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"ABSTRACT

We introduce a general framework for the efficient computation
of the continuous wavelet transform (CWT). The method
allows arbitrary sampling along the scale axis, and achieves
O(N) complexity per scale where N is the length of the signal.
Our approach makes use of a compactly supported scaling
function to approximate the analyzing wavelet. We derive error
bounds on the wavelet approximation and show how to obtain
any desired level of accuracy through the use of higher order
representations.  Finally, we present examples of
implementation for different wavelets using polynomial spline

approximations.
1. INTRODUCTION

The continuous wavelet transform (CWT) has received
significant attention in its ability to perform a time-scale analysis
of signals. Its ability to zoom in on singularities has made it an
attractive tool in the analysis of non-stationary and fractal signals
[1-3]. Mathematically, the continuous wavelet transform
(CWT) of a continuous signal s(¢) can be defined as

W s(o,T) = % Js(t)\y(TT—t}it

where o and T are respectively the continuously varying scaling
and shifting parameters, and y(r) is the mother wavelet.

In practice, the variables o and 1 are sampled over the
plane of values. Fast algorithms exist for computing the CWT
at dyadic scale values o = 2!, where ieZ [2, 3]. In particular,
if the wavelet is derived from a multi-resolution analysis {3],
then Mallat's algorithm provides sample values @ =2°, 1=2%
with a global O(N) complexity. A related approach is the "3
trous" algorithm which supplies the sample values « = 2 t=k
i,keZ with O(N) computations per scale [4, 5]. The "2 trous"
algorithm has also been used to compute the CWT at the integer
sample values a =i, t =k, again with O(N)operations per scale
[6]. An algorithm for complex wavelet analysis with O(N)
complexity per scale is discussed in [7]. This last method
allows for an arbitrary sampling of the scale but is restricted to
Gabor-like wavelets (i.e., modulated Gaussians). Except for
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those special cases, the most efficient algorithms to date
typically require O( NLog(N)) computations per scale [8, 9].
We introduce a fast method for computing general CWTs
at the sample values a = a,,zé, 1=k where Q is a number
selected to achieve a desired exponential sampling rate along the
scale axis. This fine sampling of the scale is obtained by
approximating wavelets of various sizes using a compactly
supported scaling function, a principle that has been previously
used by several authors [5, 10]. What distinguishes our method
from those previous approaches is that we achieve O(N)
complexity per scale, instead of the O(NLog(N)) reported in

[10]. Another unique feature is that we have full control over

the approximation error, and that we can achieve any desired
level of accuracy.

2. SCALING FUNCTION REQUIREMENTS
The problem is to compute the values
W, s(0nt) =(s*y,)() )
where y (1) = (llJa)w(t/oc) .

Direct computation of (1) would involve 0(N2) operations per
scale, while an FFT based method would require O(NLog(N))
operations per scale. To achieve O(N) complexity per scale,
our approach is to approximate the wavelet by its orthogonal
projection onto a subspace defined by a compactly supported
scaling function. To insure the admissibility of the projected
wavelet and allow rapid calculation, the compactly supported
scaling function ¢ must satisfy the following three conditions:
@) A< Y |o(w+2mk) < B;

keZ
where A and B are strictly positive constants and $(w) is the

Fourier transform of ¢(¢).

(ii) Y o(t-k)=1

keZ

(i) @(t/2)= hk)o(t—k)

keZ

(partition of unity)
(two-scale relation)

The stability property (i) implies that {@(x—k)},., is a
Riesz basis of the subspace

V,= {h(x) = c(k)p(x —k) cel, }

keZ

»
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and that Vj is a well defined (closed) subspace of L,. Property
(ii) guarantees that the orthogonal projection of an admissible
wavelet y onto the subspace defined by ¢ is an admissible
wavelet as well. Property (iii) is important in achieving a fast
algorithm as discussed in the next section .

3. THE GENERAL ALGORITHM

In order to achieve O(N) complexity per scale, we will
replace the computation of the convolution in (1) by its
approximation

W, s(ct,t) =(s* ¥, )(7) %)

where , is the orthogonal projection of () = o™ *y(t/ or)

onto the subspace V,. Mathematically the orthogonal projection
Y, can be expressed as

Vo (0= q,(k)p(t k) 3)

where @(f) is the dual of ¢(t), g,(k) is the sequence
2.(k)=(¥,.9,), and @, =@(t~k). The sequence g, (k) is
finite since Yy, and @, are compactly supported by definition.
The motivation for using this dual representation instead of
the formula ()= Y po(k)p(t ~ k) with p, (k)= (V.. ), is
k

that the sequence p, (k) is usually infinite, even when ¢ and v
are compactly supported. This follows from the fact that the
dual of a symmetrical compactly supported scaling function is
generally infinite, except for the Haar case where ¢ is a unit
rectangular pulse [1]. Since we are approximating wavelets that
are either symmetric or anti-symmetric, it is essential to use a
symmetric scaling function in order to preserve the wavelet
symmetry properties.

In order to compute the samples at a particular scale, it is
necessary to know the FIR filter coefficients g, (k) associated
with y_. In practice, however, it is not essential to have an
FIR filter for every scale. Instead, we will only use Q FIR
filters to calculate the CWT for the Q scales in the first octave

o =a,28 j=0,...0-1 @

and then use property (iii) of the scaling function to compute the
CWT for Q scales in each of the higher octaves.

Substituting the approximation (3) into (2), sampling, and
performing simple algebraic operations produces the following
general algorithm:

Initialization: The algorithm requires the computation of the
continuous convolution of the signal with the scaling function.
This convolution is approximated as

5, (k)= (s *@)(x)_, = *s[k]

where b(k) and s{k] are respectively the samples of the scaling
function and input signal.
Iteration: Once s,(k) is computed, the wavelet coefficients are

determined using
i@+ =1

Wys(0,2 % k)= (g, *(@) Iy *5)k)  j=0,.cc0...0—1
where a(k-1)=(9,,9,), ((a)™ *a)(k) = 8[k], and the notation
[v};,: indicates that v(k) is expanded by a factor of 2° (i.e. 2!
zeros between sequence samples). The sequence s,, (k) is
computed iteratively from s,(k) using

si+1(k) = (S‘. * [h]‘rz' )(k) .
A block diagram of the system is shown in Figure 1.

4. THE APPROXIMATION ERROR

There are essentially two ways to control the error of the
approximation: change the scaling function, or adjust the size of
the finer scale wavelet o, (cf. Eq. (4)). In either case, reducing
the error may result in longer FIR filters.

The precise formulation of the approximation power of a
scaling function is provided by the Strang-Fix conditions [11].
These conditions imply that we can control the error by dilating
the wavelet or increasing the order of the representation. For a
scaling function of order L, the approximation error is bounded

as follows:
. C. C,-C
e=fr-vls 2= o

where y¥

approximation of Y, in V,. The numerator of the right hand

is the Lth derivative of y, and ¥, is the

side is the product of two constants : a first term C,, which is a
function of the representation, and a second wavelet-dependent
term C, = ||w‘”||, which can be pre-computed by integration in
the time or frequency domain.

Equation (5) indicates that the approxinration error
decreases with the Lth power of the scale. Clearly, the error
will be maximum at the finer scale o.,. Our design strategy is
therefore to select the parameters o, and L such as to maintain
this error below a certain threshold € (worst case scenario). For
this purpose, we can make use of the asymptotic relation
GG,

L

o

o — .= as O — +oo,

where the constant C, is given by
1/2
1 . 2
G ==Y p"@mc) | .
L! k=20

For our experiments, we used polynomial splines of degree n,
which have an order of approximation L=n+1. If ¢ is the B-
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spline of degree n, which we denote by B"(x), then the constant
C, can be computed explicitly:

¢ =L |y(L! ) _ 18]
T LIV @k @L)!
where |B,| is the Bernoulli's number of degree L.

The O(OL'L) behavior of the error as a function of the scale
was verified experimentally for several examples of wavelets.

For our experiments, we selected an error threshold of £=0.01
and choose to determine the corresponding finer scale parameter
o, by solving (5) as a function of a.. An alternative approach,
which may be more appropriate for splines of higher degree, is
to compute a few error values which can then be used to
determine an upper error bound of the form Co ™" where
c2G-C, .
5. FAST B-SPLINE IMPLEMENTATION

The centered B-spline functions are compact and satisfy
the three properties given in Section 2. Once the wavelet has
been selected, and the approximation error level specified, the
FIR fiiters

g, =(v.,.8;) j=0n@-1

can be calculated, where B} =B”(x—k). These filters are
computed by numerical integration methods. If the wavelet is
symmetric or anti-symmetric with q(k) of length n,, then this
filter requires (r, +1)/2 multiplications and n, —1 additions per
sample.

For an nth degree B-spline implementation, A(k) in
property (iii) of Section 2 is given by A(k)=u;(k), where
u; (k) is a binomial filter [12]. The filter [uz’" ]Tz,. can be
decomposed into a cascade of filters given by

[ @0, =5y #8181, (6= 1)

m+1 times

where the shift k, = (i +1)(n, +1)/2 is due to the definition of
up (k) which is u) (k) = 8[k] - 8[k —1]. Since [u} ], consists of
only one addition, the binomial filter [u,’“ (k)]nl can be
implemented with n, +1 additions per sample.

The remaining filter in the algorithm is the IIR filter
[(a)‘1 (k)]T”l = [(bz"“)"(k)]n,,, which can be implemented as a
recursive filter. Since (a)” is a symmetrical all pole filter, the
Z-transform of its up-sampled version [(a)"(k)]Tmcan be
written in the following standard form

d,

0
el Sale+ )
k=1

A, (Z")=

where d and {c,, k=0,......, ~1} are constant coefficients.
The filter can be expressed as a cascade o,g simple first order
causal/anti-causal components A, (z")=d, HA(z’";z,)

where A(z'”;z,.) is defined as =

Alz™z)= ( 1 — ©

l-zz)(1-22")

Values of d, and {z, i=1,......n,} for different spline orders
are given in [12]. This yields the following recursive filter
equations

YK =xtk)+zy k-m)  k=m,..N ()

yk)==zy* (k) + zy" (k + m)
= z,(y(k + m) - y* (k)

The only practical difficulty is to provide the correct initial

®

values for k£ =1,......,m on each side of the signal. This can be
done by using mirror boundary conditions. With this technique,
if the signal length is N and the expansion factor is m, then this
filter will require 2N + 2k m additions and 2N +(2k, +m
multiplications, where k, =log(g,/z) is a parameter that
depends upon the required accuracy (g,) for the initialization
(boundary conditions).

6. RESULTS AND DISCUSSION

We implemented the algorithm for the wavelets

PR tes

v (=" ¢ o,

0 otherwise
kf1-(2)] . K Llgs
v_O=1"""\o) | ° - a,|”
0 otherwise

where K, is a constant that insures that Jy|=1 and K,
guarantees the admissibility of ¥_ . The values of o, were
selected to achieve a worst case error of € = 0.01. The value of
@, is 2.69 for ¥, and 3.32 for W_ when using a B-spline of
order 1. For a B-spline of order 3 the value of o, is 1.25 for
VY, and 1.40 for ¥ _ . The wavelet V¥ _ is shown in Figure 2
with its cubic spline least squares (LS) approximation. The
wavelet and its approximation are virtually indistinguishable.
We computed the filters g, for the case of @=12. This
provides a discretization of each octave that corresponds to the
musical notes (A,A',B, C, C",....). The wavelet transform of an
impulse function for the cubic approximation of Y is shown
in Figure 3.
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7. CONCLUSION

The general method that was described evaluates the CWT
with O(N) complexity per scale. The procedure can
approximate any desired wavelet shape and can provide arbitrary
sampling along the scale axis. In addition, the approximation
error can be easily controlled by adjusting the fine scale
resolution or by the use of higher order splines.
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Figure 1: Block Diagram of System
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Figure 2: Mexican hat wavelet (solid) and its cubic LS
approximation (circles) at an RMS error of 0.01
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Figure 3: Wavelet Transform of unit impulse with the cubic LS
approximation of the mexican hat wavelet and twelve voices per
octave.
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