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ABSTRACT

This paper presents two contributions. We first introduce a continu-
ous-domain version of Principal-Component Analysis (PCA) for de-
signing steerable filters so that they best approximate a given set of
image templates. We exploit the fact that steerability does not need
to be enforced explicitly if one extends the set of templates by in-
corporating all their rotations. Our results extend previous work by
Perona to multiple templates.

We then apply our framework to the automatic detection and
classification of micro-particles that carry biochemical probes for
molecular diagnostics. Our continuous-domain PCA formalism is
particularly well adapted in this context because the geometry of the
carriers is known analytically. In addition, the steerable structure
of our filters allows for a fast FFT-based recognition of the type of
probe.

Index Terms— Steerable filters, Principal-Component Analysis
(PCA), micro-particle detection, molecular diagnostics.

1. INTRODUCTION

1.1. Motivation

The current evolution towards personalized medicine is creating a
need for cost-effective, high-throughput yet patient-specific diagnos-
tics solutions. In this context, the Swiss company Biocartis has de-
veloped a micro-fluidic system that can simultaneously test a given
sample for the presence of a large number of different biological
markers.

The system is built around circular micro-particles (see Fig. 1)
that carry suitable biochemical probes in their central part. The type
of probe is encoded at the periphery of each micro-carrier through
a series of perforations. The readout of the assay is performed in
time-lapse microscopy using two complementary optical modalities:
the binding process between the probes and the markers is moni-
tored using fluorescence imaging, while the particles are tracked us-
ing brightfield imaging.

Here we concentrate on the latter problem. Specifically, our goal
is to detect each particle and to decode its perforations so as to de-
termine the type of probe it carries. To this end, the orientation of
each particle must be determined in an accurate and computationally
efficient way. We have thus chosen to develop an algorithm based on
steerable filters, because they can provide non-discretized directional
information using only a finite number of correlation measurements.

Our approach can be divided into two parts, corresponding to
Section 2 and Section 3 of the present paper. We first design a family
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of steerable filters that is tailored to the patterns of interest based
on Principal-Component Analysis (PCA). Then we use the obtained
filters within a fast convolution-based algorithm for determining the
location, orientation and encoding of each particle.

1.2. Existing work and contributions of this paper

Steerable filters have been characterized from two different mathe-
matical perspectives: functional analysis [1, 2, 3] and the theory of
Lie groups [4, 5]. While the angular part of steerable filters is rel-
atively constrained (it must be a finite Fourier series), its design for
optimal orientation selectivity has been the subject of recent work in
the context of wavelet design [6, 7]. There is more freedom when de-
signing the radial part of steerable filters, which we do in the present
paper.

The idea of approximating a single template in a steerable ba-
sis has been studied independently by Perona [1, 2] and Hel-Or &
Teo [8], using continuous-domain formalisms; others have favored
purely discrete formulations [3, 9]. Note that [9] covers the case of
multiple templates, but only in combination with a discrete set of ro-
tations. Here we consider a completely isotropic formulation in the
continuous domain.

The originality of our work stems from the following contribu-
tions.

1. We extend Perona’s continuous-domain approach [1, 2] to
multiple templates.

2. We establish the connection between the isotropic PCA prob-
lem that underlies [9] and our steerability-constrained PCA.
Moreover our functional perspective puts the emphasis on the
rotation invariance of the principal-component subspaces and
on their application to the efficient directional analysis of im-
ages.

3. We apply our framework to the specific problem in molec-
ular diagnostics described above, where the templates are
known analytically. This constitutes a strong motivation for
our continuous-domain formalism and allows for an analytic
design.

2. DESIGN OF THE STEERABLE FILTERS

In this paper we use (r,6) to denote polar coordinates in R
We will also refer to spaces of finite-energy functions using no-
tations of the form L2 (domain, codomain). For scalar-valued func-
tions (codomain = C) the inner product is defined as (f,g) =
[ m g(s) ds, where the integral is taken over the domain and the
bar denotes complex conjugation.



Fig. 1. Sketch of a particle (outer diameter: 40 pum). The
numbers correspond to the indicator functions used in eq. (6).

2.1. Characterization of steerable functions

A function ¢ is said to be steerable if its rotated versions can be
expressed as a linear combination of a finite number of fixed basis
functions, as in [10]

N

Ro{p} =) cal0) #n,

n=1

where Ro{¢}(r,0') = o(r,0’ — ). This is extremely useful for di-
rectional image analysis: one only needs to compute a finite number
of convolutions (with the basis functions), from which convolutions
under arbitrary orientations can then be interpolated using the ex-
pansion coefficients ¢, ().

Equivalently, a steerable function can be characterized as a func-
tion that lives in a finite-dimensional subspace which is invariant to
rotations [5]. We thus turn our attention to rotation-invariant sub-
spaces.

Theorem 1. A finite-dimensional subspace of L2(R?, C) is rotation-
invariant if and only if it is spanned by functions of the form

on(r,0) = ¢n(r) ™ where k, € Z. (1)
A general proof of this result using the theory of Lie groups can

be found in [5]. In the sequel we will focus on the choice of the

integers ky, and on the design of the radial components ¢y, (7).

2.2. From steerable PCA to isotropic PCA

Classically, the principal components of a data set are defined in
statistical terms: one constructs the direction that accounts for the
largest variance, subtracts off this component from the data and reap-
plies the same scheme recursively.

A dual, approximation-theoretic formulation is to construct a se-
quence of subspaces by incrementally generating basis elements so
as to optimally fit the data in a quadratic sense. The only practical
difference with the first definition is that the mean of the data set is
not necessarily subtracted before the analysis.

Here we will start from the latter interpretation. We will use
the following notations: f = [f1 ... fM]T c LQ(RQ,CA/I) is a
vector-valued function representing a collection of desirable tem-
plates; ¢ = [p1 ... on]T € L2(R%,CN) is a vector-valued func-
tion representing the principal components. Our goal is to minimize
the following quantity, subject to the condition of Theorem 1.
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Definition 1 (Steerable-PCA functional).

J () | f — C||? subject to (1).

min
CeCMxN

Note that in this paper inner products involving multi-valued
functions should be interpreted according to the usual rules for the
multiplication of scalars, vectors and matrices. For example, the
norm of f is a scalar defined via || f||* = (f7, f). In contrast, the
notation (R {f}, u) used below refers to a vector'.

Since the span of (¢n)neq1,n] iS constrained to be rotation-
invariant we have J(p) = J(Ro{}), where Ry is a rotation oper-
ator corresponding to an arbitrary angle 6. If we average this relation
over all angles and exploit the fact that Ry is linear and unitary, we
obtain the following equivalent expression.

Definition 2 (Isotropic PCA functional).

us
/ min
_ 5 CeCMXN

2.3. Eigen-analysis of the problem

1

_ - o 2
=5 |Ro{ £}~ Cel* 6.

J () )

In this section we minimize the isotropic functional (2) without ex-
plicitly enforcing the steerability condition (1). Despite this seem-
ingly more general setting, we shall see that our minimizer always
generates a rotation-invariant subspace.

Definition 3 (Data operator).

T L2(R%,C)

— LQ([*TI’,T(‘],CZW),
= T{u}(0) = (Re{f},u).

The operator T*T plays the same role as the correlation matrix
that must be diagonalized in discrete PCA formulations. Perona’s
observations (Section III of [2]) are also valid in our case: T" is com-
pact and therefore 7T admits a discrete spectrum.

Definition 4 (Principal components). The (orthonormal) eigenfunc-
tions of T*T are denoted by (un)nen, With the convention that
the corresponding eigenvalues A, € R are ordered by decreas-
ing magnitude: Ao > A1 > A2 > ...

Property 1. If o, = uy, foreveryn € [1, N| then @ is a minimizer
of (2).

Due to space constraints the proofs of the results given in this
paper will be published elsewhere.

2.4. Computation of the principal components

The next result provides an algorithm for computing the basis func-
tions u,. Observe that they have the steerable form described in

().

Property 2. The principal components can be obtained via the fol-
lowing quantities.

1. The multipole decomposition of the templates:

_ 1
o

() / "o £ (r,0) do. 3)

-

"'Note that complex conjugation is still applied to the left-hand argument.



The Hermitian-symmetric matrices

Hj, = 472 - fie(r) fz(r)r dr.

0

)

Their eigenvectors (Vn )nen, ordered by decreasing eigenval-
ues Ao > A1 > Ao > ...; we denote by (kn)nen the indices
of the corresponding matrices (Hy,, )nen.

Finally the eigenfunctions

Un(r,0) = v fr, (1) e*r? 1\ am A 3)

3. DETECTION OF THE MICRO-PARTICLES

In the second part of this paper we discuss the application of our
filter-design scheme to the pattern-recognition problem described in
Section 1.1.

3.1. Analytic construction of the steerable filters

A typical set of micro-particles is depicted in Fig. 3. Up to rotation,
each particle can be described by the function (see also Fig. 1)

5

p=AfN+BRe{f2}+ BRria{fs}+ B Y7 cll] Raze{fa}, ©
=—5

where A and B are brightness constants, « is a small fixed angle and
the coefficients c[k] € {0, 1} represent the code.

The symbols f1, ..., fa represent indicator functions of the fol-
lowing geometric shapes, respectively: a disk; a long perforation
which serves as an angular origin for reading the code; a short in-
ner perforation which indicates in which direction to read the code;
and small outer perforations corresponding to the code itself. Note
that the small inner perforation is necessary because particles can
flip upside down, which amounts to reflecting their code. These four
indicator functions all have the general form given below.

Definition 5 (Templates).

fm(r,0) = 1R, 5,,)(1) X kzzﬂ[_@,%m](e - 27k),
€

where Ry, Sm, and T, are geometric parameters and 1 [a,b] denotes
the indicator function of the interval [a, b).

We now outline the application of Property 2 to these templates,
using the fact that they are polar-separable.

1. f,.(r) is of the form Dy, f(r), where Dy is a diagonal matrix

that can be computed using
o 1k0 1

= — sinc
2

-3,

o B 1 () de
H, =Df H D;, where H can be computed using

2
Tmax — "min

“+oo
/ 15 (r) Ly sy (r) rdr = BT E—
0
with rmin = max(R, R’) and mmax = min(S,S").
The eigenvectors and eigenvalues of the 4 x4-matrices Hy,
can be computed numerically.

The resulting functions ¢,, = u,, are represented graphically
in Fig. 2 for N = 24.
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Fig. 2. The real part of the first 24 principal components, with
the corresponding Fourier-series harmonics &, .

3.2. Detection algorithm

The particle-recognition algorithm comprises three main steps. We
will need the following result.

Property 3. The best approximation of Re{f} in the principal-
component subspace is given by S N_ (on, Ro{f}) ¢n, where

(n, RotF) = VAnPm e~ 00 v,

First the particles are detected and localized. This is done by
finding the local extrema of the correlation between the input image
and a template of the form

w1 :[I-[O,Rg](r) =+ w2 II-[R3,R2](T) =+ ws 1[52751] (’I“),

where w1, w2 and w3 denote weighting coefficients.

The next step is to determine the orientation ¢, of each par-
ticle. To this end we need the best approximation of the orientation
mark in the steerable basis, hereafter denoted by ¢ = 25:1 qn Pn-
We steer ¢ so as to maximize the correlation with the particle. Ow-
ing to (1), (Roo{p}, Ro{a}) = 30, an (Rao{p},pn) e ¥ is
a trigonometric polynomial with respect to #, which can be maxi-
mized numerically. We emphasize that this step only involves inner
products at the locations of the detected particles—there is no con-
volution with the entire image.

Finally the code must be extracted. At this stage we can sub-
tract the contributions of the disk and of the orientation mark, leav-
ing us with the final sum in (6). Based on Property 3 and Fig. 2, we
can then observe that the inner products with the first 14 principal



Fig. 3. Images of real micro-particles. The red crosses indi-
cate the detected locations of the particles.

components give us access to the DFT of the code:

5
A —i27kn (/13
< > = % vV Vp E e C[ﬁ],

£=—5
where v’ = [0 00 1] and k,, € [—6,6]. Thus the code can be
recovered using an FFT-based algorithm, after a deconvolution step
to compensate for the multiplicative constants.

5

pus S clf) Rag {11}

{=—5

3.3. Numerical results

We first tested the algorithm on a real image containing 229 particles.
The original size of the image was 2592 x 1944; a small region of in-
terest is shown in Fig. 3 (top). All particles were correctly detected
(no false positives or negatives) and more than 99% of the codes
were correctly recognized. The computation time on a laptop com-
puter with a 2.6 GHz CPU was approximately 7 seconds, without
parallelizing the code. Similar detection rates were achieved with
another class of particles under less favorable focusing conditions
(Fig. 3, bottom).

Since in the real images we had at our disposal all micro-carriers
had the same perforations (up to reflection), we also tested our al-
gorithm on a set of 50 synthetic images. Each image contained a
particle whose orientation and code were drawn randomly from a
uniform distribution. In addition, to simulate optical defocus, the
images were convolved with a round uniform-blur kernel whose di-
ameter was 6 pixels. The results are reported in Table 1. It is seen
that the position and orientation estimates are accurate enough to
allow for zero decoding errors.

4. CONCLUSION

Motivated by an application in molecular diagnostics, we have pre-
sented a PCA-based procedure for designing steerable filters so as
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error H position (pixels) \ orientation (radians) H code (%) ‘

1.2251 0.0118
0.6349 0.0097

mean

std dev 0

Table 1. Position, orientation and code error for a set of 50
synthetic images.

to best approximate a given set of templates. The specificity of our
framework is that it is formulated in the continuous domain and al-
lows for multiple templates.

Furthermore we have developed a method that harnesses the
adaptivity and the computational efficiency of our steerable filters
for detecting and classifying micro-particles used in binding experi-
ments. Our method can deliver feedback on the reaction within a few
seconds, which is important if the lab operator needs to terminate the
data-acquisition process before completion.

Engineers at Biocartis have praised the detection algorithm for
its elegance and computational efficiencys; it is currently being fur-
ther developed by the company.
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