual
restoration quality. Signal-domain approaches are less-common; to our knowledge,
they have only been applied to linear deconvolution (see [86] and our recent work
[181]).

Blu and Luisier [24] recently revitalized the principle of data-driven image
restoration in the context of denoising, based on a risk estimate introduced by
Stein [209]. In this chapter, we use a similar estimate for ill-conditioned deconvolu-
tion problems. Specifically, we construct a recursive risk estimate—which depends
only on the measurement—for a non-linear iterative deconvolution algorithm: the
so-called “thresholded-Landweber” (TL) algorithm (see [78, 58, 16] and Chapter 5.
This wavelet-based method belongs to the state-of-the-art in image deconvolution
(we refer the reader to the experimental results presented in [78]). Nevertheless,
the optimal result is typically obtained before the algorithm has fully converged,
that is, for a particular number of iterations (see the example in Fig. 9.1). In such a
situation, our method can be applied to monitor the (estimated) SNR improvement
during the execution, so as to automatically stop the algorithm after the highest
value has been reached. Our experiments show that it can also be used to adjust
the threshold level.

In this chapter, we consider the algebraic image-formation equation

y = Hx + b,

where H is a block-circulant matrix that represents the effect of a convolutive image-
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formation device. b ∼ N (0, σ2I) is a vector that models the errors introduced
by the measurement device (e.g. a CCD camera); we assume that its entries are
realizations of IID Gaussian random variables of mean 0 and variance σ2.

A deconvolution method can be seen as a function f : RN → RN that returns
an estimate of the original image x from the measurement y (N stands for the
dimension of these vectors, that is, the number of pixels of the corresponding im-
ages). The design of a good deconvolution method is a difficult task, because the
inversion of H is typically an ill-posed problem [17]. Most approaches are based
on variational principles or on statistical assumptions whose discussion would go
beyond the scope of this chapter. The performance of a deconvolution method f is
usually measured in terms of the quadratic error (or “risk”) r = ‖x− f(y)‖2, where
‖·‖ is the `2 norm. Of course, evaluating the risk is only possible in phantom exper-
iments where the original image x is known. Such a quantity (which requires the
knowledge of the ground-truth image) is often refered to as an “oracle” measure.

9.2 A general risk-estimation approach

In the sequel, we consider the case where the deconvolution algorithm depends on a
parameter p; we thus use the notation fp(y) instead of f(y). Ideally, the parameter
p should be selected so as to minimize the corresponding risk

rp = ‖x− fp(y)‖2.

Since the ground-truth is obviously not available in real situations, our first goal is
to derive an estimate of this quantity that depends only on the available information
about x, that is, the measurement y. We have already constructed and successfully
employed such a risk estimate in the case where fp corresponds to a (linear) Wiener-
type inverse filter with regularization parameter p [181]. Here, we consider a general
(possibly non-linear) deconvolution algorithm. To obtain an estimate in this case,
we rewrite the risk as

rp = ‖x‖2 − 2xT fp(y) + ‖fp(y)‖2

= ‖x‖2 − 2(HinvHx)T fp(y)

− 2([I−HinvH]x)T fp(y) + ‖fp(y)‖2

= ‖x‖2 − 2yTgp(y) + 2bTgp(y)

− 2([I−HinvH]x)T fp(y) + ‖fp(y)‖2,

where Hinv is a stabilized approximation of the inverse of H (see e.g. [17]) and
gp(y) = HT

invfp(y). There are three terms that are related to unknown quantities
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(x and b) in the last expression. The first one, ‖x‖2, is a constant1 with respect to
p and is thus irrelevant for our purpose (we are only interested in minimizing the
risk). The second one, bTgp(y), can be estimated using a technique that is quite
common in the field of statistics, which follows from the equality

E[bTgp(y)] = σ2E[div gp(y)],

where div is the divergence operator (see [209] or [24], which also state adequate
conditions on g). If HinvH is reasonably close to I, then the third term ([I −
HinvH]x)T fp(y) is negligible.

Based on these considerations, we propose to estimate the risk using the quantity

ep = c− 2yTgp(y) + 2σ2div gp(y) + ‖fp(y)‖2.

This quantity only depends on the measurement y (here, c represents an arbitrary
constant, which does not influence the minimum of ep with respect to p).

9.3 Recursive risk estimation

The general approach described in the previous section must be further specified
in the case of an iterative method such as the TL algorithm. For simplicity, we
consider the case of soft-thresholding in an orthonormal wavelet basis; however, the
following ideas can readily be extended to a more general setting (biorthogonal or
redundant decompositions; other thresholding functions).

When it is run until convergence, the classical Landweber iteration [17] induces
considerable noise amplification for ill-conditioned inverse problems such as decon-
volution. The TL algorithm can be understood as a way to compensate for this
effect using wavelet-coefficient thresholding, a technique known for its effectiveness
in image-denoising applications. Starting from some initialization x(0), it produces
a sequence of images x(k) according to the update rule2

x(k+1) = WTθ
{

WT
[
x(k) + HT (y −Hx(k))

]}
.

Here, W is an orthonormal wavelet reconstruction matrix (thus WT is the cor-
responding decomposition matrix) and Tθ{·} denotes a component-wise applica-
tion of the so-called “soft-thresholding” function (with threshold level θ): Tθ(w) =
sign(w) max(|w| − θ, 0). This operation guarantees that the deconvolved images

1Recall that x is assumed to be a deterministic signal.
2Assuming that H is adequately normalized—see Chapter 5.
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(a) (b) (c)

(d)

Figure 9.1: (a) Original image. (b) Blurred and noisy image (9 × 9 uniform
blur, Gaussian white noise with BSNR = 40 dB). (c) Restored image for the
optimal number of iterations (16) and (d) after 300 iterations.

have a certain degree of sparsity in the wavelet domain (depending on the value of
θ). This property makes the TL algorithm very attractive, because many natural
images can be well approximated using only a few non-zero coefficients in a given
wavelet basis.

Our goal is now to obtain a risk estimate for every iteration k of the TL al-
gorithm. In this case, we can interpret the number of iterations as our parameter
(p = k). The only difficulty for applying the estimate ep lies in the computation of
the divergence term. We propose to use the identity div gp(y) = Tr Jgp(y), where
Tr is the trace operator and Jgp(y) denotes the Jacobian matrix of gp, evaluated
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at y. In our case, Jgp(y) = HT
invJfp(y); using a functional description of the TL

algorithm, we obtain an explicit expression of this matrix. Let us define

t(u,v) = WTθ
{

WT (I−HTH)u + WTHTv
}
.

Then the result at iteration p = k is given by x(k) = fk(y), where the function fk
is defined recursively by{

f0 (initialization method);
fk+1 = t(fk, ·) (update rule).

This leads to a recursive relation between the Jacobian matrices of the functions
fk:

Jfk+1(y) = Jt(fk,·)(y)
= Jt(fk,y)(y) + Jt(fk(y),·)(y)
= Jt(·,y)(fk(y)) Jfk(y) + Jt(fk(y),·)(y)

= WDkWT ([I−HTH]Jfk(y) + HT ).

Here Dk = JTθ (W
T [I−HTH]fk(y) + WTHTy) is a diagonal matrix, since thresh-

olding is a pointwise operation.
This result can not be applied directly, however. The Jacobian matrices Jfk(y)

are indeed extremely large for typical image sizes, so that it is unrealistic to compute
and store them explicitly. Instead, we propose to exploit the following property: if
n ∼ N (0, I) is independent of J, then E[nTJn] = Tr J (where the expectation is
taken over n). In other words, given a normally distributed noise realization n, we
propose to compute the vector Jfk(y)n rather than the matrix Jfk(y). This vector
is updated recursively using the above recursion relation, which is computationally
equivalent to performing one iteration of the TL algorithm. To estimate the diver-
gence term at a given iteration k, we take the inner product with the filtered noise
realization Hinvn. Thus, the risk estimate that we use in practice is

e′p = c− 2(Hinvy)T fp(y) + 2σ2(Hinvn)TJfp(y)n + ‖fp(y)‖2.

Typically, one realization of n is enough to yield an accurate estimate, since the
number of samples N is relatively large for images.

9.4 Practical applications of the method

We performed two phantom experiments to illustrate the potential applications
of the method. These experiments were conducted under the following general
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conditions. The value of σ2 was assumed to be known; in practical situations
it can be estimated using a method similar to the one described in [181]. The
TL algorithm was applied with four decomposition levels of the orthonormal Haar
wavelet transformation. In addition to the description given in Section 9.3, we
applied the random-shift strategy proposed in [78] which was found to yield the
best deconvolution results (for non-redundant decompositions). Our risk-estimation
method can be easily adapted to account for this additional processing step, without
notably changing its computational complexity (which is of the same order as the
TL algorithm itself). The initialization x(0) was generated with the same method
as in [78].

The estimate was computed using the simplest form of regularized inverse filter,
Hinv = (HTH + εI)−1HT ; the constant ε was set to σ2/m2

y, where my stands for
the average (spatial) intensity of the measurement. For graphical-representation
purposes, the constant c was chosen such that the risk and our estimate would
coincide for the initialization x(0).

9.4.1 Optimal number of iterations

In our first experiment, we convolved the standard Cameraman image with a 9× 9
uniform-blur kernel and added noise to the result; this is illustrated in Fig. 9.1 for
a BSNR of 40 dB. We considered the case of a threshold level that is suboptimal
for a large number of iterations, which is representative of practical situations. We
looked at the evolution of the true risk rp and of our estimate e′p as a function of the
parameter p = k (number of iterations). The results (signal-to-noise improvement
in dB) are presented in Fig. 9.2; SNRI = 10 log10(‖y−x‖2/qp), where qp stands for
one of the two previous quantities. The optimal value of the parameter according
to the oracle and the estimate are indicated with a star and a circle, respectively.

It is seen that the curves of the true risk and of the estimate are in good
agreement. In particular, the maximum of the estimate is sufficiently close to the
maximum of the risk to allow for a prediction of the optimal number of iterations;
such a prediction would yield the optimal number with an accuracy of about 0.1
dB in terms of SNRI. For BSNR levels of 40 and 30 dB, one would even obtain
the optimal result (shown in Fig. 9.1 for a BSNR of 40 dB). In the 20 dB case,
using the estimate would result in stopping the algorithm a few iterations before
the optimum, which is favorable from a computational standpoint.
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Figure 9.2: Estimation of the SNR improvement as a function of the number of
iterations, for different noise levels. In each case, the continuous line corresponds
to the true value of the risk (oracle measure) and the dashed one to the estimated
risk.

9.4.2 Optimal threshold level

We applied a similar protocol for the parameter p = θ (threshold level) and a fixed
number of iterations (k = 50). This time we used the MRI image and a Gaussian
convolution kernel of width σkernel = 2 pixels.

The results are shown in Fig. 9.3. The curves of the true risk and of the estimate
have the same shape. In particular, the maxima of the curves are again situated
within a range of about 0.1 dB; this would allow for a prediction of the optimal
threshold level based on the proposed risk estimate.

9.5 Conclusion

We have presented a promising data-driven method for estimating the risk during
the execution of a recent non-linear iterative deconvolution algorithm: the thresh-
olded Landweber iteration. Our results suggest that the method is suitable for
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Figure 9.3: Estimation of the SNR improvement as a function of the threshold
level, for a fixed number of iterations.

estimating the optimal number of iterations, or for estimating the optimal thresh-
old level. Future work will be concerned with a more extensive study of the accuracy
of the method, and with the online estimation of the optimal threshold level (during
the execution of the algorithm).
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Chapter 10

Conclusion

10.1 Summary of contributions

In this thesis, we have presented several novel algorithmic solutions for image
restoration. These procedures correspond to different tradeoffs in terms of com-
putational complexity, restoration quality and automation. Their benefits for fluo-
rescence microscopy can be summarized as follows.

For applications involving weak light intensities (Poisson noise model), we pro-
posed a fully self-adjusting denoising method with very low computational com-
plexity. The method is suitable for automatically processing large quantities of
data, such as time-lapse sequences.

For applications with sufficient signal-to-noise ratio, we designed a new multi-
level deconvolution algorithm that is based on wavelet-domain `1 regularization.
This regularization technique belongs to the current state of the art in variational
image restoration, and its application to fluorescence microscopy is novel. Using
our algorithm, its computational cost can typically be brought down to a few dozen
FFTs, which is competitive with existing solutions for deconvolution microscopy.

Finally we described a numerical scheme for estimating the signal-to-noise ratio
during the execution of an arbitrary iterative image-restoration algorithm. This
allows for stopping the algorithm at the optimal number of iterations, and for ad-
justing other parameters—such as regularization—automatically. Thus our method
reduces the need for user interaction, while increasing the reproducibility of the re-
sults.

From a methodological standpoint, our developments rely extensively on wavelet
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representations and multilevel concepts. Our guiding principles have been to ex-
ploit the structure of the problem at hand, and to preserve this structure accross
scales. While the wavelet-based multilevel scheme of Part II was primarily devel-
oped for image restoration, it can be applied to more general inverse problems. In
particular, we have been involved in preliminary investigations concerning fMRI
signal restoration, tomographic inversion and MR image reconstruction.

We also made a pedagogical effort in summarizing the principles of fluorescence
microscopy and risk-estimation techniques for a signal-processing audience. We
highlighted certain aspects of risk estimation that are likely to be relevant for
future developments, in particular with respect to ill-posed inverse problems.

10.2 Open algorithmic and conceptual questions

The present work poses a series of questions that open the way for future investi-
gations.

An alternative to wavelet-coefficient penalization that is also considered state-
of-the-art in variational image restoration is total-variation regularization. This
formulation is computationally more challenging (it amounts to a constrained opti-
mization problem). Although there have been various attempts to apply multilevel
methods to total-variation minimization—among the most recent ones, see [44, 81]
and references therein—it might be worth trying to adapt our wavelet-based ap-
proach.

If restoration quality is a priority, one should assess the benefits of using more
advanced non-separable wavelet representations. Especially appealing are recently-
proposed wavelet frames that are motivated by invariance principles and promise to
be more adapted to the geometry of natural images [224]. However, in our context
of high-dimensional image restoration, one should carefully consider the tradeoffs in
terms of computational complexity and memory consumption (filter computation
and storage; redundancy of the representation).

Another way to improve restoration quality is to introduce more degrees of free-
dom into the restoration procedure. With this approach, even the simple Haar
wavelet transform can yield competitive denoising results, as suggested by the nu-
merical experiments of Chapter 8 and previous results [24]. For iterative methods,
however, this comes at the expense of automation, since there are more parameters
to adjust. In practice, generic adjustment methods such as the one presented in
Chapter 9 are computationally infeasible for many parameters.

These considerations lead to another algorithmic challenge for deconvolution:
is it possible to design a non-iterative technique that would reach the restoration
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quality of recent variational methods while allowing for a complete self-adjustment
of its parameters? A further advantage with respect to iterative techniques would
be a significant reduction of the computational cost. We are planning to investigate
this issue in the near future.

From a conceptual standpoint, there is a computational “trick” that remains to
be explained: in our numerical experiments, the best results were systematically
obtained using random shifts, a cheap version of cycle spinning [48] for iterative
methods. There is currently no variational interpretation for this operation, al-
though cycle spinning has been justified on theoretical grounds [183]. This poses
a more fundamental question with respect to the paradigm of sparsity; in fact, a
very recent investigation [74] suggests that sometimes “a weighted average of sparse
representations is better than the sparsest one alone”...

Finally, the recent switch of mass-market computer manufacturers to multicore
architectures and the possibility of using video-card hardware via specific libraries
(e.g. CUDA) will inevitably set new standards for algorithm designers. It may even-
tually be worth investigating parallel versions of the sequential methods discussed
here.
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[26] N. Bourbaki. Intégration. Hermann, second edition, 1965.

[27] J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl. Image restoration for
confocal microscopy: Improving the limits of deconvolution, with application
to the visualization of the mammalian hearing organ. Biophysical Journal,
80(5):2455–2470, May 2001.

[28] J. Boutet de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl. Image-
adaptive deconvolution for three-dimensional deep biological imaging. Bio-
physical Journal, 85:3991–4001, December 2003.

[29] W. S. Boyle and G. E. Smith. Charge coupled semiconductor devices. Bell
System Technical Journal, 49(4):587–593, April 1970.

[30] K. Bredies and D. A. Lorenz. Linear convergence of iterative soft-
thresholding. Journal of Fourier Analysis and Applications, In press.

[31] W. L. Briggs and V. E. Henson. Wavelets and multigrid. SIAM Journal on
Scientific Computing, 14(2):506–510, March 1993.

[32] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial.
Society for Industrial and Applied Mathematics, second edition, 2000.



192 BIBLIOGRAPHY

[33] D.R. Brillinger. Some wavelet analyses of point process data. Signals, Sys-
tems & Computers, 1997. Conference Record of the Thirty-First Asilomar
Conference on, 2:1087–1091 vol.2, Nov 1997.

[34] L. G. Brown. A survey of image registration techniques. ACM Comput. Surv.,
24:325–376, 1992.

[35] Z. Cai and W. E. Hierarchical method for elliptic problems using wavelet.
Communications in Applied Numerical Methods, 8(11):819–825, November
1992.

[36] G. Carrero, D. McDonald, E. Crawford, G. de Vries, and M. J. Hendzel.
Using FRAP and mathematical modeling to determine the in vivo kinetics of
nuclear proteins. Methods, 29(1):14–28, January 2003.

[37] W. A. Carrington. Image restoration in 3-D microscopy with limited data.
In Proceedings of the SPIE, volume 1205, pages 72–83, 1990.

[38] Y. Censor. Row-action methods for huge and sparse systems and their appli-
cations. SIAM Review, 23(4):444–466, October 1981.

[39] M. Chalfie, Y. Tu, G. Euskirchen, W. Ward, and D. C. Prasher. Green
fluorescent protein as a marker for gene expression. Science, 263(5148):802–
805, February 1994.

[40] A. Chambolle, R. A. DeVore, N.-Y. Lee, and B. J. Lucier. Nonlinear
wavelet image processing: variational problems, compression, and noise re-
moval through wavelet shrinkage. IEEE Transactions on Image Processing,
7(3):319–335, March 1998.

[41] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta
Numerica, 3:61–143, January 1994.

[42] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs. A variational
formulation for frame-based inverse problems. Inverse Problems, 23(4):1495–
1518, August 2007.

[43] G. H.-G. Chen and R. T. Rockafellar. Convergence rates in forward-backward
splitting. SIAM Journal on Optimization, 7(2):421–444, May 1997.

[44] K. Chen and X.-C. Tai. A nonlinear multigrid method for total variation mini-
mization from image restoration. Journal of Scientific Computing, 33(2):115–
138, November 2007.



BIBLIOGRAPHY 193

[45] C. Christopoulos, A. Skodras, and T. Ebrahimi. The JPEG2000 still image
coding system: an overview. IEEE Transactions on Consumer Electronics,
46(4):1103–1127, November 2000.

[46] D. M. Chudakov, V. V. Verkhusha, D. B. Staroverov, E. A. Souslova,
S. Lukyanov, and K. A. Lukyanov. Photoswitchable cyan fluorescent pro-
tein for protein tracking. Nature Biotechnology, 22(11):1435–1439, November
2004.

[47] G. Cohen. Auxiliary problem principle and decomposition of optimization
problems. Journal of Optimization Theory and Applications, 32(3):277–305,
November 1980.

[48] R. R. Coifman and D. L. Donoho. Translation invariant de-noising. In Lec-
ture Notes in Statistics: Wavelets and Statistics, volume 103, pages 125–150,
Springer Verlag, NewYork, 1995.

[49] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-
backward splitting. Multiscale Modeling and Simulation, 4(4):1168–1200,
2005.

[50] J.-A. Conchello. Superresolution and convergence properties of the
expectation-maximization algorithm for maximum-likelihood deconvolution
of incoherent images. Journal of the Optical Society of America A,
15(10):2609–2619, October 1998.

[51] J.-A. Conchello and M. E. Dresser. Extended depth-of-focus microscopy
via constrained deconvolution. Journal of Biomedical Optics, 12(6):064026,
November/December 2007.

[52] J.-A. Conchello and E. W. Hansen. Enhanced 3D reconstruction from con-
focal scanning microscope images. 1: Deterministic and ML reconstructions.
Applied Optics, 29(26):3795–3804, September 1990.

[53] J.-A. Conchello, J. J. Kim, and E. W. Hansen. Enhanced 3D reconstruction
from confocal scanning microscope imagess. 2: Depth discrimination versus
signal-to-noise ratio in partially confocal images. Applied Optics, 33(17):3740–
3750, June 1994.

[54] J.-A. Conchello and J. G. McNally. Fast regularization technique for expecta-
tion maximization algorithm for optical sectioning microscopy. In Proceedings
of the SPIE, volume 2655, pages 199–208, 1996.



194 BIBLIOGRAPHY

[55] A. H. Coons and M. H. Kaplan. Localization of antigen in tissue cells. II.
Improvements in a method for the detection of antigen by means of fluorescent
antibody. Journal of Experimental Medicine, 91(1):1–13, 1950.

[56] W. Dahmen and A. Kunoth. Multilevel preconditioning. Numerische Math-
ematik, 63(1):315–344, December 1992.

[57] I. Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional
Conference series in Applied Mathematics. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, March 1992.

[58] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on
Pure and Applied Mathematics, 57(11):1413–1457, August 2004.

[59] S. Delpretti, F. Luisier, S. Ramani, T. Blu, and M. Unser. Multiframe SURE-
LET denoising of timelapse fluorescence microscopy images. In Proceedings of
the 5th IEEE International Symposium on Biomedical Imaging (ISBI): From
Nano to Macro, Paris, France, May 14-17, 2008.

[60] W. Denk, J. H. Strickler, and W. W. Webb. Two-photon laser scanning
fluorescence microscopy. Science, 248(4951):73–76, April 1990.

[61] R. A. DeVore. Nonlinear approximation. Acta Numerica, pages 51–150, 1998.
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[115] S. Kaczmarz. Angenäherte Auflösung von Systemen linearer Gleichungen.
Bulletin de l’Académie Polonaise des Sciences et des Lettres A, 6:355–357,
1937.

[116] J. Kalifa and S. Mallat. Thresholding estimators for linear inverse problems
and deconvolutions. Annals of Statistics, 31(1):58–109, 2003.

[117] H. Kano, H. T. M. van der Voort, M. Schrader, G. M. P. van Kempen, and
S. W. Hell. Avalanche photodiode detection with object scanning and image
restoration provides 2-4 fold resolution increase in two-photon fluorescence
microscopy. Bioimaging, 4(3):187–197, September 1996.

[118] I. Khalidov and M. Unser. From differential equations to the construction of
new wavelet-like bases. IEEE Transactions on Signal Processing, 54(4):1256–
1267, April 2006.

[119] E. D. Kolaczyk. Non-parametric estimation of gamma-ray burst intensities
using Haar wavelets. The Astrophysical Journal, 483:340–349, 1997.

[120] E. D. Kolaczyk. Bayesian multi-scale models for Poisson processes. Journal
of the American Statistical Association, 94(447):920–933, September 1999.

[121] E. D. Kolaczyk. Wavelet shrinkage estimation of certain Poisson intensity
signals using corrected thresholds. Statistica Sinica, 9(1):119–135, January
1999.

[122] E. D. Kolaczyk. Nonparametric estimation of intensity maps using Haar
wavelets and Poisson noise characteristics. The Astrophysical Journal,
534:490–505, 2000.

[123] E. D. Kolaczyk and R. D. Nowak. Multiscale likelihood analysis and com-
plexity penalized estimation. Annals of statistics, 32(2):500–527, 2004.



200 BIBLIOGRAPHY

[124] L. Landweber. An iterative formula for Fredholm integral equations of the
first kind. American Journal of Mathematics, 73(3):615–624, July 1951.

[125] K. Lange, D. R. Hunter, and I. Yang. Optimization transfer using surro-
gate objective functions. Journal of Computational and Graphical Statistics,
9(1):1–20, March 2000.

[126] W. M. Lawton. Multiresolution properties of the wavelet Galerkin operator.
Journal of Mathematical Physics, 32(6):1440–1443, June 1991.

[127] R. Leahy and C. Byrne. Recent developments in iterative image reconstruc-
tion for PET and SPECT. IEEE Transactions on Medical Imaging, 19(4):257–
260, April 2000.

[128] E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer, second
edition, 1998.

[129] M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickin-
son. 4-dimensional cardiac imaging in living embryos via post-acquisition
synchronization of nongated slice-sequences. Journal of Biomedical Optics,
10(5), 2005.

[130] M. Liebling and M. Unser. Autofocus for digital Fresnel holograms by use
of a fresnelet-sparsity criterion. Journal of the Optical Society of America A,
21(12):2424–2430, December 2004.

[131] P. L. Lions. On the Schwarz alternating method. i. In R. Glowinski, G. Golub,
G. Meurant, and J. Periaux, editors, Proceedings of the First International
Symposium of Domain Decomposition Methods for Partial Differential Equa-
tions, pages 1–42, Philadelphia, PA, 1988. Society for Industrial and Applied
Mathematics.

[132] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two non-
linear algorithms. SIAM Journal on Numerical Analysis, December(6):964–
979, December 1979.

[133] J. Lippincott-Schwartz, A.-B. Nihal, and G. H. Patterson. Photobleaching
and photoactivation: following protein dynamics in living cells. Nature Cell
Biology, 5(9):Suppl:S7–S14, September 2003.

[134] J. Lippincott-Schwartz and G. H. Patterson. Development and use of fluo-
rescent protein markers in living cells. Science, 300(5616):87–91, April 2003.



BIBLIOGRAPHY 201

[135] I. Loris, G. Nolet, I. Daubechies, and F. A. Dahlen. Tomographic inversion
using `1-regularization of wavelet coefficients. Geophysical Journal Interna-
tional, 170(1):359–370, July 2007.

[136] A. K. Louis. Medical imaging: state of the art and future development.
Inverse Problems, 8(5):709–738, October 1992.

[137] H. Lu, Y. Kim, and John M. M. Anderson. Improved Poisson intensity es-
timation: denoising application using Poisson data. IEEE Transactions on
Image Processing, 13(8):1128–1135, August 2004.

[138] L. B. Lucy. An iterative technique for the rectification of observed distribu-
tions. The Astronomical Journal, 79(6):745–754, June 1974.

[139] F. Luisier and T. Blu. Poisson intensity estimation in additive Gaussian white
noise. Preprint.

[140] F. Luisier, T. Blu, and M. Unser. A new SURE approach to image denoising:
Interscale orthonormal wavelet thresholding. IEEE Transactions on Image
Processing, 16(3):593–606, March 2007.

[141] S. Mallat. A theory for multiresolution signal decomposition: the wavelet
representation. IEEE Transaction on Pattern Analysis and Machine Intelli-
gence, 11(7):674–693, July 1989.

[142] S. Mallat. A wavelet tour of signal processing. Academic Press, 1998.

[143] J. S. Marchant, G. E. Stutzmann, M. A. Leissring, F. M. LaFerla, and
I. Parker. Multiphoton-evoked color change of DsRed as an optical high-
lighter for cellular and subcellular labeling. Nature Biotechnology, 19(7):645
– 649, July 2001.

[144] J. Markham and J.-A. Conchello. Parametric blind deconvolution: a robust
method for the simultaneous estimation of image and blur. Journal of the
Optical Society of America A, 16(10):2377–2391, October 1999.

[145] J. Markham and J.-A. Conchello. Artefacts in restored images due to intensity
loss in three-dimensional fluorescence microscopy. Journal of Microscopy,
204(2):93–98, November 2001.

[146] J. Markham and J.-A. Conchello. Fast maximum-likelihood image-restoration
algorithms for three-dimensional fluorescence microscopy. Journal of the Op-
tical Society of America, 18(5):1062–1071, May 2001.



202 BIBLIOGRAPHY

[147] L. McMahon, R. Legouis, J.-L. Vonesch, and M. Labouesse. Assembly of C.
elegans apical junctions involves positioning and compaction by LET-413 and
protein aggregation by the MAGUK protein DLG-1. Journal of Cell Science,
114(12):2265–2277, June 2001.

[148] J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello. Three-
dimensional imaging by deconvolution microscopy. Methods, 19(3):373–385,
November 1999.

[149] E. Meijering, M. Jacob, J.-C.F. Sarria, P. Steiner, H. Hirling, and M. Unser.
Design and validation of a tool for neurite tracing and analysis in fluorescence
microscopy images. Cytometry Part A, 58A(2):167–176, April 2004.

[150] E. Meijering, I. Smal, and G. Danuser. Tracking in molecular bioimaging.
IEEE Signal Processing Magazine, 23(3):46–53, 2006.

[151] X.-L. Meng and D. A. van Dyk. The EM algorithm—an old folk-song sung to
a fast new tune. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 59(3):511–567, 1997.

[152] Y. Meyer. Ondelettes et opérateurs. Hermann, 1990.
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May 1870.

[197] P. Selvin. The renaissance of fluorescence resonance energy transfer. Nature
Structural Biology, 7(9):730–734, 2000.

[198] J. W. Shaevitz and D. A. Fletcher. Enhanced three-dimensional deconvolution
microscopy using a measured depth-varying point-spread function. Journal
of the Optical Society of America A, 24(9):2622–2627, September 2007.

[199] O. Shimomura. The discovery of aequorin and green fluorescent protein.
Journal of Microscopy, 217(1):3–15, January 2005.

[200] J.-B. Sibarita. Microscopy Techniques, volume 95 of Advances in Biochemical
Engineering/Biotechnology, chapter Deconvolution Microscopy, pages 201–
243. Springer, 2005.

[201] E. P. Simoncelli. Bayesian Inference in Wavelet Based Models, volume 141
of Lecture Notes in Statistics, chapter Bayesian denoising of visual images in
the wavelet domain, pages 292–308. Springer-Verlag, New York, June 1999.



BIBLIOGRAPHY 207

[202] J. G. Skellam. The frequency distribution of the difference between two Pois-
son variates belonging to different populations. Journal of the Royal Statistical
Society, 109(3):296, 1946.
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