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ABSTRACT

We introduce a general framework for computing the continuous wavelet transform (CWT). Included in this framework is
an PET implementation as well as fast algorithms which achieve O(l)complexity per wavelet coefficient. The general
approach that we present allows a straight forward comparison among a large variety of implementations. In our
framework, computation of the CWT is viewed as convolving the input signal with wavelet templates that are the oblique
projection of the ideal wavelets into one subspace orthogonal to a second subspace. We present this idea and discuss and
compare particular implementations.
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1. INTRODUCTION

The continuous wavelet transform (CWT) is an often used tool in the analysis of non-stationary and fractal signals
(e.g. EEG)[8, 16]. The typically long length of these signals and the large number of scales computed in their analysis
provides a motivation for considering fast algorithms to compute the CWT. In this paper, we present a general framework
for computing the CWT. This framework encompasses fast algorithms with complexity 0(1) per wavelet coefficient as
well as an FFT implementation. Here we define the real CWT of the signal s(t) as the inner product

1 t—t 1Ws() =(s(t)w(__)) ==Js(t)NJ__}it (1)

where x and t are respectively the continuously varying scaling and shifting parameters, and the real function w(t) is the
mother wavelet*.

In practice, the variables x and tare sampled over the plane of values. Fast algorithms exist for computing the
wavelet transform at the dyadic scales a = 2' when the wavelet is associated with a multi-resolution [1, 3, 7, 1 1]. In this
paper, we are interested in a finer sampling of the scale axis.

Previous methods for calculating the CWT include an approach which obtained the coefficients at the integer sample
values cx = i , t = k , with 0(N) number of operations per scale [16]. Another approach which computes the CWT along
arbitrary scales, again with 0(N) complexity per scale, is discussed in [13]. This last method is restricted to Gabor-like
wavelets (i.e., modulated Gaussians). A method which achieved 0(N) operations per scale, with no restrictions on the
shape of the wavelet, and with arbitrarily fine exponential sampling along the scale axis was introduced in [17]. This last
method approximated wavelets at several scales by their orthogonal projection onto a space defined by a compact scaling

* Tosimplify the notation throughout the paper, we use a definition of the wavelet transform that is a time-reversed version of the conventional
one.
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function. Most other algorithms to date are implemented using an FFT-based approach and require O(N log(N))
computations per scale [4, 5, 6, 9].

Here we introduce a general framework that includes the method [17J and the FFT implementation as particular
cases, while providing additional flexibility. In the most efficient implementation, the algorithm consists of an FIR filter
bank (P FIR filters for computing P scales or voices per octave) and a fast recursive hR filter. This system is shown in
Fig. 1 where the additional FIR filter [h(k)]12, performs the two scale stretching of the approximating scaling function. This
two-scale relationship enables us to use the same FIR filters in computing the CWT for P scales within each octave (with
appropriate zero padding between the filter coefficients). In the simplest form, the filter coefficients for the FIR filter bank
are analytically determined by integration ofthe wavelet

k+112

qa, (k) Swt I cx.) dt , i =0 P —1,
k—1/2

where the cL '5 are the corresponding scale parameters.

Si (k)
si÷1 (k) = s. *(p2 (t I 2'' ) tk

W14,s(a2',k)

-J [qaj(k)]2, Wis[oCo2k]

-1.*.-
[qa(k)]12j-__ W4ao2kJ

FIR Filter Bank
Fig. 1 . System diagram for the computation of the CWT in the ith octave. All filters are expanded by the factor 2' using
zero padding. The same (but expanded) FIR filter bank is used for each octave. The scale axis is sampled exponentially.

2. THE GENERAL FRAMEWORK

Our goal is to efficiently compute the convolution given in (1) where the support of the wavelet template varies by
the scale variable. As mentioned, the scale and shift variables are sampled over the plane of values. In addition, in most
applications the input signal will consist of samples and therefore the continuous convolution given in (1) is approximated
by digital filtering. Since we know the exact shape of our wavelet (as opposed to only having samples of the input signal),
we consider the problem of approximating the continuous wavelet such that the digital filtering is performed efficiently
while providing us with an acceptable approximation to the continuous convolution. In this paper, we approximate the
wavelet by its oblique projection which is a generalization of an orthogonal projection since there are two subspaces
involved. One subspace defines where the signal is projected and the other subspace defines the direction of the projection
(the projection direction is orthogonal to this second subspace). We denote the set of projected wavelets at P scales by

{w(t) oc"2 w(t / i)}iO, which are the oblique projections of the wavelets {cx2 w(t / into a space
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defined by the function p2(t) in the direction orthogonal to the space defined by the function p1(t). We now consider the
properties that these functions must satisfy and introduce the oblique projection operation.

2.1. Scaling functions and oblique projections
An Lth order scaling function is a function p(t) L which satisfies the following three conditions:
(i) 0 < A   Y_IkEZk + 2tk)2   B < oo
(ii) c?(O) = 1 and "(2itk) = 0 , k Z, k 0 for m = 0,...,L—1

(iii) (P) = h(k)p(t -k)2 kEZ

where (w) is the Fourier transform of p(t) and m)(2itk) the mth derivative of (w) evaluated at 2ick . Property (i)
insures that the subspace

v() ={ht
= c(k)(t —k) c 4 }keZ

is a well defined (closed) subspace of L[2]. Property (ii) implies that p(t) reproduces all polynomials of degree L —1.
Property (iii) is referred to as the two-scale relation and it allows us to dilate all the wavelet filters by a power of two. An
analysis function is defined as a function that satisfies only properties (i) and (ii). Criteria for the selection of a scaling or
analysis function should be based on its approximating power, smoothness, and shortness of its support to name a few.

For a pair of analysis functions p and p2, the oblique projection of the wavelet (t) = w(t I c) into v(p2)
orthogonal to v(p1 ) can be expressed in terms of the basis generated by p2 and a set of coefficients p (k) where

Wi(t)pa(k)(2(tk). (2)
k€Z

The direction of the projection is orthogonal to the space defined by q which implies the following

K Pa1 (2(t — k)—(t Ij)'(t_
1))

0
kEZ 1EZ•

This orthogonality condition gives rise to the following equation

Pa, (k) (qa *q12)(k) . (3)

where

Ict, (k) (t),(1(t _ k)). (4)

and the digital filter q12 is the convolution inverse of the cross-correlation sequence (p1(t — k),q2(t)); i.e.
Q12(z) = (LEZ(l(t - k), p2(t))z )' (cf. [14]).

Equations (2)-(4) describe how the oblique projection can be computed. If i and p1 both have compact support
then the FIR filters in the filter bank of Fig. 1 {qa } , also have finite support. Note also that we have an orthogonal
projection if p1(t) v(ç2).

2.2 CWT approximation

We will now replace the computation of the convolution in (1) by its approximation

Ws(a,t) =(s*W)(r). (5)

Substituting (2) into the above equation we obtain:

s0(t) = (s*p2)(t) (6)

= (k)s0( — k). (7)
kEZ
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In principle, we need a filter Pa, (k) for every scale we wish to compute. If p2 is a scaling function, then we can
take advantage of the two scale relationship given as property (iii) which allows us to use the same set of filters for each
octave.

In practice, the input signal will actually be the sample values s[k] = s(t)I,k • Computing the continuous convolution
in (6) requires an interpolation of these sample values. Alternatively, one can use a Riemann approximation for the
convolution integral resulting in the simple initialization

s0[k] (s*b2)(k),
where b2(k) = 2(t)IIk

Incorporating property (iii) into (6) and (7), sampling, and performing simple algebraic manipulations, we obtain
the following algorithm

s.1(k) = (s1*[h]2 )(k) (8)

(k) = (s,*[q12]2, )(k) (9)

W,s(2cx,k) = (i*[qa 1121)(k), i = 0 P— 1, (10)
where [h]2. is h(k) with 2 —1 zeros between each sample (i.e., expanded by a factor of 2'). Equation (8) performs the
two scale filtering defined by property (iii) for p2; equation (9) is the 1W correction filtering which insures that we have an
oblique projection ofour wavelet; and equation (10) is the FIR filtering which constructs the approximated wavelets in
terms of the scaling function and computes the wavelet coefficients. These equations describe the algorithm as it is shown
in Fig. 1.

3. PARTICULAR IMPLEMENTATIONS

Now that we have introduced this general framework for computing the CWT, we will show several implementations. We
start with the slowest most often used approach and end with the most efficient algorithm.

3.1. FFT Implementation

Consider the case when both p2(t) and p (t) are the sinc interpolator. The filter q12 , which is the convolution inverse of
the cross-correlation sequence (p1(t— k),p2(t)), becomes q12(k) = (k) . From (3) and (4) we then have

qa, (k) Pa, (k) = (iia (t),p(t—k)). (11)

Equation (1 1) states that the coefficients of the filter Pa, (1) are sample values of the band-limited version of the wavelet

Wa, (t) . Note that the filters Pa, (k) are not compact and that the decay of the sinc function (and hence Pa, (k)) 5very
slow. For the sinc function, the two-scale relationship (property (iii)) requires that h(k) be an ideal low pass filter, which
will of course be hR with the slow sinc decay. One approach to implement such a system is to do FIR approximations of
the filters which would result in an O(N)algorithm with a very large constant. Alternatively one could use an PET
algorithm and achieve and O(N log(N)) efficiency per scale with a much smaller constant. Also one could use a different
filter Pa, (k) for each scale at each octave, which implies the system shown in Fig. 2 where s0(k) = s(k).
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3.2. Cubic Spline Least Squares Implementation

We can improve on the efficiency of the algorithm given above by considering the case when p = p2 = where is the
cubic B-spline. This selection provides us with a least squares (LS) projection into the cubic spline space. Since the B-
splines are scaling functions with a compact 2-scale filter h(k), we can make efficient use of the system shown in Fig. 1 for
our implementation. For the cubic spline case, the FIR filters are given by

k+1/2

q, (k) (i(t I CC),f33(t _ k)) fw(t Ic1)f33(t —k)dt
k—1/2

H(z) = (z_2
+4z' +6+ 4z +z2)

and the hR filter is

5040
Q12(z)=

(3 + 120z2 + 1 191z +2416+ 1191z +120z2 +z3)

which can be implemented in a fast recursive 0(N) algorithm [15]. If the wavelet is compact, then the filters q (k) will be
FIR and the overall complexity of the system will be 0(N) per scale.

p0(k) Ws(a0,k) \

I
paj(k) Ws[ao2kJ Octave 0

Pa;i(k) H Wsao2kJ /
p (k) wM,s(a02',k)

s0(k) pa(k) Wsao2kJ Octavei

Pa(,j)p (k) W[ao2 kJ

Ws(c'o2M,k) \

WScco2 kJ Octave M

H H WWS[()2 kJ /

426 / SPIE Vol. 2825

Downloaded from SPIE Digital Library on 19 Oct 2011 to 128.178.48.127. Terms of Use:  http://spiedl.org/terms



Figure 2: FFT Implementation for P scales per octave over M octaves with exponential sampling of the scale axis.

3.3. An Oblique Implementation

While the cubic B-spline implementation has advantages over the sinc implementation, we can make additional
improvements in the system with our general framework. To keep things as simple as possible but still maintain a high
degree of accuracy we will use the zero degree B-spline (first order approximation) on the analysis side: p = ° ; and the
cubic B-spline on the synthesis side: p2 = . Theadvantages of this particular selection are:

(i) The FIR filters {qa (k)}. M-1 are determined analytically by simple integration ofthe wavelet w(t I a,)
k+1/2

q, (k) ((tia1),f3°(t— k)) = Jw(ti a1) dt (12)
k—1/2

(ii) The FIR filters are shorter and the 1W filter is of a lower order as compared to the orthogonal projection into
v(p2) considered in Sec. 3.2. This also implies that the oblique algorithm will be faster than the orthogonal (or
least squares) algorithm.

(iii) The approximation error, discussed in the next section is very close to the minimum which is achieved by the
orthogonal projection.

In this case, we gain in simplicity and speed with little loss in accuracy. The 1W filter is given by
384

Q12(z) =
(2 + 76z +230 +76z +z2)

which can be implemented in a fast recursive fashion [15]. The two-scale filter H(z) is the same as that given in Sec. 3.2
and the efficiency is 0(N) per scale.

4. APPROXIMATION ERROR

The approximation power of a scaling function depends upon its ability to reproduce polynomials up to a specific
degree n . This degree plus one (L =n +1)provides the order of accuracy of the approximation function. The properties
of the approximation error for the orthogonal projection case are given by the Strang-Fix conditions [12]. We will first
describe the relationship between the oblique and the orthogonal approximation errors, and then translate this relationship to
the Strang-Fix conditions.

The oblique projection into v(p2) , orthogonal to V(p1), is related to the orthogonal projection into v(p2) by the
following (cf. [Unser, 1994 #287J):

IIWa WaI   Ia — P2LIWaII   1 — 2WaII (13)

where P2 is the orthogonal projection operator into v(p2), P21 is the oblique projection operator into v(p2) orthogonal to
v(p1), 8 s the largest angle between v(p1 ) and v(p2), and

P2(w + 2itk) .I;(O) +2ick)
cos(O) = ess inf kEZ keZ

(2)E(O.1/2j + 2itk)2 /(P2(0) +2itk)12
kEZ kEZ

As the angle between the subspaces decreases, the bound (13) becomes tighter and the oblique projection error approaches
the orthogonal error. In particular, if p1 E v(p,), then cos(e) = 1 and v(p1) = v(p2).

As already mentioned, the behavior of the least squares approximation error as a function of the scale a is described
by the Strang-Fix theory (cf. [17]). For the L2th order scaling function p2 (cf. condition (ii)), the theory provides the
relationship

SPIE Vol. 2825 / 427

Downloaded from SPIE Digital Library on 19 Oct 2011 to 128.178.48.127. Terms of Use:  http://spiedl.org/terms



tWa — P2111a11   Cc

where the constant Cc is a function of 2 and is the norm of the L.2th derivative of i. In other words, the error
typically decays like o(a). This bound translates to a bound on the oblique projection in the following fashion using
relationship (12)

C(p h(L2)ll
tII1a — P2iilJfaIt  cos(9) cxL2

Hence, we can expect the same kind of decay as in the least squares case.

In practice, the oblique error is much closer to the orthogonal error than what is indicated by the above worst case
bound. In fact, it can be shown that the oblique and orthogonal errors have the same limiting behavior as cx —oo.

Specifically, for a sufficiently large, the approximation error behaves as

N12
IWa — P211 Wall = C2 + O)

where L2 is again the order of approximation of p2 and
\ 1/221

C2 = 227tk) J

(14)

This is exactly the same relation as the one given for the least squares case in [17J (including the value of the constants).

1

0.1

C

C
• 0.01
C

0.001

0.0001

Fig. 3. Approximation errors for the 1st derivative Gaussian wavelet

Figure 3 displays the root square approximation error curve for the cubic LS approximation of a 1st derivative
Gaussian wavelet and an oblique approximation using the zero and third degree B-splines for p and P2 respectively.
Remarkably the difference between the LS and oblique errors is very small. It is also clear that both curves have the same
asymptote which is given by (14) (for cubic splines, the value of the constant is C2 =9.09241x 10). In both examples,
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the loss of performance is negligible; in fact, the discrepancy is much less than the factor (cos(9))' (here cos(9) = 0.892)
predicted by the theory (worst case scenario). Thus, we can conclude that for all practical purposes the orthogonal and
oblique projections are equivalent in terms of their approximation power. Also shown on the plot is the root square
approximation error for a sinc based implementation which provides the anti-aliasing error as a function of scale.

5. COMPARISON OF METHODS

In this section, we compare the performance of the methods discussed in the previous section. For illustrative purposes,
we consider a truncated version of the first derivative of a Gaussian as our wavelet shape, given by

w(){__e2
;

0 ; otherwise
where K0 is a constant that insures that IIwlI = 1.

To select a fine scale resolution a , we selected an error threshold of 0.001 which is shown as a dash line in Fig.
(3). By selecting 0.001 our fine scale resolution is a0 Sinc =1.23 for the sinc implementation, a LS = 1.88 for the cubic
spline least squares implementation, and a OB=1.89 for the first derivative wavelet in the oblique case of Sec. 3.3. We
used P=12 scales per octave where a1 =a02hh12 j 11 which corresponds to the musical notes (A,A#,B,c,c#,...).

We implemented the algorithm in MATLAB with specific routines (zero-padded filtering) coded in C to speed up the
computations. The impulse response of the oblique system over four octaves is shown in Figure 4. For the oblique and the
least squares implementation, the fine scale within each octave contains the worst case error. In Figure 5, the fine scale
slice in the fourth octave of Figure 4 is compared to the actual function. Note that the oblique projection is almost
indistinguishable from the actual function.

0 ;::::.. H

05

_%1
5

0

25

3

35

—100 —80 —60 —40 —20 0 20 40 60 80 100
Time

Fig. 4. Impulse response of the oblique implementation for the 1 st derivative Gaussian wavelet.

We compared the performance of the oblique and LS algorithms to an VET-based method (cf. Fig. 2) which used a radix-2
algorithm when the signal length N was a power of 2, and a mixed radix method for other signal lengths (MATLAB's FFT
algorithm). The input was an electroencephalograph signal (EEG). Fast algorithms for analyzing such signals are of
interest for applications that require real time detection of brain seizures [lOJ.
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Time

Fig. 5. Comparison of the 1st derivative Gaussian wavelet and its oblique approximation.

The length of the signal was varied and the time required to compute four octaves as a function of the signal length
is shown in Figure 6. The dashed line with the x markers represents the FFT algorithm when the signal was padded to a
power of two. The solid line with the small circles is the FFT algorithm for various signal lengths. The solid line, which is
the oblique projection algorithm, clearly demonstrates the 0(N) characteristics of the method. Just above the oblique
projection line is the cubic LS line. In this comparison, the oblique and LS algorithms appears to be advantageous even for
relatively small signal lengths e.g. N<128. The speed improvement of the oblique algorithm over the LS is roughly 11%.
The more important advantage of the oblique over the LS though is that the determination of the wavelet filters is much
more straightforward. For the oblique algorithm, the majority of the computation was spent in the FIR filter bank.
Additional speed up could be achieved by performing each FIR filter in parallel.
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Fig. 6. Speed comparison of the FFT, Cubic spline LS, and Oblique
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6. CONCLUSION

We have introduced a general framework that encompasses many approaches to implementing the CWT and allows a
straightforward comparison and understanding of the methods. The results indicate that the use of spline spaces have
several advantages. These advantages include a complexity of 0(1) per computed wavelet coefficient, easily computed FIR
filter coefficients (for the oblique implementation), control over the approximation error, and flexibility in regards to wavelet
shape.
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